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a b s t r a c t

We introduce Learn++.MF, an ensemble-of-classifiers based algorithm that employs random subspace

selection to address the missing feature problem in supervised classification. Unlike most established

approaches, Learn++.MF does not replace missing values with estimated ones, and hence does not need

specific assumptions on the underlying data distribution. Instead, it trains an ensemble of classifiers,

each on a random subset of the available features. Instances with missing values are classified by the

majority voting of those classifiers whose training data did not include the missing features. We show

that Learn++.MF can accommodate substantial amount of missing data, and with only gradual decline in

performance as the amount of missing data increases. We also analyze the effect of the cardinality of

the random feature subsets, and the ensemble size on algorithm performance. Finally, we discuss the

conditions under which the proposed approach is most effective.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. The missing feature problem

The integrity and completeness of data are essential for any
classification algorithm. After all, a trained classifier – unless
specifically designed to address this issue – cannot process
instances with missing features, as the missing number(s) in the
input vectors would make the matrix operations involved in data
processing impossible. To obtain a valid classification, the data to
be classified should be complete with no missing features
(henceforth, we use missing data and missing features inter-
changeably). Missing data in real world applications is not
uncommon: bad sensors, failed pixels, unanswered questions in
surveys, malfunctioning equipment, medical tests that cannot be
administered under certain conditions, etc. are all familiar
scenarios in practice that can result in missing features. Feature
values that are beyond the expected dynamic range of the data
due to extreme noise, signal saturation, data corruption, etc. can
also be treated as missing data. Furthermore, if the entire data are
not acquired under identical conditions (time/location, using the
same equipment, etc.), different data instances may be missing
different features.
ll rights reserved.

: +1 856 256 5241.
Fig. 1 illustrates such a scenario for a handwritten character
recognition application: characters are digitized on an 8�8 grid,
creating 64 features, f1–f64, a random subset (of about 20–30%) of
which – indicated in orange (light shading) – are missing in each
case. Having such a large proportion of randomly varying features
may be viewed as an extreme and unlikely scenario, warranting
reacquisition of the entire dataset. However, data reacquisition is
often expensive, impractical, or sometimes even impossible,
justifying the need for an alternative practical solution.

The classification algorithm described in this paper is designed
to provide such a practical solution, accommodating missing
features subject to the condition of distributed redundancy

(discussed in Section 3), which is satisfied surprisingly often in
practice.

1.2. Current techniques for accommodating missing data

The simplest approach for dealing with missing data is to
ignore those instances with missing attributes. Commonly
referred to as filtering or list wise deletion approaches, such
techniques are clearly suboptimal when a large portion of the
data have missing attributes [1], and of course are infeasible, if
each instance is missing at least one or more features. A more
pragmatic approach commonly used to accommodate missing
data is imputation [2–5]: substitute the missing value with a
meaningful estimate. Traditional examples of this approach
include replacing the missing value with one of the existing data
points (most similar in some measure) as in hot – deck imputation
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Fig. 1. Handwritten character recognition as an illustration of the missing feature problem addressed in this study: a large proportion of feature values are missing

(orange/shaded), and the missing features vary randomly from one instance to another (the actual characters are the numbers 9, 7 and 6). For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.
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[2,6,7], the mean of that attribute across the data, or the mean of
its k-nearest neighbors [4]. In order for the estimate to be a
faithful representative of the missing value, however, the training
data must be sufficiently dense, a requirement rarely satisfied for
datasets with even modest number of features. Furthermore,
imputation methods are known to produce biased estimates as
the proportion of missing data increases. A related, but perhaps a
more rigorous approach is to use polynomial regression to
estimate substitutes for missing values [8]. However, regression
techniques – besides being difficult to implement in high
dimensions – assume that the data can reasonably fit to a
particular polynomial, which may not hold for many applications.

Theoretically rigorous methods with provable performance
guarantees have also been developed. Many of these methods
rely on model based estimation, such as Bayesian estimation
[9–11], which calculates posterior probabilities by integrating
over the missing portions of the feature space. Such an approach
also requires a sufficiently dense data distribution; but more
importantly, a prior distribution for all unknown parameters must
be specified, which requires prior knowledge. Such knowledge is
typically vague or non-existent, and inaccurate choices often lead
to inferior performance.

An alternative strategy in model based methods is the
Expectation Maximization (EM) algorithm [12–14,10], justly
admired for its theoretical elegance. EM consists of two steps,
the expectation (E) and the maximization (M) step, which
iteratively maximize the expectation of the log-likelihood of the
complete data, conditioned on observed data. Conceptually, these
steps are easy to construct, and the range of problems that can be
handled by EM is quite broad. However, there are two potential
drawbacks: (i) convergence can be slow if large portions of data
are missing; and (ii) the M step may be quite difficult if a closed
form of the distribution is unknown, or if different instances are
missing different features. In such cases, the theoretical simplicity
of EM does not translate into practice [2]. EM also requires prior
knowledge that is often unavailable, or estimation of an unknown
underlying distribution, which may be computationally prohibi-
tive for large dimensional datasets. Incorrect distribution estima-
tion often leads to inconsistent results, whereas lack of
sufficiently dense data typically causes loss of accuracy. Several
variations have been proposed, such as using Gaussian mixture
models [15,16]; or Expected Conditional Maximization, to
mitigate some of these difficulties [2].

Neural network based approaches have also been proposed.
Gupta and Lam [17] looked at weight decay on datasets with
missing values, whereas Yoon and Lee [18] proposed the Training-
EStimation-Training (TEST) algorithm, which predicts the actual
target value from a reasonably well estimated imputed one. Other
approaches use neuro-fuzzy algorithms [19], where unknown
values of the data are either estimated (or a classification is made
using the existing features) by calculating the fuzzy membership
of the data point to its nearest neighbors, clusters or hyperboxes.
The parameters of the clusters and hyperboxes are determined
from the existing data. Algorithms based on the general fuzzy
min–max neural networks [20] or ARTMAP and fuzzy c-means
clustering [21] are examples of this approach.

More recently, ensemble based approaches have also been
proposed. For example, Melville et al. [22] showed that the
algorithm DECORATE, which generates artificial data (with no
missing values) from existing data (with missing values) is quite
robust to missing data. On the other hand, Juszczak and Duin [23]
proposed combining an ensemble of one-class classifiers, each
trained on a single feature. This approach is capable of handling
any combination of missing features, with the fewest number of
classifiers possible. The approach can be very effective as long as
single features can reasonably estimate the underlying decision
boundaries, which is not always plausible.

In this contribution, we propose an alternative strategy, called
Learn++.MF. It is inspired in part by our previously introduced
ensemble-of-classifiers based incremental learning algorithm,
Learn++, and in part by the random subspace method (RSM). In
essence, Learn++.MF generates a sufficient number of classifiers,
each trained on a random subset of features. An instance with one
or more missing attributes is then classified by majority voting of
those classifiers that did not use the missing features during their
training. Hence, this approach differs in one fundamental aspect
from the other techniques: Learn++.MF does not try to estimate the
values of the missing data; instead it tries to extract the most
discriminatory classification information provided by the existing

data, by taking advantage of a presumed redundancy in the
feature set. Hence, Learn++.MF avoids many of the pitfalls of
estimation and imputation based techniques.

As in most missing feature approaches, we assume that the
probability of a feature being missing is independent of the value
of that or any other feature in the dataset. This model is referred
to as missing completely at random (MCAR) [2]. Hence, given the
dataset X¼(xij) where xij represents the jth feature of instance xi,
and a missing data indicator matrix M¼(Mij), where Mij is 1 if xij is
missing and 0 otherwise, we assume that pðM9XÞ ¼ pðMÞ. This is
the most restrictive mechanism that generates missing data, the
one that provides us with no additional information. However,
this is also the only case where list-wise deletion or most
imputation approaches lead to no bias.

In the rest of this paper, we first provide a review of ensemble
systems, followed by the description of the Learn++.MF algorithm,
and provide a theoretical analysis to guide the choice of its free
parameters: number of features used to train each classifier, and
the ensemble size. We then present results, analyze algorithm
performance with respect to its free parameters, and compare
performance metrics with theoretically expected values. We also
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compare the performance of Learn++.MF to that of a single classifier
using mean imputation, to naı̈ve Bayes that can naturally handle
missing features, and an intermediate approach that combines
RSM with mean imputation, as well as to that of one-class
ensemble approach of [23]. We conclude with discussions and
remarks.
2. Background: ensemble and random subspace methods

An ensemble-based system is obtained by combining diverse

classifiers. The diversity in the classifiers, typically achieved by
using different training parameters for each classifier, allows
individual classifiers to generate different decision boundaries
[24–27]. If proper diversity is achieved, a different error is made
by each classifier, strategic combination of which can then reduce
the total error. Starting in early 1990s, with such seminal works as
[28–30,13,31–33], ensemble systems have since become an
important research area in machine learning, whose recent
reviews can be found in [34–36].

The diversity requirement can be achieved in several ways
[24–27]: training individual classifiers using different (i) training
data (sub)sets; (ii) parameters of a given classifier architecture;
(iii) classifier models; or (iv) subsets of features. The last one, also
known as the random subspace method (RSM), was originally
proposed by Ho [37] for constructing an ensemble of decision
trees (decision forests). In RSM, classifiers are trained using
different random subsets of the features, allowing classifiers to err
in different sub-domains of the feature space. Skurichina points
out that RSM works particularly well when the database provides
redundant information that is ‘‘dispersed’’ across all features [38].

The RSM has several desirable attributes: (i) working in a
reduced dimensional space also reduces the adverse conse-
quences of the curse of dimensionality; (ii) RSM based ensemble
classifiers may provide improved classification performance,
because the synergistic classification capacity of a diverse set of
classifiers compensates for any discriminatory information lost by
choosing a smaller feature subset; (iii) implementing RSM is quite
straightforward; and (iv) it provides a stochastic and faster alter-
native to the optimal-feature-subset search algorithms. RSM
approaches have been well-researched for improving diversity,
with well-established benefits for classification applications [39],
regression problems [40] and optimal feature selection applica-
tions [38,41]. However, the feasibility of an RSM based approach
has not been explored for the missing feature problem, and hence
constitutes the focus of this paper.

Finally, a word on the algorithm name: Learn++ was developed
by reconfiguring AdaBoost [33] to incrementally learn from new
data that may later become available. Learn++ generates an
ensemble of classifiers for each new database, and combines
them through weighted majority voting. Learn++ draws its training
data from a distribution, iteratively updated to force the algo-
rithm to learn novel information not yet learned by the ensemble
[42,43]. Learn++.MF, combines the distribution update concepts of
Learn++ with the random feature selection of RSM, to provide a
novel solution to the Missing Feature problem.
3. Approach

3.1. Assumptions and targeted applications of the proposed

approach

The essence of the proposed approach is to generate a
sufficiently large number of classifiers, each trained with a
random subset of features. When an instance x with missing
feature(s) needs to be classified, only those classifiers trained with

the features that are presently available in x are used for the
classification. As such, Learn++.MF follows an alternative paradigm
for the solution of the missing feature problem: the algorithm
tries to extract most of the information from the available
features, instead of trying to estimate, or impute, the values of
the missing ones. Hence, Learn++.MF does not require a very dense
training data (though, such data are certainly useful); it does not
need to know or estimate the underlying distributions; and hence
does not suffer from the adverse consequences of a potential
incorrect estimate.

Learn++.MF makes two assumptions. First, the feature set must
be redundant, that is, the classification problem is solvable with
unknown subset(s) of the available features (of course, if the
identities of the redundant features were known, they would have
already been excluded from the feature set). Second, the
redundancy is distributed randomly over the feature set (hence,
time series data would not be well suited for this approach). These
assumptions are primarily due to the random nature of feature
selection, and are shared with all RSM based approaches. We
combine these two assumptions under the name distributed

redundancy. Such datasets are not uncommon in practice (the
scenario in Fig. 1, sensor applications, etc), and it is these
applications for which Learn++.MF is designed, and expected to
be most effective.
3.2. Algorithm Learn++.MF

A trivial approach is to create a classifier for each of the 2f
�1

possible non-empty subsets of the f features. Then, for any
instance with missing features, use those classifiers whose
training feature set did not include the missing ones. Such an
approach, perfectly suitable for datasets with few features, has in
fact been previously proposed [44]. For large feature sets, this
exhaustive approach is infeasible. Besides, the probability of a
particular feature combination being missing also diminishes
exponentially as the number of features increase. Therefore,
trying to account for every possible combination is inefficient.
At the other end of the spectrum, is Juszczak and Duin’s approach
[23], using fxc one-class classifiers, one for each feature and each
of the c classes. This approach requires fewest number of
classifiers that can handle any feature combination, but comes
at a cost of potential performance drop due to disregarding any
existing relationship between the features, as well as the infor-
mation provided by other existing features.

Learn++.MF offers a strategic compromise: it trains an ensemble
of classifiers with a subset of the features, randomly drawn from a
feature distribution, which is iteratively updated to favor selec-
tion of those features that were previously undersampled. This
allows Learn++.MF to achieve classification performances with
little or no loss (compared to a fully intact data) even when large
portions of data are missing. Without any loss of generality, we
assume that the training dataset is complete. Otherwise, a
sentinel can be used to flag the missing features, and the
classifiers are then trained on random selection of existing
features. For brevity, we focus on the more critical case of field
data containing missing features.

The pseudocode of Learn++.MF is provided in Fig. 2. The inputs
to the algorithm are the training data S¼ ðxi,yiÞ,i¼ 1,. . .,N

� �
;

feature subset cardinality; i.e., number of features, nof, used to
train each classifier; a supervised classification algorithm
(BaseClassifier), the number of classifiers to be created T; and a
sentinel value sen to designate a missing feature. At each iteration
t, the algorithm creates one additional classifier Ct. The features
used for training Ct are drawn from an iteratively updated



Fig. 2. Pseudocode of algorithm Learn++.MF.

R. Polikar et al. / Pattern Recognition 43 (2010) 3817–38323820
distribution Dt that promotes further diversity with respect to the
feature combinations. D1 is initialized to be uniform, hence each
feature is equally likely to be used in training classifier C1 (step 1).

D1ðjÞ ¼ 1=f , j¼ 1, � � � ,f ð1Þ

where f is the total number of features. For each iteration
t¼1,y,T, the distribution Dt ARf that was updated in the
previous iteration is first normalized to ensure that Dt stays as a
proper distribution

Dt ¼Dt

Xf

j ¼ 1

DtðjÞ

,
ð2Þ

A random sample of nof features is drawn, without replace-
ment, according to Dt, and the indices of these features are placed
in a list, called FselectionðtÞARnof (step 2). This list keeps track of
which features have been used for each classifier, so that
appropriate classifiers can be called during testing. Classifier Ct,
is trained (step 3) using the features in Fselection(t), and evaluated
on S (step 4) to obtain

Perft ¼
1

N

XN

i ¼ 1

1CtðxiÞ ¼ yiU ð3Þ

where 1 �U evaluates to 1 if the predicate is true. We require Ct to
perform better than some minimum threshold, such as 1/2 as in
AdaBoost, or 1/c (better than the random guess for a reasonably
well-balanced c-class data), on its training data to ensure that it
has a meaningful classification capacity. The distribution Dt is
then updated (step 5) according to

Dtþ1ðFselectionðtÞÞ ¼ b�DtðFselectionðtÞÞ, 0obr1 ð4Þ

such that the weights of those features in current Fselection(t) are
reduced by a factor of b. Then, features not in Fselection(t)
effectively receive higher weights when Dt is normalized in the
next iteration. This gives previously undersampled features a
better chance to be selected into the next feature subset. Choosing
b¼1 results in a feature distribution that remains uniform
throughout the experiment. We recommend b¼nof/f, which
reduces the likelihood of previously selected features being
selected in the next iteration. In our preliminary efforts, we
obtained better performances by using b¼nof/f over other choices
such as b¼1 or b¼1/f, though not always with statistically
significant margins [45].
During classification of a new instance z, missing (or known to
be corrupt) values are first replaced by a sentinel sen (chosen as a
value not expected to occur in the data). Then, the features with
the value sen are identified and placed in M(z), the set of missing
features.

MðzÞ ¼ arg zðjÞ ¼ ¼ senð Þ, 8j, j¼ 1,. . .,f , ð5Þ

Finally, all classifiers C�t whose feature list Fselection(t) does not
include the features listed in M(z) are combined through majority
voting to obtain the ensemble classification of z.

EðzÞ ¼ arg max
yAY

X
t:C�t ðzÞ ¼ y

1 MðzÞ \ FselectionðtÞð Þ ¼ |U ð6Þ

3.3. Choosing algorithm parameters

Considering that feature subsets for each classifier are chosen
randomly, and that we wish to use far fewer than 2f

�1 classifiers
necessary to accommodate every feature subset combination, it is
possible that a particular feature combination required to
accommodate a specific set of missing features might not have
been sampled by the algorithm. Such an instance cannot be
processed by Learn++.MF. It is then fair to ask how often Learn++.MF
will not be able to classify a given instance. Formally, given that
Learn++.MF needs at least one useable classifier that can handle the
current missing feature combination, what is the probability that
there will be at least one classifier – in an ensemble of T classifiers
– that will be able to classify an instance with m of its f features
missing, if each classifier is trained on nofo f features? A formal
analysis to answer this question also allows us to determine the
relationship among these parameters, and hence can guide us in
appropriately selecting the algorithm’s free parameters: nof and T.

A classifier Ct is only useable if none of the nof features selected
for its training data matches one of those missing in x. Then, what
is the probability of finding exactly such a classifier? Without loss
of any generality, assume that m missing features are fixed, and
that we are choosing nof features to train Ct. Then, the probability
of choosing the first feature – among f features – such that it does
not coincide with any of the m missing ones is (f�m)/f. The
probability of choosing the second such feature is (f�m�1)/
(f�1), and similarly the probability of choosing the (nof)th such
feature is ðf�m�ðnof�1ÞÞ=ðf�ðnof�1ÞÞ. Then the probability of
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finding a useable classifier Ct for x is

p¼
f�m

f
U

f�m�1

f�1
U

f�m�2

f�2
U � � � U

f�m�ðnof�1Þ

f�ðnof�1Þ

¼ 1�
m

f

� �
U 1�

m

f�1

� �
U 1�

m

f�2

� �
U � � � U 1�

m

f�ðnof�1Þ

� �
¼
Ynof�1

i ¼ 0

1�
m

f�i

� �

ð7Þ

Note that this is exactly the scenario described by the
hypergeometric (HG) distribution: we have f features, m of which
are missing; we then randomly choose nof of these f features. The
probability that exactly k of these selected nof features will be one
of the m missing features is

p�HG k; f ,m,nofð Þ ¼
m

k

� �
f�m

nof�k

 !
f

nof

 !,
ð8Þ

We need k¼0, i.e., none of the features selected is one of the
missing ones. Then, the desired probability is

p�HGðk¼ 0; f ,m,nof Þ ¼

m

0

� �
f�m

nof

 !

f

nof

 ! ¼
ðf�mÞ!

ðf�m�nof Þ!
U
ðf�nof Þ!

f !

ð9Þ

Eqs. (7) and (9) are equivalent. However, Eq. (7) is preferable,
since it does not use factorials, and hence will not result in
numerical instabilities for large values of f. If we have T such
classifiers, each trained on a randomly selected nof features, what
is the probability that at least one will be useable, i.e., at least one
of them was trained with a subset of nof features that do not
include one of the m missing features. The probability that a
random single classifier is not useable is (1�p). Since the feature
selections are independent (specifically for b¼1), the probability
of not finding any single useable classifier among all T classifiers is
(1�p)T. Hence, the probability of finding at least one useable
classifier is

P¼ 1�ð1�pÞT ¼ 1� 1�
Ynof�1

i ¼ 0

1�
m

f�i

� � !T

ð10Þ

If we know how many features are missing, Eq. (10) is exact.
However, we usually do not know exactly how many features
will be missing. At best, we may know the probability r that
a given feature may be missing. We then have a binomial
distribution: naming the event ‘‘ a given feature is missing’’ as
success, then the probability pm of having m of f features missing
in any given instance is the probability of having m successes in f

trials of a Bernoulli experiment, characterized by the binomial
distribution

pm ¼
f

m

� �
rmð1�rÞf�m

ð11Þ

The actual probability of finding a useable classifier is then a
weighted sum of the probabilities (1�p)T, where the weights are
the probability of having exactly m features missing, with m

varying from 0 (no missing features) to maximum allowable
number of f�nof missing features.

P¼ 1�
Xf�nof

m ¼ 0

f

m

� �
rmð1�rÞf�m

U 1�
Ynof�1

i ¼ 0

1�
m

f�i

� � !T
2
4

3
5 ð12Þ

Eq. (12) computes the probability of finding at least one
useable classifier by subtracting the probability of finding no
useable classifier (in an ensemble of T classifiers) from one.
A more informative way, however, is to compute the probability
of finding t useable classifiers (out of T). If the probability of
finding a single useable classifier is a success in a Bernoulli
experiment with probability of success p, then the probability of
finding at least t useable classifiers is

Pð4t useable classifiers when m features are missingÞ ¼ p4 t
m

¼
XT

t ¼ t

T

t

� �
ðpÞtð1�pÞT�t ð13Þ

Note that Eq. (13) still needs to be weighted with the
(binomial) probabilities of ‘‘having exactly m missing features’’,
and then summed over all values of m to yield the desired
probability

P¼
Xf�nof

m ¼ 0

f

m

� �
rmð1�rÞf�m

Uðp4 t
m Þ

� �
ð14Þ

By using the appropriate expressions from Eqs. (7) and (13) in
Eq. (14), we obtain

P¼
Xf�nof

m ¼ 0

f

m

� �
rmð1�rÞf�m

U

XT

t ¼ t

T

t

� � Ynof�1

i ¼ 0

1�
m

f�i

� � !t0
@

2
4

� 1�
Ynof�1

i ¼ 0

1�
m

f�i

� � !T�t1A
3
5 ð15Þ

Eq. (15), when evaluated for t¼1, is the probability of finding
at least one useable classifier trained on nof features – from a pool
of T classifiers – when each feature has a probability r of being
missing. For t¼1, Eqs. (10) and (13) are identical. However,
Eq. (13) allows computation of the probability of finding any

number of useable classifiers (say, tdesired, not just one) simply by
starting the summation from t¼tdesired. These equations can help
us choose the algorithm’s free parameters, nof and T, to obtain a
reasonable confidence that we can process most instances with
missing features.

As an example, consider a 30-feature dataset. First, let us fix
probability that a feature is missing at r¼0.05. Then, on average,
1.5 features are missing from each instance. Fig. 3(a) shows the
probability of finding at least one classifier for various values of
nof as a function of T. Fig. 3(b) provides similar plots for a higher
rate of r¼0.20 (20% missing features). The solid curve in each
case is the curve obtained by Eq. (15), whereas the various
indicators represent the actual probabilities obtained as a result of
1000 simulations. We observe that (i) the experimental data fits
the theoretical curve very well; (ii) the probability of finding a
useable classifier increases with the ensemble size; and (iii) for
a fixed r and a fixed ensemble size, the probability of finding a
useable classifier increases as nof decreases. This latter obser-
vation makes sense, as fewer the number of features used in
training, the larger the number of missing features that can be
accommodated. In fact, if a classifier is trained with nof features
out of a total of f features, then that classifier can accommodate
up to f�nof missing features.

In Fig. 3(c), we now fix nof¼9 (30% of the total feature size),
and calculate the probability of finding at least one useable
classifier as a function of ensemble size, for various values of r.
As expected, for a fixed value of nof and ensemble size, this
probability decreases as r increases.

In order to see how these results scale with larger feature sets,
Fig. 4 shows the theoretical plots for the 216—feature multiple
features (MFEAT) dataset [46]. All trends mentioned above can be
observed in this case as well, however, the required ensemble size
is now in thousands. An ensemble with a few thousand classifiers
is well within today’s computational resources, and in fact not
uncommon in many multiple classifier system applications. It is
clear, however, that as the feature size grows beyond the
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thousands range, the computational burden of this approach
greatly increases. Therefore, Learn++.MF is best suited for appli-
cations with moderately high dimensionality (fewer than 1000).
This is not an overly restrictive requirement, since many appli-
cations have typically much smaller dimensionalities.
4. Simulation results

4.1. Experimental setup and overview of results

Learn++.MF was evaluated on several databases with various
number of features. The algorithm resulted in similar trends in all
cases, which we discuss in detail below. Due to the amount of
detail involved with each dataset, as well as for brevity and to
avoid repetition of similar outcomes, we present representative
full results on four datasets here, and provide results for many
additional real world and UCI benchmark datasets online [48], a
summary of which is provided at the end of this section. The four
datasets featured here encompass a broad range of feature and
database sizes. These datasets are the Wine (13 features),
Wisconsin Breast Cancer (WBC—30 features), Optical Character
Recognition (OCR—62 features) and Multiple Features
(MFEAT—216 features) datasets obtained from the UCI repository
[46]. In all cases, multilayer perceptron type neural networks were
used as the base classifier, though any supervised classifier can
also be used. The training parameters of the base classifiers were
not fine tuned, and selected as fixed reasonable values (error
goal¼0.001–0.01, number of hidden layer nodes¼20–30 based on
the dataset). Our goal is not to show the absolute best classification
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Table 1
Datasets used in this study.

Dataset k Dataset size Number of classes Number of features nof1 nof2 nof3 nof4 nof5 nof6 T

WINE 178 3 13 3 4 5 6 7 variable 200

WBC 400 2 30 10 12 14 16 – variable 1000

OCR 5620 10 62 16 20 24 – – variable 1000

MFEAT 2000 10 216 10 20 30 40 60 variable 2000

VOC-In 384 6 6 2 3 – – – variable 100

VOC-IIn 84 12 12 3 4 5 6 – variable 200

IONn 270 2 34 8 10 12 14 – variable 1000

WATERn 374 4 38 12 14 16 18 – variable 1000

ECOLIn 347 5 5 2 3 – – – variable 1000

DERMAn 366 6 34 8 10 12 14 – variable 1000

PENn 10,992 10 16 6 7 8 9 – variable 250

n The full results for these datasets are provided online due to space considerations and may be found at [48].
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performances (which are quite good), but rather the effect of the
missing features and strategic choice of the algorithm parameters.

We define the global number of features in a dataset as the
product of the number of features f, and the number of instances
N; and a single test trial as evaluating the algorithm with 0–30%
(in steps of 2.5%), of the global number of features missing from
the test data (typically half of the total data size). We evaluate the
algorithm with different number of features, nof, used in training
individual classifiers, including a variable nof, where the number
of features used to train each classifier is determined by randomly
drawing an integer in the 15–50% range of f. All results are
averages of 100 trials on test data, reported with 95% confidence
intervals, where training and test sets were randomly reshuffled
for each trial. Missing features were simulated by randomly
replacing actual values with sentinels.

Table 1 summarizes datasets and parameters used in the
experiments: the cardinality of the dataset, the number of classes,
total number of features f, the specific values of nof used in
simulations, and the total number of classifiers T generated.

The behavior of the algorithm with respect to its parameters
was very consistent across the databases. The two primary
observations, discussed below in detail, were as follows: (i) the
algorithm can handle data with missing values, 20% or more, with
little or no performance drop, compared to classifying data with
all values intact; and (ii) the choice of nof presents a critical trade-
off: higher performance can be obtained using a larger nof, when
fewer features are missing, yet smaller nof yields higher and more
stable performance, and leaves fewer instances unprocessed,
when larger portions of the data are missing.
4.2. Wine database

Wine database comes from the chemical analysis of 13
constituents in wines obtained from three cultivars. Previous
experiments using optimized classifiers trained with all 13
features, and evaluated on a test dataset with no missing features,
had zero classification error, setting the benchmark target
performance for this database. Six values of nof were considered:
3, 4, 5, 6, 7 and variable, where each classifier was trained on – not
with a fixed number of features, but a random selection of one of
these values.



Table 2
Performance on the WINE database.

nof¼3 (out of 13) nof¼4 (out of 13) nof¼5 (out of 13)

PMF Ensemble Perf PIP PMF Ensemble Perf PIP PMF Ensemble Perf PIP

0.00 100.0070.00 100 0.00 100.0070.00 100 0.00 100.0070.00 100

2.50 100.0070.00 100 2.50 99.6770.71 100 2.50 100.0070.00 100

5.00 100.0070.00 100 5.00 100.0070.00 100 5.00 99.6770.71 100

7.50 99.6770.71 100 7.50 99.6770.71 100 7.50 99.3371.43 100

10.00 99.3370.95 100 10.00 99.6770.71 100 10.00 99.0071.09 100

15.00 99.0071.09 100 15.00 98.0071.58 100 15.00 98.3371.60 100

20.00 99.0071.09 100 20.00 98.0071.91 100 20.00 96.6771.85 100

25.00 99.0071.09 100 25.00 97.6671.53 100 25.00 96.2971.31 99

30.00 96.3371.98 100 30.00 94.2971.54 99 30.00 95.2272.26 98

nof¼6 (out of 13) nof¼7 (out of 13) nof¼variable (3–7 out of 13)

PMF Ensemble Perf PIP PMF Ensemble Perf PIP PMF Ensemble Perf PIP

0.00 100.0070.00 100 0.00 100.0070.00 100 0.00 100.0070.00 100

2.50 99.6770.71 100 2.50 99.3370.95 100 2.50 99.3370.95 100

5.00 99.3370.95 100 5.00 99.3370.95 100 5.00 100.0070.00 100

7.50 98.6771.58 100 7.50 98.6771.17 100 7.50 99.6770.71 100

10.00 98.3372.20 100 10.00 98.3271.60 100 10.00 99.6770.74 100

15.00 96.9872.00 99 15.00 96.9472.30 99 15.00 97.6771.53 100

20.00 96.9872.27 99 20.00 91.2773.55 96 20.00 98.0071.17 100

25.00 93.7272.66 95 25.00 93.0374.35 86 25.00 97.3371.78 100

30.00 95.2972.63 93 30.00 91.3474.20 78 30.00 94.6772.18 100
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Table 2 summarizes the test performances using all values of
nof, and the percentage of instances that could be processed –
correctly or otherwise – with the existing ensemble (described
below). The first row with 0.0% missing features is the algorithm’s
performance when classifiers were trained on nof features, but
evaluated on a fully intact test data. The algorithm is able to obtain
100% correct classification with any of the nof values used, indi-
cating that this dataset does in fact include redundant features.

Now, since the feature subsets are selected at random, it is
possible that the particular set of features available for a given
instance do not match the feature combinations selected by any of
the classifiers. Such an instance cannot be processed, as there
would be no classifier trained with the unique combination of the
available features. The column with the heading PIP (percentage
of instances processed) indicates the percentage of those
instances that can be processed by the generated ensemble. As
expected, PIP decreases as the ‘‘% missing features (PMF)’’
increases. We note that with 30% of the features missing from
the test data, 100% of this test dataset can be processed (at a
performance of 96.3%) when nof¼3, whereas only 78% can be
processed (at a performance of 91.3%) when nof¼7 features are
used for training the classifiers. A few additional observations:
first, we note that there is no (statistically significant) perfor-
mance drop with up to 25% of features missing when nof¼3, or up
to 10% when nof¼6, and only a few percentage points (3.5% for
nof¼3, 4.7% for nof¼6) when as many as 30% of the features are
missing—hence the algorithm can handle large amounts of
missing data with relatively little drop in classification perfor-
mance. Second, virtually all test data can be processed—even
when as much as 30% of the features are missing, if we use
relatively few features for training the classifiers.

For a more in depth analysis of the algorithm’s behavior,
consider the plots in Fig. 5. Fig. 5(a) illustrates the overall
performance of the Learn++.MF ensemble. All performances in the
0–30% interval of PMF with increments of 2.5% are provided
(while the tables skip some intermediate values for brevity). As
expected, the performance declines as PMF increases – albeit only
gradually. The decline is much milder for nof¼3 than it is for
nof¼7, the reasons of which are discussed below. Also included in
Fig. 5(a) for comparison, is the performance of a single classifier
(of the same architecture as ensemble members) that employs
the commonly used mean imputation (M.I.) to replace the missing
data, as well as that of the E.M. algorithm [47]. We observe that
Learn++.MF ensemble (significantly) outperforms both E.M. and
mean imputation for all values of PMF, an observation that was
consistent for all databases we have evaluated (we compare
Learn++.MF to naı̈ve Bayes and RSM with mean imputation later in
the paper). Fig. 5(b) shows the performance of a single usable
classifier, averaged over all T classifiers, as a function of PMF.
The average performance of any fixed single classifier is, as
expected, independent of PMF; however, using higher nof values
are generally associated with better individual classifier perfor-
mance. This makes sense, since there is more information
available to each classifier with a larger nof. However, this
comes at the cost of smaller PIP. In Fig. 5(b) and (c) we compare
the performance and the PIP with a single vs. ensemble classifier.
For example, consider 20% PMF, for which the corresponding PIP
values for single classifiers are shown in Fig. 5(b). A single usable
classifier trained with nof¼3 features is able to classify, on
average, 51% of instances with a performance of 79%, whereas the
ensemble has a 100% PIP with a performance of 99%. Fig. 5(c)
shows PIP as a function of PMF, both for single classifiers (lower
curves) and the ensembles (upper curves). As expected, PIP
decreases with increasing PMF for both the ensemble and a single
usable classifier. However, the decline in PIP is much steeper for
single classifiers. In fact, there is virtually no drop (PIP¼100%) up
until 20% PMF when the ensemble is used (regardless of nof).
Hence the impact of using an ensemble is two-folds: the ensemble
can process a larger percentage of instances with missing
features, and it also provides a higher classification performance
on those instances, compared to a single classifier.

Also note in Fig. 5(c) that the decline in PIP is much steeper
with nof¼7 than it is for nof¼3, similar to decline in classification
performance shown in Fig. 5(a). Hence, our main observation
regarding the trade-off one must accept by choosing a specific
nof value is as follows: classifiers trained with a larger nof

may achieve a higher generalization performance individually,
or initially when fewer features are missing, but are only able
to classify fewer instances as the PMF increases. This observa-
tion can be explained as follows: using large nof for training
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(e.g., 10 out of 13) means that the same large number of features
(10) are required for testing. Therefore, fewer number of missing
features (only 3, in this case) can be accommodated. In fact, the
probability of no classifier being available for a given combination
of missing features increases with nof . Of course, if all features are
used for training, then no classifier will be able to process any
instance with even a single missing feature, hence the original
motivation of this study.

Finally, Fig. 5(d) analyzes the average percentage of usable
classifiers (PUC) per given instance, with respect to PMF. The
decline in PUC also makes sense: there are fewer classifiers
available to classify instances that have a higher PMF. Further-
more, this decline is also steeper for higher nof.

In summary, then, a larger nof usually provides a better
individual and/or initial performance than a smaller nof, but the
ensemble is more resistant to unusable feature combinations
when trained with a smaller nof. How do we, then, choose the nof

value, since we cannot know PMF in future datasets? A simple
solution is to use a variable number of features—typically in the
range of 15–50% of the total number of features. We observe from
Table 2 and Fig. 5, that such a variable selection provides
surprisingly good performance: a good compromise with little
or no loss of unprocessed instances.

As for the other parameter, T—the number of classifiers, the
trade off is simply a matter of computational resources. A larger
PIP and PUC will be obtained, if larger number of classifiers is
trained. Fig. 5(d) shows PUC for various values of PMF, indicating
the actual numbers obtained for this database after the classifiers
were trained. Family of curves generated using Eq. (15), such as
those in Fig. 3, as well as Monte Carlo simulations can provide us
with these numbers, before training the classifiers. Fig. 6 shows
the results of averaging 1000 such Monte Carlo simulations for
f¼13, nof¼3–7, PMF [0–100]%, which agrees with the actual
results of Fig. 5(d) (up to 30% PMF is shown in Fig. 7(d)).
4.3. Wisconsin breast cancer (WBC) database

The WBC database consists of 569 instances of cell-biopsy
classified as malignant or benign based on 30 features obtained
from the individual cells. The expected best performance from
this dataset (when no features are missing) is 97% [46]. Five nof

values 10, 12, 14, 16 and variable, were tested.
Table 3 summarizes the test performances using all values of

nof, and the PIP values, similar to that of Wine database in Table 2.
The results with this database of larger number of features have
much of the same trends and characteristics mentioned for the
Wine database. Specifically, the proximity of the ensemble
performance when used with nof¼10, 12, 14 and 16 features
with no missing features to the 97% figure reported in the
literature indicates that this database also has a redundant feature
set. Also, as in the Wine dataset, the algorithm is able to handle up
to 20% missing features with little or no (statistically) significant
performance drop, and only a gradual decline thereafter. As
expected, the PIP drops with increasing PMF, and the drop is
steeper for larger nof values compared to smaller ones. Using
variable number of features provides a good trade off. These
characteristics can also be seen in Fig. 7, where we plot the
ensemble performance, and PIP for single and ensemble classifiers
as in Fig. 5 for Wine database. Fig. 7(a) also shows that the
ensemble outperforms a single classifier (of identical architecture)
that uses mean imputation to replace the missing features. The
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Table 3
Performance on the WBC database.

nof¼10 (out of 30) nof¼12 (out of 30) nof¼14 (out of 30)

PMF Ensemble Perf PIP PMF Ensemble Perf PIP PMF Ensemble Perf PIP

0.00 95.0070.00 100 0.00 96.0070.00 100 0.00 95.0070.00 100

2.50 95.2070.24 100 2.50 95.8070.18 100 2.50 94.7570.24 100

5.00 95.0570.30 100 5.00 95.5570.41 100 5.00 94.8070.33 100

7.50 95.1570.42 100 7.50 95.5570.11 100 7.50 94.5570.56 100

10.00 95.5570.30 100 10.00 95.3470.40 100 10.00 94.3970.31 100

15.00 95.1070.69 100 15.00 94.8870.50 100 15.00 93.8470.95 98

20.00 94.6370.77 100 20.00 93.0871.10 97 20.00 92.3571.08 91

25.00 94.5370.81 98 25.00 92.7870.74 91 25.00 91.4271.20 76

30.00 92.7871.39 92 30.00 89.8772.02 75 30.00 89.0171.73 55

nof¼16 (out of 30) nof¼var. (10–16 out of 30)

PMF Ensemble Perf PIP PMF Ensemble Perf PIP

0.00 95.0070.00 100 0.00 95.5070.00 100

2.50 94.8070.29 100 2.50 95.4570.19 100

5.00 94.7570.37 100 5.00 95.3070.43 100

7.50 95.0470.52 100 7.50 95.3070.46 100

10.00 94.2470.48 99 10.00 95.1570.39 100

15.00 92.5070.98 94 15.00 94.7970.85 100

20.00 90.2071.10 79 20.00 94.9070.79 97

25.00 86.9872.45 56 25.00 91.6171.23 91

30.00 86.3473.17 34 30.00 91.1371.32 78
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margin of improvement of Learn++.MF over mean imputation also
widens as PMF increases. Due to their consistent behavior and for
brevity, single classifier performances and PUC plots for this and
other datasets are provided in [48].

4.4. Optical character recognition (OCR) database

The 10-class OCR database consists of 5620 instances of
handwritten numerical characters 0–9 digitized on an 8�8
matrix to provide 64 total features. Two features had consistent
values of zero for all instances, and hence were removed. The
reported best performances on this dataset are around 97% when
no features are missing. Four nof values of 16, 20, 24 and variable

were used. The generalization performances as well as the PIP
values for 0–30% PMF can be seen in Table 4 and Fig. 8. Single
classifier performances were in the 80–86% range (based on nof)
[48]. Once again, we make similar observations that the algorithm
can accommodate up to 20% missing data with little or no loss of
performance, or unprocessed instances, particularly for smaller
nof values with a gradual decline in performance for larger PMF
values. As in previous datasets, the ensemble based Learn++.MF
algorithm also performs significantly better than the commonly
used mean imputation.

4.5. Multiple features (MFEAT) database

This database is similar to the OCR database and contains
digitized handwritten numerical characters. However, this dataset
Table 4
Performance on the OCR database.

nof¼16 (out of 62) nof¼20 (out of 62)

PMF Ensemble Perf. PIP PMF Ensemble Perf. PIP

0.00 96.770.0 100 0.00 97.170.0 100

2.50 96.870.1 100 2.50 97.070.1 100

5.00 96.670.1 100 5.00 97.070.1 100

7.50 96.670.1 100 7.50 96.970.1 100

10.0 96.470.1 100 10.0 96.570.1 100

15.0 95.770.3 100 15.0 94.970.2 97

20.0 93.270.4 97 20.0 91.870.4 83

25.0 89.670.5 86 25.0 88.670.5 56

30.0 85.970.5 63 30.0 86.571.1 27
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and (b) single classifier and ensemble PIP.
consists of different sets of features (hence the name), a total
of 649 features including 76 Fourier coefficients, 216 profile
correlations, 64 PCA coefficients, etc. We choose the largest
subset, 216 feature set for this experiment, making this the largest
one in terms of feature size. Six different nof values were used, 10,
20, 30, 40, 50 and variable. Generalization performances as well as
the PIP values for 0–30% PMF can be seen in Table 5 and Fig. 9.
Single classifier performances were in the 81–91% range based on
the nof values [48]. Duin (and Jain et al.) who contributed this
dataset to UCI report error rates in the 4–40% range depending on
the classification algorithm, using the entire feature set. Training
with as few as randomly selected 10 of 216 features and obtaining
a 95–96% generalization accuracy indicates that this dataset
also includes a very redundant set of features. Using nof¼10,
Learn++.MF was able to achieve 94.4% classification accuracy
(less than 1% drop), while processing 100% of the instances.
As expected, the classification performance declines gradually
with increasing nof as well as increasing PMF, whereas PIP
drops much faster with both parameters. For example, when
using nof¼50, the algorithm cannot find any useable classifiers
once PMF reaches 25%. Interestingly, however, using a
variable number of features—drawn randomly from uniform
distribution in the 10–50—range can process 100% of the
instances with 93% performance. Also, since this is the dataset
with the largest number of features, we also compare the results
to both mean imputation and EM. We observe that Learn++.MF
outperforms both of these ‘‘estimation’’ based approaches, the
difference being substantially more significant with respect to
mean imputation.
nof¼24 (out of 20) nof¼var. (16–24 of 62)

PMF Ensemble Perf. PIP PMF Ensemble Perf. PIP

0.00 97.570.0 100 0.0 97.170.0 100

2.50 97.370.1 100 2.5 97.170.1 100

5.00 97.270.1 100 5.0 96.970.1 100

7.50 96.870.2 100 7.5 96.770.1 100

10.0 96.470.3 99 10.0 96.370.1 100

15.0 94.170.3 87 15.0 94.770.2 99

20.0 91.470.3 59 20.0 91.770.1 89

25.0 89.170.6 27 25.0 87.770.6 67

30.0 88.771.5 9 30.0 84.871.2 37
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f: (a) Learn++.MF ensemble performances compared to that of mean imputation



Table 5
Performance on the MFEAT database.

nof¼10 (out of 216) nof¼20 (out of 216) nof¼30 (out of 216)

PMF Ensemble Perf PIP PMF Ensemble Perf PIP PMF Ensemble Perf PIP

0.00 94.9070.00 100 0.00 95.5070.00 100 0.00 95.4070.00 100

5.00 94.8270.10 100 5.00 95.4270.12 100 5.00 95.2870.10 100

10.00 94.8270.10 100 10.00 95.4670.16 100 10.00 95.0470.14 100

15.00 94.8270.10 100 15.00 95.2470.19 100 15.00 94.2870.39 100

20.00 94.6870.10 100 20.00 95.1870.32 100 20.00 92.4570.96 83

25.00 94.5270.08 100 25.00 93.6570.30 98 25.00 90.5471.70 37

30.00 94.3670.21 100 30.00 90.8370.57 79 30.00 91.4273.21 8

nof¼40 (out of 216) nof¼50 (out of 216) nof¼var. (10–50 out of 216)

PMF Ensemble Perf PIP PMF Ensemble Perf PIP PMF Ensemble Perf PIP

0.00 95.2070.00 100 0.00 95.2070.00 100 0.00 95.6070.00 100

5.00 95.1270.17 100 5.00 94.8670.10 100 5.00 95.6070.06 100

10.00 94.9170.19 100 10.00 93.3870.08 95 10.00 95.4270.19 100

15.00 92.8970.60 82 15.00 92.0670.81 40 15.00 95.2070.17 100

20.00 91.7170.91 28 20.00 92.5672.87 4 20.00 94.9870.15 100

25.00 89.5374.70 4 25.00 n/a 0 25.00 94.9870.50 100

30.00 n/a 0 30.00 n/a 0 30.00 93.0670.53 100
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Finally, with this many features, a potential concern is
whether every feature is adequately represented by the
useable classifiers. The histogram of the available features in
Fig. 10 indicates that the union of the features chosen by
algorithm encompasses the entire feature set adequately and
uniformly.



Table 6
Best nof performances on all databases.

PMF 0% 5% 10% 15% 20% 25% 30% TargetPerf.

Dataset nof k PIP PGP PIP PGP PIP PGP PIP PGP PIP PGP PIP PGP PIP PGP MI % k

WINE 3/13 100 100 100 100 100 99 100 99 100 99 100 99 100 96 86 100
WBC 10/30 100 95 100 95 100 96 100 95 100 95 98 94 92 93 73 97
OCR 16/62 100 97 100 97 100 96 100 96 97 93 86 90 63 86 82 97
MFEAT 10/216 100 95 100 95 100 95 100 95 100 95 100 95 100 94 79 96
WATER (38) 12/38 100 77 100 78 100 77 100 76 99 77 95 76 85 75 69 80
VOC-I 3/6 100 93 100 92 100 91 100 91 99 90 99 90 99 89 54 92
ECOLI 3/5 100 89 100 87 100 86 100 84 100 83 100 80 100 81 65 89
ION 8/34 100 95 100 95 100 96 100 96 100 96 100 94 100 94 76 95
DERMA (34) 8/34 100 98 100 98 100 98 100 97 100 96 100 96 99 93 92 100
PEN 7/16 100 91 100 90 100 90 100 88 98 87 95 85 89 81 51 97
VOC-II (12) 4/12 100 96 100 96 100 96 100 96 100 96 100 96 98 97 57 98
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4.6. Summary results on other datasets

The algorithm was evaluated on several additional real world
and benchmark datasets with various number of features, whose
full set of results are available online [48]; however, summary
results are provided in Table 6. For each dataset in Table 1, Table 6
provides the percent generalization performance (PGP) as well as
PIP as obtained by the best overall selection of nof for all PMF
values in the 0–30% range. Also included in Table 6 is the target
performance, which is the best average performance reported for
these datasets in the literature when used with the full feature
set. Finally, the MI column indicates the performance of mean
imputation at 30% PMF, which is always poorer, typically with
very wide margins than that of Learn++.MF. Despite these
encouraging absolute performance levels, we again note that the
objective in these experiments was not to obtain the best possible
generalization/classification performance, but rather to illustrate
the behavior of the algorithm. Hence, base classifiers were never
optimized, yet the algorithm was able to meet target perfor-
mances by using only a fraction of the available features.
4.7. Comparisons to other approaches

Comparison of Learn++.MF to standard mean imputation was
shown in the above results. An intermediate approach would be
to combine mean imputation with standard RSM, i.e., training
individual classifiers with feature subsets, using all classifiers for
final decision with mean imputation used for the missing
features. Such an approach is attractive since all classifiers are
utilized, including those that would otherwise be discarded by
Learn++.MF, and that all instances can be processed. Using the
exact same experimental setups described above, such an
approach was also implemented, whose results are shown in
Fig. 11 for all nof values used for each database. We observe that
the generalization performances obtained by Learn++.MF were in
general higher for the Wine, WBC and OCR datasets (and with
statistical significance for certain nof values—see [48] for
confidence intervals), and comparable for the MFEAT database.
Considering that Learn++.MF uses substantially fewer classifiers
(as classifiers using missing features are discarded) this outcome
is favorable, not only for computational reasons, but also because
such an outcome indicates that the algorithm can extract all the
useful information from the available classifiers.

Also included in Fig. 11 are the performances obtained by a
naı̈ve Bayes classifier on these datasets. The naı̈ve Bayes classifier
(NBC) is also attractive, as it can naturally accommodate missing
data without any preprocessing (except computing the required
class conditional probabilities). The NBC performances, however,
paint a mixed picture: the performances are comparable to those
of RSM for some datasets, whereas clearly inferior for others;
though they were always inferior to those of Learn++.MF. Note that
NBC requires features to be class conditionally independent (often
not the case), and accurate computation of class conditional
probabilities requires a sufficiently dense training dataset (also
often not the case), which may in part explain its somewhat
inferior performance.

Finally, we also compared the Learn++.MF performances to
those obtained by one-class one-feature approach described in
[23]. As mentioned earlier, this approach trains one classifier
using each feature on each class, and therefore can accommodate
any number of missing features with the fewest classifiers
possible (number of features times number of classifiers). The
classifiers are then combined using a non-trainable combiner,
such as mean, product rule, etc. In our implementation, we used
the mean combiner along with the same base MLP classifier and
architecture as used in the Learn++.MF simulations. The results
(averages of 10 trials) are tabulated in Table 7 for each of the four
databases discussed above.

Of the four datasets listed in Table 7, WBC, and a smaller
version of MFEAT (a subset of the original feature space using only
10 features) were also used in [23]. Our results on these two
datasets are comparable to those presented in [23]. Specifically,
the authors reported around 10% error on WBC and 20–30% error
on the reduced MFEAT dataset (using the mean combiner, their
results using other combiners were generally even poorer). The
performances of this approach on all datasets fall far short of
those of Learn++.MF, except perhaps on WBC where the perfor-
mances were comparable or better for Learn++.MF up to 20% PMF,
and comparable or better for one-class combiners for 25% and 30%
PMF. Finally, the authors of [23] also present results for the
dermatology dataset, with the mean combiner providing 35–45%
error, also far poorer than that of Learn++.MF (compare results at
Table 6, or in [48]). We also note that the performances of the
one-class combiners do not change too much for different PMF
values, an outcome of using a single feature for training the
classifiers.
5. Discussions and conclusions

The RSM in general, and Learn++.MF algorithm as a specific
implementation of RSM in particular, are presented as alternative
solutions to the missing feature problem. Learn++.MF creates an
ensemble of classifiers, each trained with a random subset of the
features, so that an instance with missing features can still be
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Fig. 11. Performances obtained by (i) using all classifiers trained according to standard RSM, complemented with mean imputation for missing features and (ii) naı̈ve Bayes

on the four features datasets.

Table 7
Performances on combining one-class classifiers trained on single features.

PMF WINE WBC OCR MFEAT

PERFORMANCE

0.00 86.67 93.50 24.90 70.33

5.00 88.70 93.75 24.70 70.27

10.00 89.67 93.55 24.70 69.80

15.00 91.00 93.40 24.10 70.60

20.00 88.70 93.50 23.90 70.00

25.00 90.33 92.90 23.80 68.87

30.00 89.33 93.55 23.31 68.67
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classified using classifiers whose training data did not include
those attributes.

There are two important parameters of the algorithm: nof,
the number of features used to train individual classifiers, and T,
the total number of classifiers to be generated. The effect of T on
the performance is strictly an issue of computational resources. In
general, a relatively large number of classifiers should be
generated to ensure that a sufficient number of classifiers are
available for as many possible combinations of missing features as
possible. The choice of T directly impacts the PIP (% instances
processed) and PUC (% usable classifiers). With more classifiers,
more missing feature combinations can be accommodated, and
hence more instances can be processed. Note that the computa-
tional burden of the approach is not as excessive as it might first
appear, however, since individual classifiers are relatively weak,
obtained by using small network architectures and high error
goal, allowing quick training. Also, using a subset of features
further reduces computational burden. In fact, we can argue
that – due to the assumed distributed redundancy in feature
space – random subset selection is quite efficient: for example, an
exhaustive run on training with every possible combination of,
say, 24 out of 62 features of the OCR data would have required
9.7�1016 classifiers, though the algorithm performed quite well
with only 1000. Furthermore, as customary in most batch
processing applications, the training is done off-line and once
complete, the testing part takes much less time even with
thousands of classifiers.

As described earlier, there are algorithms that use far fewer
classifiers than Learn++.MF. For example, combining one-class
classifiers trained on single feature at a time can handle any
combination of missing features using the fewest possible
classifiers (number of features times number of classifiers); how-
ever, as reported in [23] and verified in our analyses, the general-
ization performance may suffer due to insufficient distinguishing
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ability of single features. Conversely, Learn++.MF does not claim
capability of handling all possible combinations of missing
features. However, it can typically process – and usually correctly
– virtually all or a substantially large portion of the data, provided
that a reasonably sufficient number of classifiers are trained,
and of course that the main redundancy assumption of the
algorithm is met.

A slight variation of Learn++.MF is using the standard random
subspace method, generating an ensemble of classifiers on feature
subsets, and then employing all classifiers with mean imputation
used for the missing features. Such an approach has the advantage
of leaving no instances unprocessed, albeit at a cost of some
performance drop compared to Learn++.MF. Depending on the
dataset, such a cost may be reasonable.

The second free parameter of the algorithm is the number of
features (nof) used to train individual classifiers. In order to obtain
a general rule of thumb on proper selection of this parameter, we
have analyzed the impact of this parameter on the overall
performance, as well as on the percent of instances (PIP) that
can be processed. As described in the results section, using a
larger number of features for training typically provides better
performance when the PMF is less than 10%. However, as PMF
increases, the overall performance and the PIP drop rapidly. Using
fewer features for training, on the other hand, provides a more
stable performance with a more gradual drop both in perfor-
mance and PIP for increasing PMF. Not surprisingly, these results
suggest that the smallest nof should be chosen that provides a
satisfactory performance. While the specific value depends on the
feature redundancy in the dataset, the number of features we
have used was typically in the 15–50% range of the total feature
pool. We found that using a variable number of features, selected
at random for each classifier in the above mentioned range is a
good trade-off, as it usually achieves similar performance with
little or no drop in PIP.

In recognition of the no-free-lunch theorem, we acknowledge
that any algorithm is effective only to the extent its characteristics
match those of the data. In the case of well-established
techniques, such as Bayesian estimation and expectation max-
imization, this translates into restrictions on dimensionality, prior
knowledge of underlying distributions, and/or availability of
sufficiently dense training data. For Learn++.MF, which tries to
make the most of the available data instead of trying to estimate
the missing values, two restrictions apply: first, the dataset must
include redundant features (the number and identities of which
are unknown to us, since they would not have been part of the
data otherwise). Second, the redundancy in the features must be
distributed randomly over the feature set. Therefore, time series
such as raw electrocardiogram (ECG) cannot be used with this
approach, though, specific features extracted from the ECG, such
as maximum amplitude, area under the QRS complex, rise time,
etc. can be used.

Fortunately, applications that meet these criteria are abundant
in real world. For example, applications that use a set of different
sensors (e.g., temperature, speed, force, acceleration, humidity,
load, temporal parameters, etc.) to monitor a physical condition,
typically meet these conditions. In such cases, the algorithm
would be particularly useful when one or more of the sensors
malfunction.

We should add that, as with most ensemble based approaches,
Learn++.MF is independent of the base (component) classifier used
to build the ensemble, allowing the flexibility to use the model
(classifier type) identified to be most appropriate for the
particular application.

Finally, we should reemphasize that we assumed the features
are missing completely at random (MCAR), and that the prob-
ability of all features being missing is the same. In certain
applications, this may not be the case: for example, in a medical
diagnosis problem, certain test results (features) corresponding to
particularly expensive or risky procedures may be missing more
often than simpler and less expensive tests. If the probability
of any given feature being missing is known ahead of time, the
proposed general framework can still be used, however,
alternative feature subspaces should be explored that take this
knowledge into consideration. Our future work will explore this
direction.
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