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ABSTRACT
Motivation: Analysis and intervention in the dynamics of gene
regulatory networks is at the heart of emerging efforts in the
development of modern treatment of numerous ailments including
cancer. The ultimate goal is to develop methods to intervene in
the function of living organisms in order to drive cells away from
a malignant state into a benign form. A serious limitation of much
of the previous work in cancer network analysis is the use of
external control, which requires intervention at each time step, for
an indefinite time interval. This is in sharp contrast to the proposed
approach, which relies on the solution of an inverse perturbation
problem to introduce a one-time intervention in the structure of
regulatory networks. This isolated intervention transforms the steady-
state distribution of the dynamic system to the desired steady-state
distribution.
Results: We formulate the optimal intervention problem in gene
regulatory networks as a minimal-perturbation of the network in
order to force it to converge to a desired steady-state distribution
of gene regulation. We cast optimal intervention in gene regulation
as a convex optimization problem, thus providing a globally optimal
solution which can be efficiently computed using standard toolboxes
for convex optimization. The criteria adopted for optimality is chosen
to minimize potential adverse effects as a consequence of the
intervention strategy. We consider a perturbation that minimizes (i)
the overall energy of change between the original and controlled
networks and (ii) the time needed to reach the desired steady-state
of gene regulation. Furthermore, we show that there is an inherent
tradeoff between minimizing the energy of the perturbation and the
convergence rate to the desired distribution. We apply the proposed
control to the Human melanoma gene regulatory network.
Availability: The MATLAB code for optimal intervention in gene
regulatory networks can be found online: http://syen.ualr.

edu/nxbouaynaya/Bioinformatics2010.html.
Contact: Nidhal Bouaynaya. Email: nxbouaynaya@ualr.edu

1 INTRODUCTION
The cell maintains its function via an elaborate network of
interconnecting positive and negative feedback loops of genes
and proteins that send different signals to a large number of
pathways and molecules. Understanding the dynamic behavior of
gene regulatory networks is essential to advance our knowledge
of disease, develop modern therapeutic methods, and identify

∗to whom correspondence should be addressed

targets in the cell needed to reach a desired goal. In classical
biological experiments, cell function is ascertained based on rough
phenotypical and genetic behavior. On the other hand, the use
of dynamical system models allows one to analytically explore
biological hypotheses. Within this context, investigators have
sought to discover preferable stationary states, the effect of distinct
perturbations on gene dynamics, and the ‘dynamical function’ of
genes (Shmulevichet al., 2002b, Abhisheket al., 2008, Fathallah-
Shaykh, 2005, Ribeiro and Kauffman, 2007, Dattaet al., 2007, Qian
et al., 2009, Qian and Dougherty, 2009, Fathallah-Shaykhet al.,
2009).

The complexity of biological systems and the noisy nature
of the sampled data suggest the use of probabilistic methods
for system modeling, analysis, and intervention. Markov chain
models have been shown to accurately emulate the dynamics of
gene regulatory networks (Kimet al., 2002). In particular, the
dynamics of Probabilistic Boolean Networks (PBNs) (Shmulevich
et al., 2002b) and Dynamic Bayesian Networks (Murphy, 2002)
can be studied using Markov chains. The long-run behavior ofa
dynamic network is characterized by the steady-state distributions
of the corresponding Markov chain. It has been argued that
steady-state distributions determine the phenotype or thestate of
the cell development, such as cell proliferation and apoptosis
(Kauffman, 1993, Ivanov and Dougherty, 2006). The long-run
dynamic properties of PBNs and their sensitivity with respect
to network perturbations were investigated in several manuscripts
(Shmulevichet al., 2003, Qian and Dougherty, 2009, Qian and
Dougherty, 2008).

The ultimate objective of gene regulatory network modeling
and analysis is to use the network to design effective intervention
strategies for affecting the network dynamics in such a way as
to avoid undesirable cellular states. As futuristic gene therapeutic
interventions, various control strategies have been proposed to alter
gene regulatory network dynamics in a desirable way. Biologically,
such alterations may be possible by the introduction of a factor
or drug that alters the extant behavior of the cell. Current control
strategies can be grouped into three main approaches (Dattaet al.,
2007): (i) reboot the network by resetting its initial condition
(Shmulevichet al., 2002c), (ii) introduce external control variables
to act upon some control genes, in such a way as to optimize a given
cost function (Dattaet al., 2003, Palet al., 2006, Dattaet al., 2007,
Faryabiet al., 2008), (iii) alter the underlying rule-based structure
of the network in order to shift the steady-state mass of the network
from undesirable to desirable states. This last type of intervention is
also referred to asstructural intervention(Shmulevichet al., 2002a,
Qian and Dougherty, 2008, Qianet al., 2009).
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The first strategy requires knowledge of the basin of attraction of
the desirable steady-state distribution. For large networks, finding
the basin of attraction of a given steady-state is a computationally
expensive task (Kauffman, 1993, Wuensche, 1998). The second
strategy minimizes a given cost function by controlling the
expression level of target genes in the network. In particular, this
strategy assumes prior knowledge of the genes to be used as control
agents, and the cost associated with each state of the network. More
importantly, this strategy produces a recurrent control policy, over a
possibly infinite time horizon interval (Dattaet al., 2003, Palet al.,
2005b, Palet al., 2006, Dattaet al., 2007, Faryabiet al., 2008).
Clinically, such an infinite-horizon intervention can be viewed as
connecting the patient to an infinitely recurrent feedback control
loop. If the control is applied over a finite time horizon and then
stopped, the steady-state distribution of the network (andhence the
cell fate) may not change.

The third strategy aims at altering the long-run behavior of
the network or its steady-state distributions. A simulation-based
study was first conducted in (Shmulevichet al., 2002a), where
a procedure to alter the steady-state probability of certain states
was implemented using genetic algorithms. Xiao et al. (Xiao
and Dougherty, 2007) considered an analytical study, where
they explored the impact of function perturbations on the
network attractor structure. However, their algorithms are rather
cumbersome as they need to closely investigate the state changes
before and after perturbations. Moreover, their practicalusefulness
is limited to singleton attractors, and they do not provide asteady-
state characterization for Boolean networks (Qian and Dougherty,
2008). An analytical characterization of the effect on the steady-
state distribution caused by perturbation of the regulatory network
appears in (Qian and Dougherty, 2008). They relied on the general
perturbation theory for finite Markov chains (Kemeny and Snell,
1960) to compute the perturbed steady-state distribution in a
sequential manner. They subsequently proposed an intervention
strategy for PBNs that affects the long-run dynamics of the network
by altering its rule structure. However, they considered rank-
one perturbations only. The extension of their method to higher-
rank perturbations is iterative and computationally very expensive.
Finally, a performance comparison of the above strategies has been
conducted in (Qianet al., 2009).

In summary, the first two approaches do not guarantee
convergence towards the desired steady-state distribution. The third
approach, referred to as structural intervention, aims to shift the
steady-state mass from undesirable to desirable states. The proposed
solutions thus far have been limited to either simulation-based
studies (Shmulevichet al., 2002a) or special cases (e.g., rank-one
perturbations) (Xiao and Dougherty, 2007, Qian and Dougherty,
2008). In this paper, we provide a general solution to the problem of
shifting the steady-state mass of gene regulatory networksmodeled
as Markov chains. We formulate optimal intervention in gene
regulation as a solution to an inverse perturbation problemand
demonstrate that the solution is (i) unique, (ii) globally optimum,
(iii) non-iterative, and (iv) can be solved efficiently using standard
convex optimization methods. The analytical solution to this
inverse problem will provide a minimally-perturbed Markovchain
characterized by a unique steady-state distribution corresponding
to a desired distribution. Such a strategy introduces an isolated,
one-time intervention that will require a minimal change inthe
structure of the regulatory network and converges to a desired

steady-state. Moreover, we cast optimal intervention as a convex
optimization problem, thus providing a globally-optimal solution
that can be efficiently computed using standard toolboxes for
convex optimization (Boyd and Vandenberghe, 2003). In particular,
we no longer need simulation-based or computationally-expensive
algorithms to determine the optimal intervention. The criteria
adopted for optimality is designed to minimize potential adverse
effects caused by the intervention strategy. Specifically,we will
focus on minimization of the change in the structure of the network
and maximization of the convergence rate towards the steady-state
distribution. We will therefore investigate the followingcriteria
for minimal-perturbation control in the solution of the inverse
perturbation problem:

• Reduce the level of change in the expression level of specific
genes that are introduced by control agents; that is , we will
minimize the overall energy of change between the original
and perturbed transition matrices as characterized by the
Euclidean-norm of the perturbation matrix.

• Increase the rate of convergence of the network to the
desired steady-state distribution; thus, we will minimizethe
time needed to reach the desired steady-state distributionas
evaluated by the second-largest eigenvalue modulus of the
perturbed matrix.

This work differs from previous research in optimal structural
intervention in at least three ways: First, we do not evaluate
the effect of network perturbation on the steady-state distribution
(Qian and Dougherty, 2009, Qian and Dougherty, 2008, Qian
et al., 2009). Although the subject of perturbation of Markov
chains is a well-studied field, unlike the previous works reported
in the literature, we do not tackle the subject of perturbation
of Markov chains; instead we propose a new framework for
the solution of the inverse perturbation problem. That is, the
perturbation problem aims to characterize the variation inthe
stationary distribution in response to a perturbation of the transition
matrix (Schweitzer, 1968). The inverse perturbation problem, on
the other hand, investigates the perturbation required in order to
reach a desired stationary distribution. The proposed approach
to the inverse perturbation problem therefore has the potential to
have a wide impact in many applications that rely on dynamic
systems. Second, unlike the previous work, which is limitedto rank-
one perturbations, we consider any perturbation that preserves the
irreducibility of the original network (Qian and Dougherty, 2008).
Third, whereas previous efforts considered unconstrainedoptimal
intervention strategies, we focus on optimal control strategies,
which incorporate (energy and rate of convergence) constraints
on the protocols employed in gene regulation designed to reduce
adverse effects as a result of the intervention strategy.

The mathematical notation used in the paper as well as the proofs
of several new results are detailed in the supplementary material of
this paper.

2 METHODS
We consider a gene regulatory network withm genesg1, · · · , gm,
where the expression level of each gene is quantized tol values. The
expression levels of all genes in the network defines the state vector
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of the network at each time step. Genegi evolves according to a
time-invariant probabilistic law determined by the expression levels
of the genes in the network; i.e., Pr(gi = xi|g1 = x1, · · · , gm =
xm), for xj ∈ {0, 1, · · · , l − 1} andj = 1, . . . ,m. An approach
to obtain the conditional probabilities of the genes from gene
expression data has been presented in Kimet al.[2002], Shmulevich
et al. [2002d] based on the coefficient of determination Dougherty
et al. [2000]. The dynamics of this network can be represented as a
finite-state homogeneous Markov chain described by a probability
transition matrixP0 of size n = lm. The probability transition
matrix encapsulates the one-step conditional probabilities of the
genes thus indicating the likelihood that the network will evolve
from one state vector to another.

The Markov probability transition matrix, describing the
dynamics of the network at the state level, can be shown to be
related to the actual gene network by observing that the probability
law describing the genes’ dynamics can be obtained as the marginal
distribution of the state transition probabilities:

Pr(gi = xi|g1 · · · , gm) = (1)
X

x̃i

Pr(g1 = x1, · · · , gm = xm|g1 · · · , gm),

where x̃i denotes the set of allxj ’s except xi; i.e., x̃i =
{x1, · · · , xi−1, xi+1, · · · , xm}. Consequently, if the probability
transition matrixP0 is perturbed linearly with a zero-row sum
matrix E = {ǫi,j}1≤i,j≤n, then conditional probability of each
gene Pr(gi = xi|g1, · · · , gm) is perturbed linearly by

P

j∈J ǫhj ,
whereh is the index of the state vector[g1, · · · , gm] andJ is an
interval isomorphic to{1, 2, · · · , n

l
}. Thus, we observe that “small”

perturbationsǫij ≪ 1 of the probability transition matrix that
satisfy the zero-row sum condition

Pn

j=1 ǫhj = 0, lead to “small”
perturbations of the genes’ dynamics.

We assume thatP0 is ergodic, i.e., irreducible and aperiodic.
Therefore, the existence and uniqueness of the steady-state
distribution are guaranteed. In practice, there are several fast
algorithms for checking irreducibility and aperiodicity in graphs
(Sharir, 1981). IfP0 is ergodic, then the limiting matrixP∞

0 =
limn→∞ Pn0 satisfiesP∞

0 = 1πt0 (Seneta, 2006). In particular, the
rows of the limiting matrixP∞

0 are identical. This demonstrates
that, in the ergodic case, the initial state of the network has no
influence on the long-run behavior of the chain.

DEFINITION 1. A row probability vectorµt = (µ1, · · · , µn) is
called a stationary distribution or a steady-state distribution forP0

if µtP0 = µt.

BecauseP0 is stochastic (i.e., its rows sum up to1), the existence
of stationary distributions is guaranteed (Kemeny and Snell, 1960).

Let π0 denote the undesirable steady-state distribution ofP0. We
wish to alter this distribution by linearly perturbing the probability
transition matrix P0. Specifically, we consider the perturbed
stochastic matrix

P = P0 + C, (2)

whereC is a zero row-sum perturbation matrix. The zero row-
sum condition is necessary to ensure that the perturbed matrix P

is stochastic. Let us denote byπd the desired stationary distribution.
We seek to design an optimal zero row-sum perturbation matrix C
such that the perturbed matrixP is ergodic and converges to the
desired steady-state distributionπd.

2.1 The Feasibility Problem
Schweitzer (Schweitzer, 1968) showed that the ergodic perturbed
matrixP = P0 + C possesses a unique stationary distributionπd,
which satisfies

π
t
d = π

t
0(I − CZ0)

−1
, (3)

whereZ0 is the fundamental matrix ofP0 given byZ0 = (I−P0 +
P∞

0 )−1. Equation (3) requires the computation ofπ0, the initial
undesired steady-state distribution, and the fundamentalmatrixZ0,
which involves the computation of the inverse of ann × n matrix.
The following proposition shows that Eq. (3) is equivalent to a
simpler and computationally more efficient condition.

PROPOSITION1. Consider a stochasticn×n ergodic matrixP0

with steady-state distributionπ0 and fundamental matrixZ0. If C
is anyn×nmatrix, andπd any probability distribution vector, then
we have

π
t
d = π

t
0(I − CZ0)

−1 ⇐⇒ π
t
d(P0 + C) = π

t
d. (4)

In the gene regulatory control problem, we are interested inthe
inverse perturbation problem. Namely, given the desired stationary
distribution, πd, we wish to determine a perturbation matrixC
that satisfies Eq. (4). Notice that there may be multiple solutions
to Eq. (4); i.e., different perturbation matricesC could lead to the
same desired stationary distribution. The problem of finding the set
of perturbation matrices satisfying Eq. (4) can be formulated as the
following feasibility problem.

The feasible set of the control problem: Given an ergodic network
characterized by its probability transition matrixP0, with stationary
distributionπ0, and given a desired stationary distributionπd, then
the set of perturbation matricesC, which force the network to
transition fromπ0 to πd satisfy the following constraints:

(i) πtd = π
t
d(P0 + C), (ii) C1 = 0, (iii) P0 + C ≥ 0.(5)

Constraints(ii) and (iii) ensure that the perturbed matrixP is a
proper probability transition matrix: constraint(ii) imposes that the
perturbation matrixC is zero-row sum, and hence the perturbed
matrix P is stochastic, and constraint(iii) requires the matrixP
to be element-wise non-negative. LetD denote the feasible set of
perturbation matrices, i.e.,

D = {C ∈ R
n×n : πtd = π

t
d(P0+C), C1 = 0, P0+C ≥ 0}. (6)

D is a polyhedra as the solution of a finite number of linear
equalities and inequalities (Boyd and Vandenberghe, 2003). It
is easily shown that polyhedra are convex sets (Boyd and
Vandenberghe, 2003). Observe thatD is non-empty because it
contains the perturbation matrixC = 1πtd − P0.

Observe that there are numerous (possibly infinite) perturbation
matrices C which can force the network to transition from an
undesirable steady-state to a desirable one. All such perturbations,
in principle, constitute plausible control strategies andcan therefore
be used to drive the network from one steady-state to another.
We impose the minimum-energy and fastest convergence rate
constraints in order to limit the structural changes in the network
and reduce the transient dynamics after perturbation.
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2.2 The Minimal-Intervention Problem
Because the feasible set, defined in Eq. (5) is non-empty, there
exists at least one perturbation matrixC, which forces the network
to converge to the desired distribution. A natural questionarises
then: “Which perturbation matrix should we choose?”. In practice,
we are interested in perturbation matrices, which incorporate
specific biological constraints; e.g., the potential side effects on the
patient, and the length of treatment. We translate these limitations
into the following optimality criteria.

2.2.1 Minimal-perturbation energy controlThe minimal perturbation
energy control is defined by minimization of the Euclidean-norm
of the perturbation matrix. It corresponds, biologically,to the
control which minimizes the overall “energy” of change between
the perturbed and unperturbed gene regulatory networks. The
Euclidean- or spectral-norm ofC is defined as

‖C‖2 = max{‖Cx‖ : x ∈ R
n
, ‖x‖ = 1} (7)

=
p

λmax(CtC) = max
x:‖x‖=1

< C
t
Cx,x >, (8)

whereλmax(C
tC) ≥ 0 is the highest eigenvalue of the positive-

semi-definite matrixCtC, and <,> denotes the inner product
operator. The minimum perturbation energy control can be
formulated as the following optimization problem:

Minimal-perturbation energy control:

Minimize ‖C‖2 subject to C ∈ D, (9)

whereD is the feasible set in Eq. (6).
The optimization problem formulated in Eq. (9) is a convex

optimization problem. A convex optimization problem is defined
as one that satisfies the following three requirements: (a) the
objective function is convex; (b) the inequality constraint functions
are convex; and (c) the equality constraint functions are affine
(Boyd and Vandenberghe, 2003). A fundamental property of convex
optimization problems is that any locally optimal point is also
globally optimal. Moreover, because the Euclidean-norm isstrictly
convex, the optimal solution is unique.

Next, we express the convex optimization problem as a semi-
definite programming (SDP) problem, which can be solved
efficiently using standard SDP solvers, such as SDPSOL (Wu and
Boyd, 1996), SDPpack (Alizadehet al., 1997) and SeDuMi (Sturm,
1999). A list of 16 SDP solvers can be found at the SDP website
maintained by Helmberg (Helmberg, 2003). We can thus rely on
SDP solvers to efficiently compute the optimal perturbationof
Boolean gene networks consisting of 10 to 15 genes (i.e.210 =
1024 to 215 = 32768 states). Note, however, that the computational
efficiency of SDP solvers for larger networks will be lower.

Semi-definite programming formulation: Using the fact that

‖C‖2 ≤ t⇐⇒ C
t
C � t

2
I, t ≥ 0,

we can express the problem in Eq. (9) in the following form

Minimize t

subject to C
t
C � t

2
I, P0 + C ≥ 0 (10)

π
t
d(P + C) = π

t
d, C1 = 0

with variablest ∈ R andC ∈ R
n×n. The problem (10) is readily

transformed to a SDP standard form, in which a linear function is
minimized, subject to a linear matrix inequality and linearequality
constraints. We first observe that, from the Schur complement, we
have

C
t
C � t

2
I (andt ≥ 0) ⇐⇒

„

tI C

Ct tI

«

� 0. (11)

The inequalities in (10) can be expressed as a single linear matrix
inequality by using the fact that a block diagonal matrix is positive-
semi-definite if and only if its blocks are positive semi-definite.

Minimize t

subject to

0

@

tI C 0
Ct tI 0
0 0 vec(P0 + C)

1

A � 0 (12)

π
t
d(P + C) = π

t
d, C1 = 0

At this stage, it is important to notice that we can similarlyconsider
the L1 norm to produce a sparse perturbation matrix (Boyd and
Vandenberghe, 2003).

2.2.2 Fastest convergence rate controlA clinically-viable
optimality criterion is to select the perturbation that yields the fastest
convergence rate to the desired steady-state distribution. We know
that the convergence rate of ergodic Markov chains is geometric
with parameter given by the second-largest eigenvalue modulus
(SLEM) of the probability transition matrix (Seneta, 2006). The
smaller the SLEM, the faster the Markov chain converges to its
equilibrium distribution. The fastest convergence rate control can
be casted as the following optimization problem:

Fastest convergence rate control:

Minimize SLEM (P0 +C) subject to C ∈ D, (13)

where D is the feasible set in Eq. (6). Observe that for a
general (non-symmetric) matrix, about the only characterization
of the eigenvalues is the fact that they are the roots of the
characteristic polynomial. Therefore, the objective function in (13)
is not necessarily convex, and thus the optimization problem is not
convex.

The following obvious proposition determines the optimal fastest
convergence rate perturbation matrix.

PROPOSITION 2. The optimal solution of the optimization
problem in (13) is given by

C
∗ = 1π

t
d − P0. (14)

The optimal SLEM (P0 + C∗) = 0.

That is the perturbationC∗ reaches the desired state in a single
jump.

The fastest convergent perturbation may, however, result in a large
energy deviation between the original and perturbed networks. Next,
we will investigate the tradeoffs between minimal-energy and fastest
convergence criteria.
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Fig. 1. The Human melanoma gene regulatory network: (a) Plot of SLEM(P (s)) in Eq. (17) (blue continuous line) and SLEM(Q(s)) in Eq. (22) (red dashed
line) versuss; (b) Plot of ‖C(s)‖ in Eq. (16) (blue continuous line) and‖CQ(s)‖ in Eq. (21) (red dashed line) versuss; (c) Plot of‖πd(s) − πd‖ (blue

continuous line), and the upper bound2(1−s)
2−s

‖π0 − πd‖ (red dashed line) versus0 ≤ s ≤ 1, in Proposition 5. The tradeoff between minimal-energy and
fastest convergence rate control is clear from (a) and (b). The parameterized family of perturbed matricesP (s) in Eq. (15) results in a faster convergence
towards the desired steady-stateπd at the expense of a higher norm (energy) of the perturbation matrix. On the other hand, the family of perturbed matrices
Q(s) in Eq. (20) leads to a perturbation matrix with norm (energy)as small as desired, but at the expense of not converging towards the desired steady-state
for smalls. The distance between the steady-state ofQ(s) and the desired steady-state as a function ofs is shown in Figure (c).

2.2.3 Tradeoffs between minimal-energy and fastest convergence
rate control We denote byP ∗

E the minimal-energy perturbed
matrix, i.e., P ∗

E = C∗
E + P0, whereC∗

E is the solution of
the SDP problem in (12). Let us consider the family of matrices
parameterized bys, along the line betweenP ∗

E and the fastest
convergent matrix1πtd,

P (s) = (1 − s)P ∗
E + s1π

t
d. (15)

Equation (15) can be thought of as a continuous transformation of
P ∗
E into 1πtd. The perturbation matrixC(s) = P (s) − P0 is then

given by
C(s) = P

∗
E − P0 + s(1πtd − P

∗
E). (16)

It is easy to check thatC(s) ∈ D for all 0 ≤ s ≤ 1. Whens = 0,
we obtain the minimal energy perturbation, and whens = 1, we
obtain the perturbation that results in the fastest convergence rate
towards the desired steady-state. When0 < s < 1, we will show
that we have an inherent tradeoff between minimizing the energy
and maximizing the convergence rate.

We say that the vectorf is a non-trivial eigenvector of a stochastic
matrix P if f is not proportional to the vector1. The following
proposition provides an explicit expression of the SLEM ofP (s).

PROPOSITION 3. λ is an eigenvalue ofP (s), 0 ≤ s ≤ 1,
corresponding to a non-trivial eigenvector if and only ifµ = λ

1−s

is an eigenvalue ofP ∗
E with a non-trivial eigenvector. In particular,

we have
SLEM(P (s)) = (1 − s) SLEM(P ∗

E). (17)

The following proposition shows that the spectral-norm ofC(s)
is an increasing function ofs.

PROPOSITION4. ‖C(s)‖2, whereC(s) is given by Eq. (16), is
an increasing function ofs, for all 0 ≤ s ≤ 1.

From Proposition (3), it follows that whens increases, the
SLEM of the perturbed matrix decreases, and hence the convergence
(towards the desired state) is faster. On the other hand, from

Proposition 4, the norm of the perturbation matrix, and hence
the energy deviation between the original and perturbed networks,
increases as a function ofs. Therefore, we have an inherent
tradeoff between the energy of the perturbation matrix and the
rate of convergence. The faster we converge towards the desired
steady-state, the higher the energy between the initial andperturbed
networks.

We would, therefore, like to find the optimal tradeoff perturbation
matrix. Specifically, we determine the optimal perturbation matrix,
which minimizes the SLEM while keeping the energy bounded.
Such a constraint can be imposed, for instance, to minimize the
side effects due to the rewiring of the original network. Theoptimal
tradeoff problem is readily written as the following optimization
problem:

Minimize SLEM (P0 + C)

subject to ‖C‖2 ≤ ǫ, C ∈ D, (18)

whereǫ ≥ ||C∗
E || is a given threshold. We consider the solution to

the optimization problem in (18) along the line defined in Eq.(15).
A local minimum of the optimization problem in (18) might not
belong to the family{P (s)}s∈[0,1]. However, the line search seems
a reasonable choice, and presents several advantages: (i) it provides
a closed-form expression of the SLEM ofP (s) for all 0 ≤ s ≤ 1;
(ii) Contrary to most eigenvalue problems, which are numerically
unstable, the line search has an explicit formula, and henceis
numerically stable; (iii) it describes a linear behavior ofthe optimal
solution.

It is straightforward to see that the optimal tradeoff perturbation
matrix on the line, defined by Eq. (15), is given byC∗ = C(s∗),
where s∗ is the unique solution to||C(s∗)||2 = ǫ. However,
the optimal tradeoff perturbation matrix requires a numerical
computation of the minimal energy perturbed matrix‖P ∗

E‖. More
importantly, if the bound on the energyǫ < ||C∗

E ||2, then we have
no solution for the problem (18). Indeed, in some cases, we might
want to constrain the energy of the perturbation matrixC to be no
larger than a “small” specified threshold (i.e.,ǫ < ||C∗

E ||2). We
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will show that, in this case, we might not be able to reach the
desired steady-state distribution. Intuitively, if the energy of the
perturbation matrix is constrained to be too small, then we might
not be able to force the network to transition from one steady-state
to another. In this case, we will quantify how far we are from the
desired steady-state.

Mathematically, the general energy constrained optimization
problem can be formulated as follows

Energy-constrained fastest convergence rate control:

Minimize SLEM (P0 + C) (19)

subject to ‖C‖2 ≤ ǫ, C1 = 0, (P0 + C) ≥ 0,

where ǫ ≥ 0. Observe that the optimization problem in (19) is
different from the problem in (18) in two points: First, the bound
ǫ can be any non-negative number. Second, the perturbation matrix
C does not necessarily belong toD. Observe that the optimization
problem in (19) is not a convex optimization problem as the SLEM
of a general (non-symmetric) matrix is not necessarily convex. We
will look for a solution on the line betweenP0 and1πtd, i.e., we
consider the family

Q(s) = (1 − s)P0 + s1π
t
d, 0 ≤ s ≤ 1. (20)

The perturbation matrix,CQ, is therefore given by

CQ(s) = Q(s) − P0 = s(1πtd − P0). (21)

In particular, the norm‖CQ‖2 = s‖1πtd − P0‖2 can be made
arbitrarily small by choosing a smalls. On the other hand, it is easy
to see that

SLEM (Q(s)) = (1 − s) SLEM (P0). (22)

The proof of Eq. (22) follows the same steps of the proof of
Proposition 3. Therefore, it seems that the family{Q(s)}0≤s≤1

provides a perturbation matrix with an arbitrarily small energy,
and an explicit formula for the SLEM of the perturbed network
as a function of the SLEM of the original network. The drawback,
however, is thatQ(s) does not necessarily converge to the desired
steady-state distribution. The following proposition quantifies the
difference between the steady-state ofQ(s) and the desired steady-
stateπd.

PROPOSITION5. The family of matricesQ(s), given in Eq. (20),
is ergodic for all0 ≤ s ≤ 1, and therefore converges towards a
unique steady-state distributionπd(s) given by

πd(s) = s(1−s)(I−(1−s)P t0)
−1
P
t
0(πd−π0)+(1−s)π0+sπd.

(23)
That is

πd(s) − πd = (1 − s)
`

I − s(I − (1 − s)P t0)−1
P
t
0

´

(π0 − πd).
(24)

Furthermore, we have

‖πd(s) − πd‖ ≤ A(P0)(1 − s)‖π0 − πd‖, 0 ≤ s ≤ 1, (25)

whereA(P0) = 1+ supk≥1 ‖P
k
0 ‖2, which is finite becauseP k0 has

a limit ask → ∞. If P0 is symmetric, then we have a simpler upper
bound given by

‖πd(s) − πd‖ ≤
2(1 − s)

2 − s
‖π0 − πd‖, 0 ≤ s ≤ 1. (26)

From Proposition 5, it is clear that whens→ 1, πd(s) → πd.

3 OPTIMAL INTERVENTION IN THE HUMAN
MELANOMA GENE REGULATORY NETWORK

The inverse perturbation control is applicable in every gene
regulatory network that can be modeled as a Markov chain. In
particular, we note that two of the most popular gene regulatory
network models, Probabilistic Boolean Networks (PBNs) and
Dynamic Bayesian Networks (DBNs) can be modeled as Markov
chains (Lhdesmkiaet al., 2006). In this paper, we consider the
Human melanoma gene regulatory network, which is one of
the most studied gene regulatory networks in the literature(Pal
et al., 2006, Dattaet al., 2007, Qian and Dougherty, 2008). The
abundance of mRNA for the gene WNT5A was found to be highly
discriminating between cells with properties typically associated
with high versus low metastatic competence. Furthermore, it
was found that an intervention that blocked the Wnt5a protein
from activating its receptor, the use of an antibody that binds
the Wnt5a protein, could substantially reduce Wnt5A’s ability to
induce a metastatic phenotype (Palet al., 2006). This suggests a
control strategy that reduces WNT5A’s action in affecting biological
regulation.

A seven-gene probabilistic Boolean network model of the
melanoma network containing the genes WNT5A, pirin, S100P,
RET1, MART1, HADHB, and STC2 was derived in (Palet al.,
2005a). Figure 2(a) illustrates the relationship between genes in the
Human melanoma regulatory network. This diagram is a conceptual
abstraction and is not intended as an explicit mechanistic diagram
of regulatory actions. The influences depicted may be the result of
many intervening steps that are not shown. Some generalizations
that emerge from this conceptual diagram, such as the wide
influence of the state of WNT5A on the states of other genes, have
been confirmed experimentally (Kimet al., 2002). Note that the
Human melanoma Boolean network consists of27 = 128 states
ranging from00 · · · 0 to 11 · · · 1, where the states are ordered as
WNT5A, pirin, S100P, RET1, MART1, HADHB, and STC2, with
WNT5A and STC2 denoted by the most significant bit (MSB) and
least significant bit (LSB), respectively. The probabilitytransition
matrix of the Human melanoma network, derived in (Zhouet al.,
2004) and used in this paper, is courtesy of Dr. Ranadip Pal.

A naive control strategy, which would exclusively target the
gene WNT5A by reducing its expression level while keeping the
expression levels of the other genes in the network unchanged will
inevitably fail as it basically resets the initial state of the underlying
process and does not alter the network structure. Biologically, the
complex gene interactions in the network will almost certainly
bypass this gene perturbation and return to their initial cancerous
state. On the other hand, determining the optimal gene intervention
by a brute-force approach is computationally intractable and
experimentally infeasible: Even within the context of Boolean
regulation (two-level quantization), the number of experiments
to perform increases exponentially in the number of genes in
the network. For instance, in the7-gene melanoma network, an
extensive control search amounts to performing2186 laboratory
experiments; i.e. downregulate and upregulate the expression level
of every gene, every pair of genes, every triple of genes, etc.,
thus requiring

P7
k=1

`

k

7

´

2k = 2186 laboratory experiments. The
proposed inverse perturbation control provides the optimal one-time
intervention that rewires the network in order to force it toconverge
to the desired steady-state.
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(a) (b)

Fig. 2. Optimal intervention in the Human melanoma gene regulatorynetwork: (a) An abstract diagram of the melanoma gene regulatory network (Kimet al.,
2002): Thicker lines or closer genes are used to convey a stronger relationship between the genes. The notion of strongerrelation between genes is used convey
a higher probability of influence on their gene expression levels. For instance, WNT5A and pirin have a strong relationship to each other as illustrated by their
proximity in the diagram and the thickness of the lines connecting between them; (b) The original (red line), desired (blue line), and minimal-perturbation
energy controlled (green line) steady-state distributions of the Human melanoma gene regulatory network. Thex-axis represents the 128 states of the network
ranging from00 · · · 0 to 11 · · · 1, and they-axis indicates the probability of each state. Note that thecontrolled and desired steady-state distributions are
identical.

Using the breadth first search algorithm (Russell and Norvig,
2003), we found that the melanoma probabilistic Boolean network
is irreducible. Therefore, it has a unique stationary distribution,
and we can apply the inverse perturbation control developedin
this paper. Because the control objective is to downregulate the
WNT5A gene, we consider the desired steady-state distribution
where the probability of the states having WNT5A upregulated is
10−4 and the probability of the other states, which correspond to
WNT5A downregulated is set equal to0.015525 (see Fig. 2(b)).
Observe that the states from 0 to 63 have WNT5A downregulated
(0) and hence are desirable states, as compared to states 64 to
127 that have WNT5A upregulated (1) and hence are undesirable.
The probability transition matrices of the Human melanoma
networks corresponding to the original and perturbed networks are
portrayed in Fig. 3. Observe that the family of perturbed matrices
{P (s)}s∈[0,1], defined in Eq. (15), converges towards the desired
steady-state distributionπd, in the sense thatP (s)n → 1πtd as
n → ∞. On the other hand, the family of matricesQ(s), defined
in Eq. (20), does not converge to the desired distributionπd, for
0 ≤ s < 1. Figure 1(c) shows the norm difference between the
steady-state distribution ofQ(s), πd(s), andπd as a function of
s. As the parameters increases,πd(s) → πd. The advantage
of considering the family{Q(s)} resides in the ability to design
perturbation matricesC(s) with arbitrary small norms (energy) (see
Fig. 1(b)). This is in contrast to the family{P (s)} where the norm
of the perturbation matrices is lower bounded by the minimal-energy
perturbation matrix norm‖C∗

E‖. The tradeoff between the minimal-
energy and fastest convergence rate is depicted in Figs 1(a)and 1(b).
The steady-state distribution of the Human melanoma network of
the original and perturbed networks are shown in Fig. 2. Observe
that the after-control steady-state is identical to the desired steady-
state. Therefore, the control has enabled us to shift the steady-state
probability mass from the undesirable states to states withlower
metastatic competence.

The minimal-energy perturbed matrix, which optimally solves
the SDP problem in (12), is‖C∗

E‖2 = 1.20667 and its SLEM
= 0.4696. We have shown that the optimal SLEM of the fastest
convergence rate control is equal to 0, and its energy is given by
‖C‖2 = ‖1πtd − P0‖2 = 1.81854. The SDP problem has been
implemented in MATLAB and uses the CVX software for convex
optimization (Grant and Boyd, 2010).

The mathematical findings derived were confirmed by computer
simulation experiments by demonstrating that the optimal
perturbation of a known melanoma gene regulatory network leads
to a desired stead-state. In order to reach the full impact ofthe
proposed research on gene regulation in biological systems, we plan
to investigate changes in the cell that induce the optimal perturbed
transition matrix. In particular, our current and future work will
focus on determining the optimal biological design rules needed
to induce the optimal intervention strategy while limitingourselves
to biologically-viable design rules that rely on modern methods for
molecular control in cellular systems.

4 CONCLUSION
In this paper, we introduced a novel method for optimal intervention
in gene regulatory networks posed as an inverse perturbation
problem. The optimal perturbation has been derived such that the
regulatory network will transition to a desired stationary, or steady-
state, distribution. Biological evidence suggests that steady-state
distributions of molecular networks reflect the phenotype of the cell.
In other words, both malignant (e.g. cancer) and benign phenotypes
correspond to steady-state distributions in dynamic system models
of gene regulatory networks.

We developed a mathematical framework for the solution of the
inverse perturbation problem for irreducible and ergodic Markov
chains. Our aim was to derive a minimal-perturbation intervention
policy designed to introduce an isolated, one-time intervention
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(a)P0 (b) P ∗
E (c) P ∗10

E (d) 1πtd

(e)P (0.1) (f) P (0.9) (g) P (0.1)10 (h) P (0.9)10

(i) Q(0.1) (j) Q(0.9) (k) Q(0.1)10 (l) Q(0.9)10

Fig. 3. Initial and controlled probability transition matrices for the Human melanoma gene regulatory network: The matrix plots are obtained using the function
MatrixPlot in MATHEMATICA. They provide a visual representation of thevalues of elements in the matrix. The color of entries variesfrom white to red
corresponding to the values of the entries in the range of0 to 1: (a) the probability transition matrix of the original melanoma networkP0, which converges
towards an undesirable steady-state distribution; (b) theminimal-energy perturbed probability transition matrixP ∗

E ; (c) P ∗10
E ; (d) the fastest convergence rate

perturbed probability transition matrix1πt
d
; (e)P (0.1) in Eq. (15); (f)P (0.9) in Eq. (15); (g)P (0.1)10 ; (h) P (0.9)10 ; (i) Q(0.1) in Eq. (20); (j)Q(0.9) in

Eq. (20); (k)Q(0.1)10 ; (l) Q(0.9)10. Observe from (c) and (g) thatP ∗
E

andP (s) “converge” towards the desired steady-state distributionπd, whereasQ(s)
“converges” towardsπd only for s = 1.

and induce few changes in the original network structure, thus
minimizing potential adverse effects on the patient as a consequence
of the intervention strategy. The mathematical analysis presented
provides a general framework for the solution of the inverse
perturbation problem for arbitrary discrete-event ergodic systems.
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SUPPLEMENTAL FILE

5 MATHEMATICAL NOTATION
In this paper, we consider real variables. We useR to denote the
set of real numbers. Scalars are denoted by lower case letters,
e.g., s, t. Vectors in R

n are denoted by either bold letters and
numbers, or lower-case Greek letters, e.g.,1,x, π, where1 denotes
a vector all of whose components are equal to one.x

t denotes
the transpose of the vectorx. The notationxi refers to theith
component of the vectorx. Matrices inR

m×n are denoted by either
capital letters or upper-case Greek letters, e.g.,C,P,Λ. I stands
for the identity matrix. IfP ∈ R

m×n, then vec(P ) transforms
P into annm-dimensional vector by stacking the columns. The
equality and inequality symbols,=,≤ and≥ denote component-
wise equality and inequality, respectively, for arrays of the same
size. For example, ifC is anm× n matrix, thenC ≥ 0 denotes the
mn inequalities: each element of the matrixC is nonnegative. The
curled inequality symbols,�,≺,�,≻, denote generalized matrix
inequalities associated with the positive semi-definite cone. That is,
if A,B ∈ R

n×n, thenA � B (resp.,A ≻ B) means thatA−B is
positive-semi-definite (resp., positive definite); andA � B (resp.,
A ≺ B) means thatA−B is negative-semi-definite (resp., negative
definite). We recall that a matrixA ∈ R

n×n is called positive-semi-
definite (resp., positive definite) ifxtAx ≥ 0 (resp.,xtAx > 0)
for all x ∈ R

n (resp.,x 6= 0). If −A is positive semi-definite
(resp., positive definite), thenA is called negative semi-definite
(resp., negative definite).

PROOF OFPROPOSITION1.

π
t
d = π

t
0(I − CZ0)

−1

⇐⇒ π
t
d(I − CZ0) − π

t
0 = 0

⇐⇒ [πtd(I −CZ0) − π
t
0]Z

−1
0 = 0 (27)

⇐⇒ π
t
d(I − P0 + P

∗
0 ) − π

t
dC − π

t
0(I − P0 + P

∗
0 ) = 0

⇐⇒ (πtd − π
t
dP0 + π

t
0) − π

t
dC − (πt0 − π

t
0 + π

t
0) (28)

⇐⇒ π
t
d = π

t
d(P0 + C),

where Eq. (27) follows from the fact thatZ0 is invertible, and
Eq. (28) follows from the properties:πtdP

∗
0 = πtd1π

t
0 = πt0;

πt0P0 = πt0; andπt0P
∗
0 = πt0.

PROOF OFPROPOSITION2. It is straightforward to check that
the perturbation matrixC = (1πtd − P0) ∈ D. That is we have
(i) πtd = πtd(P0 + C); (ii) C1 = 0; (iii) P0 + C ≥ 0. Moreover,
the perturbed matrixP0 + C = 1πtd is a stochastic matrix with
rank one. Therefore, it has a simple eigenvalue 1 corresponding to
eigenvector1, and eigenvalue 0 with multiplicityn − 1. Hence, its
SLEM = 0.

PROOF OFPROPOSITION3. For any vectorf , we introduce its
unique direct sum decompositionf = αf1 + f

⊥, whereαf = πtdf

andf
⊥⊥πd. It is easy to check thatf⊥ is proportional to1 if and

only if f
⊥ = 0.

Let ψ = αψ1 + ψ⊥ be a non-trivial eigenvector (i.e.,ψ⊥ 6= 0)
of P ∗

E with eigenvalueµ. We will look for a vectorφ, in the form

φ = ψ + c1, that satisfiesP (s)φ = (1 − s)µφ. We have

P (s)φ = P (s)ψ + c1 (29)

= (1 − s)µψ + sαψ1 + c1 (30)

= (1 − s)µφ+ (sαψ + c− (1 − s)µc)1, (31)

where Eq. (29) follows from the fact thatP (s) is stochastic, i.e.,
P (s)1 = 1, and Eq. (30) is obtained by replacingP (s) by its
expression in Eq. (15). Therefore, if we chosec =

sαψ
(1−s)µ−1

, we
obtainP (s)φ = (1 − s)µφ.

Let nowφ = αφ1+φ⊥ be a non trivial eigenvector ofP (s) with
eigenvalueλ. In particular,φ⊥ 6= 0. We first show thatλ 6= (1−s).
From Eq. (15), we have

P (s)φ = (1 − s)P ∗
Eφ+ sαφ1 (32)

= (1 − s)P ∗
Eφ

⊥ + (1 − s)αφ1 + sαφ1. (33)

On the other hand, ifλ = 1 − s, then we would have

P (s)φ = (1 − s)φ (34)

= (1 − s)αφ1 + (1 − s)φ⊥
. (35)

By equating Eqs. (33) and (35), we obtain

P
∗
Eφ

⊥ = φ
⊥ −

sαφ

1 − s
1. (36)

It follows that, for any positive integerj we have

P
∗j
E φ

⊥ = P
∗(j−1)
E φ

⊥ −
sαφ

1 − s
1. (37)

Taking the limit asj −→ ∞, and becauseP ∗
E is ergodic, we get

P
∗∞
E φ

⊥ = P
∗∞
E φ

⊥ −
sαφ

1 − s
1. (38)

Thus,sαφ = 0, which implies, from Eq. (36), thatP ∗
Eφ

⊥ = φ⊥.
Hence,φ⊥ is an eigenvector ofP ∗

E corresponding to eigenvalue
1. Therefore,φ⊥ must be proportional to1. We recall thatφ⊥

is proportional to1 if and only if φ⊥ = 0. This results in a
contradiction because of the fact thatφ⊥ 6= 0. Therefore, we
conclude thatλ 6= 1 − s.

Now, we considerλ 6= 1 − s, we will find ψ in the formψ =
φ+ c1, that satisfiesP ∗

Eψ = λ
1−s

ψ. We have

P
∗
Eψ = P

∗
Eφ+ c1 (39)

=
λ

1 − s
φ−

sαφ

1 − s
1 + c1 (40)

=
λ

1 − s
ψ + (−

λ

1 − s
c−

sαφ

1 − s
+ c)1, (41)

where Eq. (39) follows from the stochasticity ofP ∗
E and Eq. (40)

is obtained by replacingP ∗
E by its expression in Eq. (15) and using

the fact thatφ is an eigenvector ofP (s) with eigenvalueλ. Finally,
Eq. (41) follows by replacingφ = ψ − c1. Therefore, if we chose
c =

sαφ
1−s−λ

, we obtainP ∗
Eψ = λ

1−s
ψ.

PROOF OFPROPOSITION4. ‖C(s)‖2 is a convex function in
s, which reaches its minimum ats = 0. Therefore, it must be
increasing fors ≥ 0 (Boyd and Vandenberghe, 2003).
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We also provide an alternative proof as follows: LetA = P ∗
E−P0

andB = 1πtd − P ∗
E. Then, from Eq. (16),

C(s) = A+Bs. (42)

By construction, we have for alls ≥ 0,

‖C(s)‖2 ≥ ‖P ∗
E − P0‖2 = ‖C(0)‖2 = ‖A‖2 ⇐⇒ (43)

max
x:‖x‖=1

< (A+ sB)t(A+ sB)x,x >≥ max
x:‖x‖=1

< A
t
Ax,x >,

where the right hand side equivalence follows from the definition of
the spectral norm given in Eq. (8). Letxs be such that‖xs‖ = 1
and

max
x:‖x‖=1

< (A+sB)t(A+sB)x,x >=< (A+sB)t(A+sB)xs,xs > .

(44)
Then,

< (A+ sB)t(A+ sB)xs,xs > ≥ < A
t
Axs,xs >, (45)

which means

< (AtB +B
t
A+ sB

t
B)xs,xs >≥ 0. (46)

Let s̃ ≥ s. We need to show that

max
x:‖x‖=1

< (A+s̃B)t(A+s̃B)x,x >≥< (A+sB)t(A+sB)xs,xs > .

(47)
It is sufficient to show that

< (A+ s̃B)t(A+ s̃B)xs,xs >≥< (A+sB)t(A+sB)xs,xs > .

(48)
But,

< (A+ s̃B)t(A+ s̃B)xs,xs > − < (A+ sB)t(A+ sB)xs,xs >

= (s̃− s) < (AtB +B
t
A+ sB

t
B + s̃B

t
B)xs,xs >,

which is positive because of Eq. (46).

PROOF OFPROPOSITION5. For 0 ≤ s ≤ 1, we have the
following three properties

πd(s)
t
Q(s) = πd(s)

t (49)

πd(s)1 = 1 (50)

πd(s) ≥ 0. (51)

BecauseQ(s) is ergodic, we know that suchπd(s) exists and is
unique. Let

φ = πd(s) − ((1 − s)π0 + sπd). (52)

Then, we have

φ
t
Q(s) = πd(s)

t − (1 − s)2πt0 − (53)

s(1 − s)πtdP0 − s(1 − s)πtd − s
2
π
t
d

= φ
t + s(1 − s)(πt0 − π

t
dP0) (54)

= φ
t + s(1 − s)(πt0 − π

t
d)P0, (55)

where Eq. (55) follows from the fact thatπt0P0 = πt0. Next, we
notice thatφt1 = 0. Thus, from Eq. (20), we obtain

φ
t
Q(s) = (1 − s)φtP0. (56)

By equating Eqs. (55) and (56), we obtain

φ
t[I − (1 − s)P0] = s(1 − s)(πtd − π

t
0)P0. (57)

Observe that fors > 0, 1 is not an eigenvalue of(1− s)P0. Hence,
I − (1 − s)P0 is invertible, and we have

φ = s(1 − s)[I − (1 − s)P t0 ]−1
P
t
0(πd − π0). (58)

From Eq. (52), we have

πd(s) − πd = φ+ (1 − s)(π0 − πd). (59)

Replacingφ by its expression in Eq. (58), Eq. (59) can be written as

πd(s) − πd = (1 − s)
`

I − s(I − (1 − s)P t0)−1
P
t
0

´

(π0 − πd).
(60)

That is, by factoring by(I − (1 − s)P t0)−1,

πd(s)−πd = (1− s)(I− (1− s)P t0)−1(I−P t0)(π0 −πd). (61)

If P0 is symmetric, then by the spectral theorem we have‖P0‖2 =
λmax(P0) = 1, and by the triangle inequality,

‖(I − (1 − s)P t0)−1(I − P
t
0)‖2 ≤

2

2 − s
,

and thus

‖πd(s) − πd‖ ≤
2(1 − s)

2 − s
‖π0 − πd‖.

In the case of a non-symmetric matrixP0, we use geometric
progression:

[I − (1 − s)P t0 ]−1 =
∞
X

k=0

(1 − s)kP t0 . (62)

We note that the last series is convergent for any0 < s ≤ 1 because
P k0 has a limit ask → ∞. Equation (60) becomes then

πd(s) − πd = (1 − s)

 

I − s

∞
X

k=0

(1 − s)k(P t0)k+1

!

(π0 − πd).

(63)
By noting thatsupk≥1 ‖P

k
0 ‖2 = supk≥1 ‖(P

t
0)k‖2 is finite, we

have the desired upper bound on‖πd(s) − πd‖.
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