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Abstract - Learn++ was recently introduced as an ensemble 
of classifiers based incremental learning algorithm, capable 
of retaining formerly acquired knowledge while learning 
novel information content from new datasets without requir-
ing access to any of the previously seen data.  In this contri-
bution, we discuss the conceptual similarity between incre-
mental learning and data fusion, the latter also requiring 
learning from new data, albeit composed of a different set of 
features.  Following the technical description of the algo-
rithm, we present our recent promising results on a real-
world data fusion application of non-destructive evaluation 
for pipeline defect identification. 
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1   Introduction 
1.1 Incremental learning and data fusion  

Classification algorithms usually require availability of 
an adequate and representative set of training data to gener-
ate an appropriate decision boundary and provide a satisfac-
tory generalization performance. This is particularly true if 
an ensemble approach of classification is used and the clas-
sifiers are combined using trainable rules such as weighted 
majority voting, weighted sum rule and weighted product 
rules, as opposed to fixed rules such as the simple sum, 
product and majority voting rules [1]. However, acquisition 
of such data is expensive and time consuming, and conse-
quently it is not uncommon for the entire data to become 
available gradually in small batches over a period of time. 
Furthermore, the datasets acquired in subsequent batches 
may introduce instances of new classes that were not pre-
sent in previous datasets. In such settings, it is necessary for 
an existing classifier to be able to acquire the newly intro-
duced knowledge without forgetting the previously learnt 
information. The ability of a classifier to learn in this fash-
ion is usually referred to as incremental learning.  

It is well known that data available from multiple sources 
underlying the same phenomenon may contain complemen-
tary information. For instance, in non-destructive evaluation 
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of pipelines, defect information may be obtained from eddy 
current, magnetic flux leakage images, ultrasonic scans, 
thermal imaging, etc. Intuitively, if such information from 
multiple sources can be appropriately combined, the per-
formance of a classification system can be improved. A 
classification system, capable of combining information 
from multiple sources or from multiple feature sets, is said 
to be capable of performing data fusion. Consequently, both 
incremental learning and data fusion involve learning from 
different sets of data. In incremental learning the datasets 
may introduce new classes, whereas in data fusion the data-
sets may contain different features, indicating a conceptual 
similarity between incremental learning and data fusion. 

1.2 Ensemble approach incremental learning 
A multiple classifier system (MCS) combines an ensem-

ble of generally weak and/or diverse classifiers. The diver-
sity in the classifiers allows different decision boundaries to 
be generated by using slightly different training parameters, 
such as different training datasets. The intuition is that each 
classifier will make a different error, and strategically com-
bining these classifiers can reduce total error. Thus, MCS 
takes advantage of the so-called instability of the weak 
classifier and in turn generates a strong classifier [2-4]. En-
semble or MCS have attracted a great deal of attention over 
the last decade due to their reported superiority over single 
classifier systems on a variety of applications [5-7]. 

The ensemble approach has been widely used with a va-
riety of algorithms to improve the generalization perform-
ance of a classification system. However, using this ap-
proach to solve the problem of incremental learning has 
been mostly unexplored. Recognizing the potential of this 
approach to solve the incremental learning problem, we 
have recently developed Learn++, where we have shown 
that Learn++ is indeed capable of incrementally learning 
from new data, without forgetting previously acquired 
knowledge and without requiring access to previous data, 
even when additional datasets introduce new classes [8]. 
The general approach in Learn++, much like those in other 
MCS algorithms, such as AdaBoost [9], is to create an en-
semble of classifiers, where each classifier learns a subset 
of the dataset. The classifiers are then combined using 
weighted majority voting [10]. Learn++ differs from other 
techniques, however, in the way the data subsets are chosen 
to allow incremental learning of new data [8, 11]. 



Recognizing the above mentioned conceptual similarity 
between incremental learning and data fusion, we have 
evaluated Learn++ on benchmark and real world applica-
tion requiring data fusion [12]. New ensembles of classifi-
ers were generated from datasets comprised of different fea-
tures, which were then combined using weighted majority 
voting. Although promising, the algorithm certainly had 
much room for improvement when initially used in the data 
fusion mode. Some of these gaps have now been filled, and 
in this paper, we describe how Learn++ can be used more 
efficiently as a general purpose approach for a variety of 
data fusion applications along with promising results on a 
real world application.  

1.3 Ensemble approaches for data fusion 
Several approaches have been developed for data fusion, 

for which ensemble approaches constitute a relatively new 
breed of algorithms. Traditional methods are generally 
based on probability theory, such as the Dempster-Schafer 
(DS) theory and its many variations. However, DS based 
algorithms require specific knowledge of the underlying 
probability distribution, which may not be readily available. 

The majority of these algorithms have been developed in 
response to the needs of military applications, most notably 
target detection and tracking [13-15]. Ensemble approaches 
seek to provide a fresh and a more general solution for a 
broader spectrum of applications. Such approaches include 
simpler combination schemes such as majority vote, thresh-
old voting, averaged Bayes classifier, maximum/minimum 
rules, and linear combinations of posterior probabilities 
[16,17]. More complex data fusion schemes are also widely 
used, including ensemble based variations of DS, neural 
and fuzzy systems, and stacked generalization [18 - 23]. 

A related approach to data fusion and classifier combina-
tion schemes is input decimation: the use of different fea-
ture subsets in multiple classifiers [24, 25]. Input decima-
tion can be useful in allowing different modalities, such as 
Fourier coefficients and pixel averages, to be naturally 
grouped together for independent classifiers [24]. Input 
decimation can also be used to lower the dimensionality of 
the input space by “weeding out features that do not carry 
strong discriminating information” [25].  

A useful addition to this list of approaches would be a 
more general structure capable of using a variety of differ-
ent classifier architectures and containing the ability to 
combine their outputs for (i) a stronger overall classifier, 
(ii) a classifier capable of incremental learning, and (iii) a 
classifier capable of data fusion. In this paper we introduce 
such an alternative to data fusion algorithms. 

2   Learn++ 
The novelty of Learn++ is its incremental learning capa-

bility. It can learn new information as and when new data 
become available, without forgetting the previously ac-
quired knowledge and without requiring access to the pre-
vious data, hence without suffering from catastrophic for-
getting [26]. Specifically, Learn++ generates an ensemble 

of relatively weak classifiers for each new database that be-
comes available, where the outputs of each individual clas-
sifier of the ensemble are combined through weighted ma-
jority voting to obtain the final classification.  

Weak / diverse classifiers are trained on a subset of the 
training data, randomly selected from a dynamically up-
dated distribution over the training data instances. This dis-
tribution is biased towards those instances that have not 
been properly learned or seen by the previous ensemble(s). 
A block diagram demonstrating the Learn++ algorithm, as 
applied to the data fusion problem is provided in Figure 1, 
and is described in detail in the following paragraphs. 

 
Figure 1. The Learn++ algorithm for data fusion 

For each database, FSk, k=1,…,K, comprised of a differ-
ent set of features (obtained from the same particular appli-
cation) that is submitted to Learn++, the inputs to the algo-
rithm are  (i) a sequence Sk of mk training data instances xi 
along with their correct labels yi ; (ii) a supervised classifi-
cation algorithm BaseClassifier, generating individual clas-



sifiers (henceforth, hypotheses); and (iii) an integer Tk, the 
number of classifiers to be generated for the kth database. 

The only requirement on the BaseClassifier algorithm is 
that it can obtain better than 50% correct classification per-
formance on its own training dataset, so that a minimum 
reasonable performance can be expected from each classi-
fier. Note that for a two-class problem, 50% performance is 
equivalent to random guessing. BaseClassifier can be any 
supervised classifier such as a multilayer perceptron, radial 
basis function, or a support vector machine. Their weakness 
can be controlled by adjusting their size and error goal with 
respect to the complexity of the problem. Sufficiently dif-
ferent decision boundaries can then be generated by these 
weak classifiers by training them with slightly different 
training datasets. It should be noted that most of the re-
sources in generating a strong classifier are typically spent 
in fine-tuning the decision boundary. Since Learn++ re-
quires only a rough estimate of the decision boundary from 
its weak classifiers, the expensive step of fine-tuning is 
avoided. This saves on computational time during training, 
and also helps prevent overfitting of the training data.  

Each hypothesis ht is trained on a different subset of the 
training data. This is achieved by initializing a set of 
weights for the training data, wt, and a distribution Dt ob-
tained from wt. According to this distribution a training 
subset TRt is drawn from the training data at the tth iteration 
of the algorithm. The distribution Dt determines which in-
stances of the training data are more likely to be selected 
into the training subset TRt. Unless a priori information in-
dicates otherwise, this distribution is initially set to be uni-
form, giving equal probability to each instance to be se-
lected into the first training subset. At each subsequent it-
eration t, the weights previously adjusted at iteration t-1 are 
normalized to ensure a legitimate distribution Dt (step 1). 

Training subset TRt is drawn according to Dt (step 2), and 
the weak classifier is trained on TRt in step 3. A hypothesis 
ht is generated by the tth classifier, whose error εt, is com-
puted on the entire (current) database Sk as the sum of the 
distribution weights of the misclassified instances (step 4) 
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As mentioned above, the error, as defined in Equation 
(1), is required to be less than 0.5 to ensure that a minimum 
reasonable performance can be expected from ht. If this is 
the case, the hypothesis ht is accepted and the error is nor-
malized to obtain the normalized error. 
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If εt ≥ 0.5 then the current hypothesis is discarded, and a 
new training subset is selected by returning to step 2. All t 
hypotheses generated thus far are then combined using a 
voting scheme to obtain a composite hypothesis Ht (step 5).  
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The voting scheme used by Learn++ is not quite democ-
ratic. Each hypothesis is assigned a weight as the logarithm 
of the reciprocal of its normalized error. Therefore, those 
hypotheses with smaller training error, indicating better per-
formances, are awarded with a higher voting weight and 
thus have more say in the final classification decision. The 
error of the composite hypothesis Ht is then computed in a 
similar fashion as the sum of the distribution weights of the 
instances that are misclassified by Ht (step 6)  
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where, | · | evaluates to 1, if the predicate holds true and 0 
otherwise. The normalized composite error Bt is obtained as   
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which is then used for updating the distribution weights as-
signed to individual instances  
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Equation (6) indicates that the distribution weights of the 
instances correctly classified by the composite hypothesis 
Ht are reduced by a factor of Bt (0<Bt<1). Effectively, this 
increases the weights of the misclassified instances making 
them more likely to be selected to the training subset of the 
next iteration. We note that this weight update rule, based 
on the performance of the current ensemble, facilitates in-
cremental learning. This is because, when a new dataset is 
introduced (particularly with new classes), the existing en-
semble (Ht) is bound to misclassify the instances that have 
not yet been properly learned, and hence the weights of 
these instances are increased, forcing the algorithm to focus 
on learning novel information introduced by the new data.  

At any point, a final hypothesis Hfinal can be obtained by 
combining all hypotheses that have been generated thus far.  

Specifically for the data fusion applications, an ensemble 
of classifiers is generated as described above for each of the 
dataset (that uses a different set of features), but also an ad-
ditional set of weights are introduced for each ensemble. 
These weights can be assigned based on former experience, 
if reliable prior information is available about the individual 
feature set (e.g., for the application of non destructive test-
ing and evaluation of pipelines to identify defects in them, 
we may know that ultrasonic testing is usually more reliable 
then magnetic flux leakage data, and we may therefore 
choose to give a higher weight to the classifiers trained with 
ultrasound data), or they can be based on the performance 
of the ensemble trained on the particular feature set on its 
own training data. If such a weight assignment strategy is 
chosen, the weight of each classifier would be multiplied by 
the weight assigned to the ensemble to which it belongs. 
This adjusted weight of each classifier is then used during 
the weighted majority voting for the final hypothesis Hfinal  
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where, Erk is the optional weight assigned to the ensemble 
trained using a dataset from FSk (and can assume of a value 
of 1 if this additional weight is not assigned). For the data 
fusion application discussed in this paper, Erk was chosen to 
be the ratio of the number of instances misclassified by the 
composite hypothesis of the kth ensemble to the total num-
ber of instances in its training dataset Sk. Learn++ used in 
the data fusion setting is illustrated in Figure 2. 

 
Figure 2. Pictorial representation of algorithm 

To summarize, there are three sets of weights employed 
by the algorithm when used in the data fusion mode. The 
first two are common for incremental learning and data fu-
sion, the last one is specific to a data fusion application and 
can be considered as optional. These weights are as follows: 

• The weights assigned to the instances in the training 
data, used in determining which instances are more likely to 
be drawn into the next training subset for the next classifier. 

• The weights assigned to each classifier based on its 
performance on its training data. These weights are used in 
weighted majority voting. The higher the training perform-
ance of the classifier, the higher voting weight and the more 
say it has in the final classification. 

• The (optional) weight assigned to the entire ensemble 
of classifiers trained on data sourcing from a particular set 
of features. They also play a role in weighted majority vot-
ing in the final hypothesis. These weights may be assigned 
based on prior information (if available and reliable) or 
based on the performance of the ensemble on its training 
data (similar to weight assigned to the individual classifiers 
as explained above). 

Simulation results of Learn++ on incremental learning 
using several datasets, as well as comparisons to the other 
methods of incremental learning such as Fuzzy ARTMAP 
can be found in [8] and references within. The simulation 
results of Learn++ on data fusion are presented below. 

3   Results 
While Learn++ was originally developed as an incre-

mental learning algorithm, its ensemble structure allows it 
to be used in data fusion applications as well. This is be-

cause the algorithm can accept a new dataset even if it con-
tains completely different features as compared to the data 
the algorithm has previously seen. When used in data fusion 
mode, Learn++ seeks to incrementally learn novel informa-
tion content from databases that come from the same appli-
cation but are composed of different features. 

Implementing data fusion using Learn++ with the ensem-
ble approach was tested on a real world application – identi-
fying defects in pipelines using non-destructive techniques. 
Two datasets containing different features were fused. The 
first was a set of Magnetic Flux Leakage (MFL) images, 
and the second was a set of Ultrasonic Testing (UT) im-
ages. Both modalities can be used to detect and identify de-
fects in pipes. Illustrations of these images along with the 
type of defect they represent are shown in Figure 3. 

MFL UT Type of Defect

No Defect 

Pitting 

Crack

Mechanical Damage 

Weld 

 
Figure 3. Sample MFL and UT images of defect types 

The database consisted of 21 images from to a total of 5 
classes: (i) No defect: 4 images; (ii) Pitting:  9 images; (iii) 
Crack:  4 images; (iv) Mechanical Damage: 4 images; (v) 
Weld: 4 images.  Ten images (2 from each class) were used 
as the training data and the remaining 11 as the testing data. 
This distribution was kept constant for all dataset shuffles 
for different runs and to perform cross validation. 

The Learn++ algorithm was run several times in data fu-
sion mode with different combinations of the parameters 
such as the error goal and number of hidden layer nodes in 
the MLP networks. Classifiers were added to the ensemble 
until classification performance leveled off beyond a certain 
number of classifiers. The algorithm was run using a single 
hidden layer MLP as the base classifier with the following 
parameters (observed to be the optimum range based on 
prior experience): error goal: 0.05 ~ 0.08 in steps of 0.01, 
and number of hidden layer nodes: 5 ~ 45 in steps of 5. 
Every possible combination of the above parameters was 
used. Also, the experiment was duplicated using a different 
partition of the data (a different selection of the instances 
used for training and testing). Therefore, there were 36 gen-
eralization performance values for each partition of data, 
yielding a total of 72 generalization performances. The 
number of classifiers in an ensemble trained on each of the 
two feature sets could vary from 1 to 50 classifiers. The re-



sults obtained are summarized in Table 1. The second col-
umn of Table 1 indicates the percentages of different com-
parisons between the data fusion performance and the indi-
vidual MFL and UT performances, out of the 72 experi-
ments. For example, in 31.94% (23 out of the 72) of the 
simulations, the data fusion performance was better than ei-
ther of the individual MFL or UT performance. Similarly, 
40.28% of the times (29 out of 72 simulations), the data fu-
sion performance was the same as the higher of the MFL or 
UT performances, and so on. Adding the numbers in rows 5 
and 6, it can be seen that the proportions of undesirable 
cases (when the data fusion performance is the lower of 
MFL and UT or worse than both) is about 11.11% of the 
times data fusion was performed (8 out of 72). The most 
desirable cases (when the data fusion performance is the 
higher of MFL and UT or better than both) are about 
72.22% of the times (52 out of 72) data fusion was per-
formed. These results were promising but not optimal. 

Table 1: Comparing the data fusion performance to the 
individual performance of MFL (MFLp) and UT (UTp) 

We have noticed that the strategy used to determine the 
number of classifiers in each feature set, results in the num-
ber of classifiers in different ensembles to vary substantially 
(e.g., far more classifiers were generated with MFL signals 
than with UT signals). In a data fusion application, carrying 
out weighted majority voting among ensembles having dif-
ferent number of classifiers results in a bias in the decision. 
The hypothesis is biased towards the ensemble with more 
classifiers, and the results obtained, as summarized in Table 
1, were thus not optimal. One of the modifications made to 
the algorithm (to fit the data fusion scenario) was to use a 
fixed number of classifiers in all ensembles trained on the 
different feature sets being fused. This introduced a third 
parameter to be set – number of classifiers, in addition to 
error goal and number of hidden layer nodes.  

The Learn++ algorithm was run again for every possible 
combination of the following set of parameters: Error goal: 
0.05 ~ 0.08 steps of 0.01; Number of hidden layer nodes: 5 
~ 45 steps of 5; Number of classifiers: 10 ~ 60 steps of 10. 

The results obtained for these values are shown in Table 
2. Similar to Table 1, the second column indicates the per-
centages (out of 216 simulation experiments) of various 
comparisons of the data fusion performance with respect to 
individual MFL or UT performances. We note that the un-
desirable cases (where the data fusion performance is the 

lower of MFL and UT, or lower than both) have been com-
pletely eliminated, when equal number of classifiers are 
used. Furthermore, in 72% to 89% of all simulations (vary-
ing with respect to the number of classifiers used, 10~60), 
the data fusion generalization performance was better than 
either of the individual MFL or UT generalization perform-
ances, indicating that the algorithm is indeed able to extract 
additional information when the two databases are fused. 

Table 2: Comparing the data fusion performance  to the 
individual performance of MFL (MFLp) and UT (UTp) 

Data fusion performance 
combining two feature sets is Proportions %* 

Greater than max (MFLP, UTP) 72.22 to 88.89 
Equal to max (MFLP, UTP) 5.56 to 27.78 
Equal to both MFLP and UTP 0 to 2.78 
In between min (MFLP, UTP) 

and max (MFLP, UTP) 0 to 5.56 

Equal to min (MFLP, UTP) 0 
Less than min (MFLP, UTP) 0 

* vary with number of classifiers 

We have also picked the optimal combination of parame-
ters and performed cross validation with respect to different 
partitioning of the available data into training and test data. 
The optimal values, as determined by statistical analysis 
were found to be 0.05 error goal, 30 hidden layer nodes and 
30 classifiers trained with each dataset. 

For cross validation, we randomly picked 2 instances 
from each of the 5 classes. The 10 instances thus picked 
were used as the training data, and the remaining 11 in-
stances were used as the testing data. This was repeated 
over 40 times to obtain over 40 different partitions of data 
to train and test the algorithm. The cross validation results 
are summarized in Table 3. These numbers suggest that the 
data fusion performance is significantly better than either of 
the individual MFL and UT performances. 

Data fusion performance 
combining two feature sets is Proportions % 

Greater than max (MFLP, UTP) 31.94 
Equal to max (MFLP, UTP) 40.28 
Equal to both MFLP and UTP 9.72 
In between min (MFLP, UTP) 

and max (MFLP, UTP) 6.94 

Equal to min (MFLP, UTP) 8.33 
Less than min (MFLP, UTP) 2.78 
Total 100 

Table 3: Generalization performances - 95% CI 
Dataset Average generalization performance 

MFL 81.60 + 3.6207 % 

UT 79.87 + 2.6938 % 

Fused 95.02 + 1.9985 % 

4   Conclusions 
Recognizing the conceptual similarities between incre-

mental learning and data fusion, the Learn++ algorithm – 
originally developed for incremental learning – has been 
evaluated in a data fusion setting. The algorithm incremen-
tally and sequentially learns data comprised of different sets 
of features by generating an ensemble of classifiers for each 
dataset, and then combining them through a modified 
weighted majority voting scheme. We have evaluated the 
algorithm on a real world data fusion application for defect 
identification, where the two different datasets consisted of 
UT and MFL signals of the same pipeline specimens. The 



results indicate that the Learn++ algorithm, when used to 
combine information contained in two datasets, performed 
significantly better then each of the testing modalities indi-
vidually. Our simulation results on other benchmark data-
sets (not presented here for space considerations) indicate 
that the algorithm can fuse not only two datasets, but also 
additional datasets. Therefore, the advantage of Learn++ is 
that data from different measurement modalities or feature 
groups can be sequentially added without having to retrain 
the entire system. The ability of the algorithm to learn in-
crementally as well as to fuse different datasets to extract 
additional information not available in either dataset makes 
Learn++ a versatile algorithm. Further testing of the algo-
rithm on additional real world and benchmark data is cur-
rently underway.  
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