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ABSTRACT

Motivation: Analysis and intervention in the dynamics of gene
regulatory networks is at the heart of emerging efforts in the
development of modern treatment of numerous ailments including
cancer. The ultimate goal is to develop methods to intervene in
the function of living organisms in order to drive cells away from
a malignant state into a benign form. A serious limitation of much
of the previous work in cancer network analysis is the use of
external control, which requires intervention at each time step, for
an indefinite time interval. This is in sharp contrast to the proposed
approach, which relies on the solution of an inverse perturbation
problem to introduce a one-time intervention in the structure of
regulatory networks. This isolated intervention transforms the steady-
state distribution of the dynamic system to the desired steady-state
distribution.

Results: We formulate the optimal intervention problem in gene
regulatory networks as a minimal-perturbation of the network in
order to force it to converge to a desired steady-state distribution
of gene regulation. We cast optimal intervention in gene regulation
as a convex optimization problem, thus providing a globally optimal
solution which can be efficiently computed using standard toolboxes
for convex optimization. The criteria adopted for optimality is chosen
to minimize potential adverse effects as a consequence of the
intervention strategy. We consider a perturbation that minimizes (i)
the overall energy of change between the original and controlled
networks and (ii) the time needed to reach the desired steady-state
of gene regulation. Furthermore, we show that there is an inherent
tradeoff between minimizing the energy of the perturbation and the
convergence rate to the desired distribution. We apply the proposed
control to the Human melanoma gene regulatory network.
Availability: The MATLAB code for optimal intervention in gene
regulatory networks can be found online: http://syen.ualr.
edu/ nxbouaynaya/ Bi oi nf ormati cs2010. ht mi .

Contact: Nidhal Bouaynaya. Email: nxbouaynaya@ualr.edu

1 INTRODUCTION

targets in the cell needed to reach a desired goal. In chdssic
biological experiments, cell function is ascertained bHase rough
phenotypical and genetic behavior. On the other hand, tlkee us
of dynamical system models allows one to analytically esglo
biological hypotheses. Within this context, investigatdrave
sought to discover preferable stationary states, thetedfatdistinct
perturbations on gene dynamics, and the ‘dynamical functd
genes (Shmulevichkt al, 2002b, Abhishelet al., 2008, Fathallah-
Shaykh, 2005, Ribeiro and Kauffman, 2007, Dattal., 2007, Qian

et al, 2009, Qian and Dougherty, 2009, Fathallah-Shagkial,
20009).

The complexity of biological systems and the noisy nature
of the sampled data suggest the use of probabilistic methods
for system modeling, analysis, and intervention. Markowich
models have been shown to accurately emulate the dynamics of
gene regulatory networks (Kiret al, 2002). In particular, the
dynamics of Probabilistic Boolean Networks (PBNs) (Shmigle
et al, 2002b) and Dynamic Bayesian Networks (Murphy, 2002)
can be studied using Markov chains. The long-run behaviax of
dynamic network is characterized by the steady-stateilligions
of the corresponding Markov chain. It has been argued that
steady-state distributions determine the phenotype ostaie of
the cell development, such as cell proliferation and apgto
(Kauffman, 1993, Ivanov and Dougherty, 2006). The long-run
dynamic properties of PBNs and their sensitivity with regpe
to network perturbations were investigated in several rearipis
(Shmulevichet al, 2003, Qian and Dougherty, 2009, Qian and
Dougherty, 2008).

The ultimate objective of gene regulatory network modeling
and analysis is to use the network to design effective iet@ion
strategies for affecting the network dynamics in such a way a
to avoid undesirable cellular states. As futuristic gererdheutic
interventions, various control strategies have been egdo alter
gene regulatory network dynamics in a desirable way. Biokity,
such alterations may be possible by the introduction of #ofac
or drug that alters the extant behavior of the cell. Curramitrol
strategies can be grouped into three main approaches (&adta
2007): (i) reboot the network by resetting its initial cotioin

The cell maintains its function via an elaborate network of (Shmulevichet al., 2002c), (i) introduce external control variables

interconnecting positive and negative feedback loops ofege

to act upon some control genes, in such a way as to optimizaesa gi

and proteins that send different signals to a large number o€ost function (Dattat al, 2003, Pakt al, 2006, Datteet al.,, 2007,
pathways and molecules. Understanding the dynamic behafio Faryabiet al, 2008), (iii) alter the underlying rule-based structure
gene regulatory networks is essential to advance our kmigele of the network in order to shift the steady-state mass of éte/ork
of disease, develop modern therapeutic methods, and figlenti from undesirable to desirable states. This last type ofvetgion is

*to whom correspondence should be addressed

also referred to astructural intervention(Shmulevichet al,, 2002a,
Qian and Dougherty, 2008, Qiat al., 2009).

(© Oxford University Press 2010.



The first strategy requires knowledge of the basin of aivacif steady-state. Moreover, we cast optimal intervention asraex
the desirable steady-state distribution. For large nétsydiinding  optimization problem, thus providing a globally-optimallgion
the basin of attraction of a given steady-state is a comiputaty that can be efficiently computed using standard toolboxes fo
expensive task (Kauffman, 1993, Wuensche, 1998). The deconconvex optimization (Boyd and Vandenberghe, 2003). Inigaler,
strategy minimizes a given cost function by controlling the we no longer need simulation-based or computationallyepgjye
expression level of target genes in the network. In pawdicithis  algorithms to determine the optimal intervention. The eciiét
strategy assumes prior knowledge of the genes to be usedtasico adopted for optimality is designed to minimize potentialerde
agents, and the cost associated with each state of the ketMore effects caused by the intervention strategy. Specificalg, will
importantly, this strategy produces a recurrent contrétpoover a  focus on minimization of the change in the structure of thsvoek
possibly infinite time horizon interval (Datt al., 2003, Pakt al, and maximization of the convergence rate towards the stetady
2005b, Palet al, 2006, Dattaet al., 2007, Faryabkt al, 2008). distribution. We will therefore investigate the followingiteria
Clinically, such an infinite-horizon intervention can bewied as for minimal-perturbation control in the solution of the érge
connecting the patient to an infinitely recurrent feedbachtiol perturbation problem:

loop. If the control is applied over a finite time horizon amer
stopped, the steady-state distribution of the network {aertte the
cell fate) may not change.

The third strategy aims at altering the long-run behavior of
the network or its steady-state distributions. A simulatb@sed
study was first conducted in (Shmuleviet al, 2002a), where
a procedure to alter the steady-state probability of cerstates
was implemented using genetic algorithms. Xiao et al. (Xiao
and Dougherty, 2007) considered an analytical study, where
they explored the impact of function perturbations on the
network attractor structure. However, their algorithme eather
cumbersome as they need to closely investigate the stargeba
before and after perturbations. Moreover, their practisafulness
is limited to singleton attractors, and they do not providstemdy-
state characterization for Boolean networks (Qian and berty,
2008). An analytical characterization of the effect on theady-
state distribution caused by perturbation of the reguat@twork
appears in (Qian and Dougherty, 2008). They relied on thergén
perturbation theory for finite Markov chains (Kemeny and I§ne
1960) to compute the perturbed steady-state distributiora i
sequential manner. They subsequently proposed an intemen
strategy for PBNSs that affects the long-run dynamics of tt@vork
by altering its rule structure. However, they consideredk+a
one perturbations only. The extension of their method tdérig
rank perturbations is iterative and computationally vergemnsive.
Finally, a performance comparison of the above strategieseen  reach a desired stationary distribution. The proposed cagbr
conducted in (Qiaet al, 2009). to the inverse perturbation problem therefore has the fateto

In summary, the first two approaches do not guaranteéaye a wide impact in many applications that rely on dynamic
convergence towards the desired steady-state distiibdfiee third  gystems. Second, unlike the previous work, which is limitegnk-
approach, referred to as structural intervention, aimshtfi the one perturbations, we consider any perturbation that presehe
steady-state mass from undesirable to desirable stateprohosed  jireqycibility of the original network (Qian and DougherB008).
solutions thus far have been limited to either simulatiasdtl  Thirg whereas previous efforts considered unconstraopimal
studies (Shmuleviclet al, 2002a) or special cases (e.g., rank-one niervention strategies, we focus on optimal control sgis,
perturbations) (Xiao and Dougherty, 2007, Qian and Dougher \yhich incorporate (energy and rate of convergence) cansira
2008). In this paper, we provide a general solution to thélera of oy the protocols employed in gene regulation designed toceed
shifting the steady-state mass of gene regulatory netwoddeled  qyerse effects as a result of the intervention strategy.
as Markov chains. We formulate optimal intervention in gene The mathematical notation used in the paper as well as thagpro
regulation as a solution to an inverse perturbation prob&m  of several new results are detailed in the supplementargniabof

e Reduce the level of change in the expression level of specific
genes that are introduced by control agents; that is , we will
minimize the overall energy of change between the original
and perturbed transition matrices as characterized by the
Euclidean-norm of the perturbation matrix.

e Increase the rate of convergence of the network to the
desired steady-state distribution; thus, we will minimthe
time needed to reach the desired steady-state distribason
evaluated by the second-largest eigenvalue modulus of the

perturbed matrix.

This work differs from previous research in optimal struatu
intervention in at least three ways: First, we do not evaluat
the effect of network perturbation on the steady-stateribigion
(Qian and Dougherty, 2009, Qian and Dougherty, 2008, Qian
et al, 2009). Although the subject of perturbation of Markov
chains is a well-studied field, unlike the previous worksorrégd
in the literature, we do not tackle the subject of pertudrati
of Markov chains; instead we propose a new framework for
the solution of the inverse perturbation problem. That ise t
perturbation problem aims to characterize the variationtbie
stationary distribution in response to a perturbation efttansition
matrix (Schweitzer, 1968). The inverse perturbation mohl on
the other hand, investigates the perturbation requiredrderoto

demonstrate that the solution is (i) unique, (ii) globaljytimum, this paper.
(i) non-iterative, and (iv) can be solved efficiently ugistandard
convex optimization methods. The analytical solution tds th
inverse problem will provide a minimally-perturbed Markokain
2 METHODS

characterized by a unique steady-state distribution sporeding
to a desired distribution. Such a strategy introduces alatisd,
one-time intervention that will require a minimal changetire
structure of the regulatory network and converges to a el@sir

We consider a gene regulatory network withgenesgs, - - - , gm,
where the expression level of each gene is quantizéddes. The
expression levels of all genes in the network defines the saattor




of the network at each time step. Gegeevolves according to a
time-invariant probabilistic law determined by the exsien levels
of the genes in the network; i.e.,(@r = xilg1 = 21, ,gm =
Tm), forz; € {0,1,---,1 — 1} andj = 1,...,m. An approach
to obtain the conditional probabilities of the genes froreye
expression data has been presented in &tial.[2002], Shmulevich

et al. [2002d] based on the coefficient of determination DoughertyWhereZ0
et al.[2000]. The dynamics of this network can be represented as %(SXJ)*

finite-state homogeneous Markov chain described by a pilitlyab
transition matrixP, of sizen = . The probability transition
matrix encapsulates the one-step conditional probadslitf the
genes thus indicating the likelihood that the network wilblee
from one state vector to another.

The Markov probability transition matrix, describing the

2.1 TheFeasbility Problem

Schweitzer (Schweitzer, 1968) showed that the ergodiaipmst
matrix P = Py + C possesses a unique stationary distributign
which satisfies

ma = mo(I — CZ) ™, €)
is the fundamental matrix df, given byZo = (I — Po +
L. Equation (3) requires the computation xaf, the initial
undesired steady-state distribution, and the fundamemaiix 2,
which involves the computation of the inverse ofrarx n matrix.
The following proposition shows that Eq. (3) is equivalentat
simpler and computationally more efficient condition.

PropPosITIONL. Consider a stochastia x n ergodic matrixPy

dynamics of the network at the state level, can be shown to bevith steady-state distributiony and fundamental matri%,. If C

related to the actual gene network by observing that thegtnitity
law describing the genes’ dynamics can be obtained as thgimaar
distribution of the state transition probabilities:

Pr(g: = wilgr -+, gm) = 1

ZPI’(g1 =T1, ,0m =Tm|g1- -, Gm),

where Z; denotes the set of alk;'s exceptx;; i.e., Z;
{z1, + ,mi—1,Tit1, - ,zm}. Consequently, if the probability
transition matrix Py is perturbed linearly with a zero-row sum
matrix £ = {e;,;}1<i,j<n, then conditional probability of each
gene Pfg; = zi|g1,--- ,gm) is perturbed linearly b)EjEJ €nj,
whereh is the index of the state vectdyi,- - , g] and J is an
interval isomorphictd1, 2, - - - , 7 }. Thus, we observe that “small”
perturbationse;; < 1 of the probability transition matrix that
satisfy the zero-row sum condi'[ioﬁj’;:1 en; = 0, lead to “small”
perturbations of the genes’ dynamics.

We assume thaP, is ergodic, i.e., irreducible and aperiodic.
Therefore,
distribution are guaranteed. In practice, there are skvast
algorithms for checking irreducibility and aperiodicity graphs
(Sharir, 1981). IfP, is ergodic, then the limiting matriy® =
lim,, o, P} satisfiesPs® = 17§ (Seneta, 2006). In particular, the
rows of the limiting matrix P5° are identical. This demonstrates
that, in the ergodic case, the initial state of the network ha
influence on the long-run behavior of the chain.

DEFINITION 1. A row probability vectoru’ = (p1,- -+, pn) iS
called a stationary distribution or a steady-state distriion for P
if ' Py = pt.

BecauseP, is stochastic (i.e., its rows sum up i the existence
of stationary distributions is guaranteed (Kemeny andISh@60).

Let mo denote the undesirable steady-state distributioR,0fWe
wish to alter this distribution by linearly perturbing theopability
transition matrix P,. Specifically, we consider the perturbed
stochastic matrix

P =P +C, (2

where C' is a zero row-sum perturbation matrix. The zero row-

sum condition is necessary to ensure that the perturbedxmatr
is stochastic. Let us denote by the desired stationary distribution.
We seek to design an optimal zero row-sum perturbation rétri
such that the perturbed matrik is ergodic and converges to the
desired steady-state distributian.

is anyn x n matrix, andr, any probability distribution vector, then
we have
74 =7H(I — CZy) ™" = w4(Po + C) = mh. 4)

In the gene regulatory control problem, we are interestetthén
inverse perturbation problem. Namely, given the desiratistary
distribution, w4, we wish to determine a perturbation matiix
that satisfies Eq. (4). Notice that there may be multiple tsmis
to Eq. (4); i.e., different perturbation matricéscould lead to the
same desired stationary distribution. The problem of figdire set
of perturbation matrices satisfying Eq. (4) can be fornedais the
following feasibility problem.

The feasible set of the control probleniven an ergodic network
characterized by its probability transition matri, with stationary
distributiono, and given a desired stationary distributian, then
the set of perturbation matrice§’, which force the network to
transition frommr to 74 satisfy the following constraints:

the existence and uniqueness of the steady-stat

(i) mh = my(Po + C), (ii) C1 =0, (iii) Py +C > @)

Constraints(iz) and (zi7) ensure that the perturbed matixis a
proper probability transition matrix: constraifit) imposes that the
perturbation matrixC' is zero-row sum, and hence the perturbed
matrix P is stochastic, and constraifitii) requires the matrix”

to be element-wise non-negative. LBtdenote the feasible set of
perturbation matrices, i.e.,

D={C eR"™" 1} =i (P,+C),C1 = 0, P,+C > 0}. (6)

D is a polyhedra as the solution of a finite number of linear
equalities and inequalities (Boyd and Vandenberghe, 2003)

is easily shown that polyhedra are convex sets (Boyd and
Vandenberghe, 2003). Observe thHatis non-empty because it
contains the perturbation matrtX = 17}, — P,.

Observe that there are numerous (possibly infinite) peatiob
matrices C which can force the network to transition from an
undesirable steady-state to a desirable one. All such nbattans,
in principle, constitute plausible control strategies aad therefore
be used to drive the network from one steady-state to another
We impose the minimum-energy and fastest convergence rate
constraints in order to limit the structural changes in teémvork
and reduce the transient dynamics after perturbation.




2.2 The Minimal-Intervention Problem with variablest € R andC' € R"*™. The problem (10) is readily

Because the feasible set, defined in Eq. (5) is non-emptye the ransformed to a SDP standard form, in which a linear fumctso
exists at least one perturbation mat€ix which forces the network m|n|m|z_ed, subje_ct to a linear matrix inequality and lineguality
to converge to the desired distribution. A natural questoises constraints. We first observe that, from the Schur complénves
then: “Which perturbation matrix should we choose?”. Inctice, ~ have

we are interested in perturbation matrices, which incatfeor

specific biological constraints; e.g., the potential siffieats on the o =T (andt > 0) <= < gt tc; ) = 0. (11)
patient, and the length of treatment. We translate thesialions

into the following optimality criteria. . e . . .
gop y The inequalities in (10) can be expressed as a single lineftixm

'Wequality by using the fact that a block diagonal matrixdsifive-

2.2.1 Minimal-perturbation energy controlThe minimal perturbatio
P 9y o semi-definite if and only if its blocks are positive semi-déé.

energy control is defined by minimization of the Euclideamm
of the perturbation matrix. It corresponds, biologicalty the

control which minimizes the overall “energy” of change beém Minimize ¢
the perturbed and unperturbed gene regulatory networke Th tl C 0
Euclidean- or spectral-norm @f is defined as subject to ct ot 0 =0 (12
0 0 vedPo —+ C)
[Cll = max{[|Cx|| : x € R, ||x|| = 1} @) R (P4 C) =l C1=0
= V2max(C'C) = max < C'Cx,x >, (8)

At this stage, it is important to notice that we can similarbnsider

where Amax(C*C') > 0 is the highest eigenvalue of the positive- the L1 norm to produce a sparse perturbation matrix (Boyd and

semi-definite matrixC*C', and <,> denotes the inner product Vandenberghe, 2003).

operator. The minimum perturbation energy control can be

formulated as the following optimization problem: 2.2.2 Fastest convergence rate contrdh clinically-viable

optimality criterion is to select the perturbation thatigiethe fastest

convergence rate to the desired steady-state distributienknow

that the convergence rate of ergodic Markov chains is getenet

with parameter given by the second-largest eigenvalue hasdu

whereD is the feasible set in Eq. (6). (SLEM) of the probability transition matrix (Seneta, 2008he
The optimization problem formulated in Eq. (9) is a convex small!er. the S.LE.M’ .the faster the Markov chain converges 4o it

optimization problem. A convex optimization problem is defi ~ €duilibrium distribution. The fastest convergence ratatas can

as one that satisfies the following three requirements: Ifa) t P€ casted as the following optimization problem:

objective function is convex; (b) the inequality consttdimctions  pastest convergence rate control

are convex; and (c) the equality constraint functions afmeaf

(Boyd and Vandenberghe, 2003). A fundamental property o¥eo Minimize SLEM (P, + C) subjectto C' € D, (13)
optimization problems is that any locally optimal point is@a

globally optimal. Moreover, because the Euclidean-norstristly where D is the feasible set in Eq. (6). Observe that for a

co:lvex, the optimal sotl1ut|0n ISunique. bl _general (non-symmetric) matrix, about the only charaz#tion
ext, we express the convex optimization problem as a semig¢ o eigenvalues is the fact that they are the roots of the

defipite programming (SDP) problem, which can be solved .5 qteristic polynomial. Therefore, the objective fiortin (13)
efficienty using standard SDP solvers, such as SDPSOL (Wi aNis not necessarily convex, and thus the optimization prab&enot

Boyd, 1996), SDPpack (Alizadett al,, 1997) and SeDuMi (Sturm, convex.

1999)' ,A list of 16 SDP solvers can be found at the SDP website The following obvious proposition determines the optinzatést
maintained by Helmberg (Helmberg, 2003). We can thus rely onconvergence rate perturbation matrix.

SDP solvers to efficiently compute the optimal perturbatain

Boolean gene networks consisting of 10 to 15 genes 2ie. = PROPOSITION 2. The optimal solution of the optimization
1024 to 2" = 32768 states). Note, however, that the computational problem in (13) is given by

efficiency of SDP solvers for larger networks will be lower.

Minimal-perturbation energy control

Minimize |C||> subjectto C € D, 9)

* t _
Semi-definite programming formulatiarsing the fact that C" =1mg — Po. 14
ICll2 <t <= C'C = t’I, t>0, The optimal SLEME, + C*) = 0.
we can express the problem in Eq. (9) in the following form That is the perturbatiod™ reaches the desired state in a single
jump.
Minimize t The fastest convergent perturbation may, however, resalldarge

energy deviation between the original and perturbed nédsvdiext,
we will investigate the tradeoffs between minimal-enengg tastest
Ty(P+C) =75 C1=0 convergence criteria.

subjectto C'C < t°I, Py+C >0 (10)
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Fig. 1. The Human melanoma gene regulatory network: (a) Plot of SLEM)) in Eq. (17) (blue continuous line) and SLEK)(s)) in Eq. (22) (red dashed
line) versuss; (b) Plot of ||C(s)|| in Eq. (16) (blue continuous line) arjfCo (s)|| in Eq. (21) (red dashed line) versus(c) Plot of ||wq(s) — 74| (blue
continuous line), and the upper bouﬁ@:—;)ﬂwo — 74| (red dashed line) versus < s < 1, in Proposition 5. The tradeoff between minimal-energy and
fastest convergence rate control is clear from (a) and (bg Jarameterized family of perturbed matrid@és) in Eq. (15) results in a faster convergence
towards the desired steady-statg at the expense of a higher norm (energy) of the perturbatiattixn On the other hand, the family of perturbed matrices
Q(s) in Eq. (20) leads to a perturbation matrix with norm (energypmall as desired, but at the expense of not convergingdewlae desired steady-state
for smalls. The distance between the steady-stat€) of) and the desired steady-state as a functiomisfshown in Figure (c).

2.2.3 Tradeoffs between minimal-energy and fastest cgexee
rate control We denote byPj; the minimal-energy perturbed
matrix, i.e., Py C% + Py, where Cg is the solution of
the SDP problem in (12). Let us consider the family of magice
parameterized by, along the line betweer; and the fastest
convergent matrid 5,

P(s) = (1 — s)Pj, + slmh. (15)
Equation (15) can be thought of as a continuous transfoomaf
P} into 175, The perturbation matrik’(s) = P(s) — Py is then
given by

C(s) = Py — Po + s(1my — Pp). (16)

It is easy to check that'(s) € Dforall0 < s < 1. Whens = 0,
we obtain the minimal energy perturbation, and wkes 1, we
obtain the perturbation that results in the fastest correrg rate
towards the desired steady-state. Wher s < 1, we will show
that we have an inherent tradeoff between minimizing thegne
and maximizing the convergence rate.

We say that the vectdtris a non-trivial eigenvector of a stochastic
matrix P if f is not proportional to the vectat. The following
proposition provides an explicit expression of the SLENMRgk).

PROPOSITION3. A is an eigenvalue ofP(s), 0 < s < 1,
corresponding to a non-trivial eigenvector if and onlyuif= ﬁ
is an eigenvalue oP;; with a non-trivial eigenvector. In particular,
we have

SLEM(P(s)) = (1 — s) SLEM(P). 17)

The following proposition shows that the spectral-nornCif)
is an increasing function of.

PrRoOPOSITION4. ||C(s)|2, whereC(s) is given by Eq. (16), is
an increasing function of, forall 0 < s < 1.

From Proposition (3), it follows that when increases, the
SLEM of the perturbed matrix decreases, and hence the geves

Proposition 4, the norm of the perturbation matrix, and lkenc
the energy deviation between the original and perturbedarés,
increases as a function of Therefore, we have an inherent
tradeoff between the energy of the perturbation matrix drel t
rate of convergence. The faster we converge towards theedesi
steady-state, the higher the energy between the initiapartdrbed
networks.

We would, therefore, like to find the optimal tradeoff pebation
matrix. Specifically, we determine the optimal perturbatioatrix,
which minimizes the SLEM while keeping the energy bounded.
Such a constraint can be imposed, for instance, to mininfize t
side effects due to the rewiring of the original network. Bpéimal
tradeoff problem is readily written as the following optiration
problem:

Minimize SLEM (P, + C)

subjectto ||Cll2 <¢, C €D, (18)

wheree > ||C%|| is a given threshold. We consider the solution to
the optimization problem in (18) along the line defined in Edp).

A local minimum of the optimization problem in (18) might not
belong to the family{ P(s)}.c(o,1]. However, the line search seems
a reasonable choice, and presents several advantagégrdyides

a closed-form expression of the SLEM Bf(s) forall 0 < s < 1;

(ii) Contrary to most eigenvalue problems, which are nuoahy
unstable, the line search has an explicit formula, and hémce
numerically stable; (iii) it describes a linear behaviottwd optimal
solution.

It is straightforward to see that the optimal tradeoff peraion
matrix on the line, defined by Eq. (15), is given by = C(s"),
where s* is the unique solution td|C'(s*)|| = e. However,
the optimal tradeoff perturbation matrix requires a nucsdri
computation of the minimal energy perturbed matfix;||. More
importantly, if the bound on the energy< ||C%||2, then we have
no solution for the problem (18). Indeed, in some cases, vghimi
want to constrain the energy of the perturbation maffixo be no

(towards the desired state) is faster. On the other handn fro larger than a “small” specified threshold (i.e.,< ||C%x]|2). We




will show that, in this case, we might not be able to reach the3 OPTIMAL INTERVENTION IN THE HUMAN

desired steady-state distribution. Intuitively, if theeegy of the
perturbation matrix is constrained to be too small, then vighin
not be able to force the network to transition from one stestdye
to another. In this case, we will quantify how far we are frdm t
desired steady-state.

Mathematically, the general energy constrained optirionat
problem can be formulated as follows

Energy-constrained fastest convergence rate control
Minimize SLEM (P, + C)
subjectto ||C|l2 <€, C1=0, (P,+C) >0,

(19)

wheree > 0. Observe that the optimization problem in (19) is
different from the problem in (18) in two points: First, theund

€ can be any non-negative number. Second, the perturbatitixma
C does not necessarily belongZa Observe that the optimization
problem in (19) is not a convex optimization problem as th&BIL
of a general (non-symmetric) matrix is not necessarily ean¥\e
will look for a solution on the line betweeR, and 17}, i.e., we
consider the family

Q(s)= (1 —8)Py +slmy, 0<s<1. (20)
The perturbation matrix(, is therefore given by
Co(s) =Q(s) — Po = s(1mly — Py). (21)

In particular, the norm|Cqll2 = s||17; — FPo||2 can be made
arbitrarily small by choosing a small On the other hand, it is easy
to see that

SLEM (Q(s)) = (1 — s) SLEM (). 22)

The proof of Eq. (22) follows the same steps of the proof of
Proposition 3. Therefore, it seems that the famit9(s) }o<s<1
provides a perturbation matrix with an arbitrarily smalleegy,
and an explicit formula for the SLEM of the perturbed network
as a function of the SLEM of the original network. The drawbac

however, is that)(s) does not necessarily converge to the desired

steady-state distribution. The following proposition gtifes the
difference between the steady-stateXifs) and the desired steady-
statery.

PrRoPOSITIONS. The family of matrice§(s), given in Eq. (20),
is ergodic for all0 < s < 1, and therefore converges towards a
unique steady-state distribution;(s) given by

ma(s) = s(1—8)(I—(1—38)P3) " " Pi(ma—m0)+ (1 —8)mo—+ s74.

(23)
That is
7Td(8) — TTd = (1 — 8) ([ — S(I — (1 — s)Pé)flPS) (ﬂ'o — 7Td).
(24)
Furthermore, we have
[7a(s) — mall < A(Po)(1 = s)|[mo — 7all, 0<s<1, (25)

whereA(Po) = 1+ supy, || P[|2, which is finite becausgy has

alimitask — oc. If Py is symmetric, then we have a simpler upper

bound given by
[ma(s) — mall < 0<s<1l  (26)

[lmo — mall,

2(1—s)

From Proposition 5, it is clear that when— 1, m4(s) — 7q.

MELANOMA GENE REGULATORY NETWORK

The inverse perturbation control is applicable in every egen
regulatory network that can be modeled as a Markov chain. In
particular, we note that two of the most popular gene regnjat
network models, Probabilistic Boolean Networks (PBNs) and
Dynamic Bayesian Networks (DBNs) can be modeled as Markov
chains (Lhdesmkiat al., 2006). In this paper, we consider the
Human melanoma gene regulatory network, which is one of
the most studied gene regulatory networks in the litera{ia

et al, 2006, Dattaet al, 2007, Qian and Dougherty, 2008). The
abundance of mRNA for the gene WNT5A was found to be highly
discriminating between cells with properties typicallysasiated
with high versus low metastatic competence. Furthermote, i
was found that an intervention that blocked the Wnt5a pnotei
from activating its receptor, the use of an antibody thatdbin
the Wnt5a protein, could substantially reduce Wnt5A's igbiio
induce a metastatic phenotype (R#lal, 2006). This suggests a
control strategy that reduces WNT5A's action in affectingjdyical
regulation.

A seven-gene probabilistic Boolean network model of the
melanoma network containing the genes WNT5A, pirin, S100P,
RET1, MART1, HADHB, and STC2 was derived in (Pel al,
2005a). Figure 2(a) illustrates the relationship betwesreg in the
Human melanoma regulatory network. This diagram is a cdneép
abstraction and is not intended as an explicit mechanisiigram
of regulatory actions. The influences depicted may be thdtres
many intervening steps that are not shown. Some generatizat
that emerge from this conceptual diagram, such as the wide
influence of the state of WNT5A on the states of other geneg ha
been confirmed experimentally (Kimt al., 2002). Note that the
Human melanoma Boolean network consist2bf= 128 states
ranging from00---0 to 11---1, where the states are ordered as
WNTS5A, pirin, S100P, RET1, MART1, HADHB, and STC2, with
WNT5A and STC2 denoted by the most significant bit (MSB) and
least significant bit (LSB), respectively. The probabilitgnsition
matrix of the Human melanoma network, derived in (Ztedal,,
2004) and used in this paper, is courtesy of Dr. Ranadip Pal.

A naive control strategy, which would exclusively targee th
gene WNT5A by reducing its expression level while keeping th
expression levels of the other genes in the network uncliange
inevitably fail as it basically resets the initial state lo&tunderlying
process and does not alter the network structure. Biolbgidhe
complex gene interactions in the network will almost cetiai
bypass this gene perturbation and return to their initialceaous
state. On the other hand, determining the optimal genevieréion
by a brute-force approach is computationally intractabtel a
experimentally infeasible: Even within the context of Beenh
regulation (two-level quantization), the number of expemts
to perform increases exponentially in the number of genes in
the network. For instance, in tHegene melanoma network, an
extensive control search amounts to perform}i@g6 laboratory
experiments; i.e. downregulate and upregulate the expreksvel
of every gene, every pair of genes, every triple of genes, etc
thus requiring>";_, (5)2* = 2186 laboratory experiments. The
proposed inverse perturbation control provides the optime-time
intervention that rewires the network in order to force ittmverge
to the desired steady-state.
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Fig. 2. Optimal intervention in the Human melanoma gene regulatetyork: (a) An abstract diagram of the melanoma gene regylaetwork (Kimet al,,
2002): Thicker lines or closer genes are used to convey agaraelationship between the genes. The notion of straefggtion between genes is used convey
a higher probability of influence on their gene expressiorle For instance, WNT5A and pirin have a strong relatigngheach other as illustrated by their
proximity in the diagram and the thickness of the lines cating between them; (b) The original (red line), desiredi¢bline), and minimal-perturbation
energy controlled (green line) steady-state distribtiohthe Human melanoma gene regulatory network. iHaeis represents the 128 states of the network
ranging from00---0 to 11---1, and they-axis indicates the probability of each state. Note thatchetrolled and desired steady-state distributions are
identical.

Using the breadth first search algorithm (Russell and Norvig The minimal-energy perturbed matrix, which optimally ssv
2003), we found that the melanoma probabilistic Booleawogt  the SDP problem in (12), i§C%|l2 = 1.20667 and its SLEM
is irreducible. Therefore, it has a unique stationary istion, = 0.4696. We have shown that the optimal SLEM of the fastest
and we can apply the inverse perturbation control develdped convergence rate control is equal to 0, and its energy isndge
this paper. Because the control objective is to downregulae  ||C||2 = |17 — Po|l2 = 1.81854. The SDP problem has been
WNT5A gene, we consider the desired steady-state disimiibut implemented in MATLAB and uses the CVX software for convex
where the probability of the states having WNT5A upreguldte  optimization (Grant and Boyd, 2010).
10~ and the probability of the other states, which correspond to The mathematical findings derived were confirmed by computer
WNT5A downregulated is set equal 0015525 (see Fig. 2(b)). simulation experiments by demonstrating that the optimal
Observe that the states from 0 to 63 have WNT5A downregulategherturbation of a known melanoma gene regulatory netwakide
(0) and hence are desirable states, as compared to states 64tb a desired stead-state. In order to reach the full impadhef
127 that have WNT5A upregulated (1) and hence are undesirabl proposed research on gene regulation in biological systemplan
The probability transition matrices of the Human melanomato investigate changes in the cell that induce the optimetlipeed
networks corresponding to the original and perturbed nédsvare  transition matrix. In particular, our current and future rivavill
portrayed in Fig. 3. Observe that the family of perturbedrives  focus on determining the optimal biological design rulesdezl
{P(s)}scpo,1), defined in Eq. (15), converges towards the desiredto induce the optimal intervention strategy while limitiogrselves
steady-state distribution,, in the sense thaP(s)” — 1r} as  to biologically-viable design rules that rely on modern hogts for
n — oo. On the other hand, the family of matric€Xs), defined = molecular control in cellular systems.
in Eq. (20), does not converge to the desired distributign for
0 < s < 1. Figure 1(c) shows the norm difference between the
steady-state distributio_n a@d(s), ma(s), andmq as a function of 4 CONCLUSION
s. As the parametes increases,mq4(s) — mq. The advantage ) ) o
of considering the family{Q(s)} resides in the ability to design !n this paper, we introduced a novel method for pptlmal wetation .
perturbation matrice§'(s) with arbitrary small norms (energy) (see N gene regulatory networks posed as an inverse perturbatio
Fig. 1(b)). This is in contrast to the family(s)} where the norm  Problem. The optimal perturbation has been derived sudhtliea
of the perturbation matrices is lower bounded by the minierargy regulatory network will transition to a desired stationamysteady-
perturbation matrix norjC’ ||. The tradeoff between the minimal-  State, distribution. Biological evidence suggests thatdy-state
energy and fastest convergence rate is depicted in Figanda)(b). distributions of molecular networks reflect the phenotypthe cell.
The steady-state distribution of the Human melanoma nétwbr N other words, both malignant (e.g. cancer) and benign gtypes
the original and perturbed networks are shown in Fig. 2. &ese correspond to steady-state distributions in dynamic systedels
that the after-control steady-state is identical to thérddssteady- ~ Of gene regulatory networks.

state. Therefore, the control has enabled us to shift tizeigtstate ~ We developed a mathematical framework for the solution ef th
probability mass from the undesirable states to states hwler ~ inverse perturbation problem for irreducible and ergodiarkév
metastatic competence. chains. Our aim was to derive a minimal-perturbation irgation

policy designed to introduce an isolated, one-time intetioa
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Fig. 3. Initial and controlled probability transition matrices the Human melanoma gene regulatory network: The matris i@ obtained using the function
MatrixPlot in MATHEMATICA. They provide a visual representation of tkielues of elements in the matrix. The color of entries vafiesy white to red
corresponding to the values of the entries in the rangetofl: (a) the probability transition matrix of the original metama networkP,, which converges
towards an undesirable steady-state distribution; (bjtinémal-energy perturbed probability transition matf?g,; (c) P!°; (d) the fastest convergence rate
perturbed probability transition matrikr?; (€) P(0.1) in Eq. (15); (f) P(0.9) in Eq. (15); (g)P(0.1)19; (h) P(0.9)'°; (i) Q(0.1) in Eqg. (20); ()Q(0.9) in
Eg. (20); (KQ(0.1)1°; (1) Q(0.9)0. Observe from (c) and (g) thd?}, and P(s) “converge” towards the desired steady-state distributiprwhereas) (s)
“converges” towardsr; only for s = 1.

and induce few changes in the original network structureisth Dr. S. Friedland from the University of lllinois at Chicagorf
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SUPPLEMENTAL FILE
5 MATHEMATICAL NOTATION
In this paper, we consider real variables. We Bs& denote the

set of real numbers. Scalars are denoted by lower casesletter

e.g., s,t. Vectors inR"™ are denoted by either bold letters and
numbers, or lower-case Greek letters, elgx, =, wherel denotes

a vector all of whose components are equal to age.denotes
the transpose of the vectot. The notationz; refers to theith
component of the vectot. Matrices inR™*"™ are denoted by either
capital letters or upper-case Greek letters, e§.P, A. I stands
for the identity matrix. IfP € R™*", thenvec(P) transforms

¢ = 1) + cl, that satisfied(s)¢ = (1 — s)u¢. We have
P(s)¢p = P(s)y+cl (29)
= (1—-s)mp+sapl+cl (30)
= (1- )+ (say +c— (1-s)uc)l, (31)

where Eq. (29) follows from the fact thd®(s) is stochastic, i.e.,
P(s)1 = 1, and Eg. (30) is obtained by replacifg(s) by its
expression in Eq. (15). Therefore, if we chase= “i‘# we
obtainP(s)¢ = (1 — s)ug.

Letnow¢ = a1+ ¢ be a non trivial eigenvector df(s) with

P into an nm-dimensional vector by stacking the columns. The eigenvalue\. In particular,g® # 0. We first show thah # (1 —s).

equality and inequality symbolss, < and > denote component-
wise equality and inequality, respectively, for arrays lod same
size. For example, i€ is anm x n matrix, thenC' > 0 denotes the
mn inequalities: each element of the matéikis nonnegative. The
curled inequality symbolsz, <, >, >, denote generalized matrix
inequalities associated with the positive semi-definiteecd hat is,
if A, B € R" ", thenA = B (resp.,A = B) means thati — B is
positive-semi-definite (resp., positive definite); aad< B (resp.,
A < B) means thatl — B is negative-semi-definite (resp., negative
definite). We recall that a matriA € R™*" is called positive-semi-
definite (resp., positive definite) #'Ax > 0 (resp.,x'Ax > 0)
for all x € R™ (resp.,x # 0). If —A is positive semi-definite
(resp., positive definite), ther is called negative semi-definite
(resp., negative definite).

PROOF OFPROPOSITIONI.

nh=mo(I —CZy)~"

— 74l —CZ) — 75 =0
= [ra(l —CZo) — 7] Zy ' =0 (27)
= m(I-Po+P)—mC —m(I—Po+P5)=0
= (nh—7hPy+ 7)) — whC — (wh — w6 + 7h) (28)
— ma=my(Po+C),

where Eq. (27) follows from the fact thdf, is invertible, and

Eqg. (28) follows from the propertiest} P} = wilnh = =f;
w6 Py = wb; andn{ P = 7.

PROOF OFPROPOSITION2. It is straightforward to check that
the perturbation matri’ = (17, — Py) € D. That is we have
(i) 7y = wh(Po + O); (43) C1 = 0; (iii) Py + C > 0. Moreover,
the perturbed matrix?y + C = 1z, is a stochastic matrix with
rank one. Therefore, it has a simple eigenvalue 1 correspgnd
eigenvectorl, and eigenvalue 0 with multiplicity — 1. Hence, its
SLEM =0.

PROOF OFPROPOSITION3. For any vectoff, we introduce its
unique direct sum decompositidn= a1 + f+, wherea; = 74f
andft L7y. Itis easy to check that" is proportional tol if and
only if f+ = 0.

Lety = ay1 + 9~ be a non-trivial eigenvector (i.e # 0)
of Pz with eigenvalueu. We will look for a vectorg, in the form

From Eq. (15), we have

P(s)p = (1—38)Ppo+sagl (32)
= (1—8)Pp¢" + (1 — s)agl + sagl. (33)
On the other hand, ik = 1 — s, then we would have
P(s)p = (1—s)¢ (34)
= (1—-s)agl+(1—s)p". (35)
By equating Egs. (33) and (35), we obtain
Ppot = ¢t - 2201 (36)
It follows that, for any positive integerwe have
*Jd) *(] 1)¢ 1SOL¢ 1. (37)
— S

Taking the limit asj — oo, and becausé&’;; is ergodic, we get

PE*¢* = PE¢t — 2201,

T (38)
Thus, sas = 0, which implies, from Eq. (36), thaPp¢™ = ¢*.
Hence, ¢ is an eigenvector of?;; corresponding to eigenvalue
1. Therefore,¢ must be proportional td. We recall thatp™
is proportional tol if and only if ¢~ = 0. This results in a
contradiction because of the fact that # 0. Therefore, we
conclude that # 1 — s.

Now, we considetx # 1 — s, we will find + in the form«y =
¢ + c1, that satisfied’;y = 2. We have

Py = Ppp+cl (39)
= A 2214l (40)
_ A s
= (— T c—1_8—|—c)1, (41)

where Eq. (39) follows from the stochasticity & and Eq. (40)
is obtained by replacin@’;; by its expression in Eq. (15) and using
the fact thatp is an eigenvector aP(s) with eigenvalue\. Finally,
Eq (41) follows by replacmgﬁ 1/; — c1. Therefore, if we chose
, We obtainPgvy =

1— 1—s
PROOF OFPROPOSITION4. HC(S)HQ is a convex function in
s, which reaches its minimum at = 0. Therefore, it must be

increasing fors > 0 (Boyd and Vandenberghe, 2003).
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We also provide an alternative proof as follows: let= Py, — P,
andB = 17}, — Pj. Then, from Eq. (16),
C(s) = A+ Bs. (42)
By construction, we have for a#l > 0,
IC(s)ll2 > 1PE = Poll2 = [C(0)]|2 = [|All2 <= (43)

IlllléTiX < (A+sB)'(A+sB)x,x >> 1\1\11}( < A'Ax,x >,
x:||x||=1 x 1

where the right hand side equivalence follows from the didimiof
the spectral norm given in Eq. (8). Let be such thaf|xs|| = 1
and

max < (A+sB) (A+sB)x,x >=< (A+sB)" (A+sB)xs,xs > .

x:||x||=1
(44)
Then,
< (A—|—sB)t(A+ sB)xs,xs > > < AT Ax, x>, (45)
which means
< (A'B+ B'A + sB'B)x,,xs >> 0. (46)

Let 5 > s. We need to show that

max < (A+3B)"(A+35B)x,x >>< (A+sB)' (A+sB)x,, x5 > .

x|l =1
(47)
It is sufficient to show that

< (A4+3B)"(A+3B)xs,xs >>< (A+sB) (A+5B)xs,xs > .
(48)
But,

< (A+3B)(A+5B)xs,xs > — < (A+sB)" (A + sB)xs,xs >
=(5—5) < (A'B+B'A+sB'B+ 3B'B)xs,xs >,
which is positive because of Eq. (46).

PROOF OFPROPOSITIONS. For0 < s < 1, we have the
following three properties

ma(s)"Q(s) = ma(s)" (49)
ma(s)1 =1 (50)
ma(s) > (51)

BecauseQ(s) is ergodic, we know that suchgy(s) exists and is
unique. Let

¢ = ma(s) = (1 = s)70 + s7a). (52)
Then, we have
#'Q(s) = ma(s)' — (1 —s)’mh — (53)
s(1—s)mhPy — s(1 — s)mly — s°m
= @' +5(1—s)(mh —15P) (54)
= ¢" +s(1—s)(m; — ma) Po, (55)

where Eq. (55) follows from the fact that, P, = ={. Next, we
notice thaip’1 = 0. Thus, from Eq. (20), we obtain

¢'Q(s) = (1= 5)¢' R. (56)
By equating Egs. (55) and (56), we obtain
$'[1 — (1 - s)Po] = s(1 - s)(xh —we)Po.  (57)

Observe that fos > 0, 1 is not an eigenvalue dfl — s)P. Hence,
I — (1 - s)Pyisinvertible, and we have

¢ =s(1—s)I—(1—s)P}] " Pi(ra — o). (58)
From Eq. (52), we have
Wd(s)—ﬁd:¢+(1—8)(7ro—7rd). (59)

Replacingy by its expression in Eq. (58), Eq. (59) can be written as

ma(s) —ma=(1—s) (I —s(I—(1— s)Pé)%Pg) (mo — mq).
(60)
That is, by factoring by{/ — (1 — s)P¢) ™1,
ma(s) —ma = (1 =) (I — (1—8)P5)~ (I — Pg)(mo —ma). (61)

If Py is symmetric, then by the spectral theorem we higie||> =
Amax(FPo) = 1, and by the triangle inequality,

_ 2
(L= 9)P) (1 = P2 < 50—,

(I - 2

and thus

[l7a(s) — mall < lmo — mall-

2(1 —s)
2—s
In the case of a non-symmetric matriX,, we use geometric

progression:

[I—(1-s)P (62)

il—s t
k=0

We note that the last series is convergent for@nry s < 1 because
P¥ has alimit asc — co. Equation (60) becomes then

oo

—sZ 1—8 P) kH) (mo — ma).

(63)
By noting thatsup,.., [|Py|l2 = sup,, [[(P5)" |2 is finite, we
have the desired upper bound pry(s) — 7al.

ma(s) —mqa = (1 —s) <
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