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Abstract—This paper presents a new level set method for
image segmentation by integrating the level set formulation
and the non-negative matrix factorization (NMF). The proposed
model characterizes the histogram of the image by dividing the
image into blocks and computing the histograms of the blocks as
nonnegative combinations of basic histograms. This is achieved
by using the NMF algorithm. The basic histograms form a
clustering of the image into distinct regions. Our model also
takes into account the intensity inhomogeneity or the bias field
that usually corrupts medical images. In a level set formulation,
this clustering criterion defines an energy in terms of the level
set functions that represent a partition of the image domain.
The image segmentation is achieved by minimizing this energy
with respect to the level set functions and the bias field. Our
method is compared, using synthetic and real images, to other
state-of-the-art level set approaches that are based on localized
clustering and local Gaussian distribution fitting. It is shown that
the proposed approach is more robust to noise in the image and
intensity inhomogeneity. These advantages stem from the fact
that the proposed model i) depends on the distribution of pixels
intensities (the histogram) rather than the direct intensity values
and ii) does not introduce additional model parameters to be
simultaneously estimated with the bias field and the level set
functions.

I. INTRODUCTION

Segmentation of medical images is playing an important
role in various medical applications, including quantification
of tissue volumes, localization of pathology and computer-
integrated surgery. It remains, however, that medical image
segmentation is a challenging problem due to the complexity
of the anatomical structures, noise from image acquisition and
sampling artifacts and intensity inhomogeneity or bias field.
These challenges make the classical segmentation techniques,
such as thresholding [1], edge detection [2] and region growing
[3], ineffective at accurate delineation of complex boundaries.

Active contours, also known as snakes [4], are curves
defined within the image that can evolve and deform within
the image until they lock onto the objects boundaries. The
active contour is represented in a parameterized form by a
set of contour points that are propagated under the influence
of an internal and an external energy. The internal energy
maintains the smoothness of the contour by imposing relevant
smoothness and geometrical constraints. The external energy
is computed from the image domain and attracts the con-
tour towards the regions boundaries in the image. However,
the major drawback of the active contour model lies in its

parametric representation. In particular, the contour cannot
handle topological changes in the image. For instance, when
the contour merges and splits to fit the boundaries in the image,
we need to track the contour points and check their orders.

The level set method (LSM) proposes a geometric rep-
resentation of the contour [5]. Specifically, the contour is
represented by defining a higher-dimensional function, referred
to as the level set function, and then representing the contour
as the zero level of this function. Instead of tracking the
contour points through time, the level set method evolves the
contour by updating the level set function through time. In
particular, since the level set does not have any contour points,
the merging and splitting of the curve are done automatically
and there is no need to track the contour points and their orders
during the propagation. The internal and external energies, in
the level set approach, are defined in a similar manner as in
the active contour method. The advantage of the level set and
active contour methods, known as deformable models, is that
their continuous formulation can achieve pixel-level accuracy,
a highly desirable property in the segmentation of medical
images.

Recent work on the level set approach took into account the
intensity inhomogeneity by defining a local clustering criterion
for the image intensities in a neighborhood of each pixel
[6]. This local clustering is then integrated with respect to
the neighborhood center to give a global criterion of image
segmentation, and serve as the external energy term of the level
set formulation. Using a similar approach, which clusters the
image pixels in a smaller neighborhood, Chen et al., adopted
a statistical approach, where the local intensity variations
are described by Gaussian distributions with different means
and variances [7]. The localized level set method (LLSM)
in [6] and the local Gaussian distribution fitting (LGDF-
LSM) in [7] have additional nuisance parameters that must
be iteratively estimated along with the level set function and
the bias field, which are the parameters of interest to the
segmentation problem. In the localized LSM approach, the
local means of the intensity values in every region have to
be estimated along the bias field and the level set function.
Similarly, the LGDF-LSM involves simultaneous estimation
of the means and standard deviations of every local neighbor-
hood. Given the high-dimensionality and non-convexity of the
variational optimization problem, these additional parameters
are estimated in an iterative procedure that does not guarantee
convergence or optimality of the results [6], [7]. Hence, an



imminent drawback of these two state-of-the-art approaches
is the number of nuisance parameters that are introduced
and must be simultaneously estimated, which decreases the
estimation accuracy of the main segmentation parameter: the
level set functions.

In this paper, we propose a new region-based level set
method that is also able to take into account the intensity
inhomogeneity, but does not require the estimation of nuisance
parameters in addition to the bias field and the level set
function. Moreover, the proposed level set approach uses
pixel intensities distribution (histogram) clustering, and also
provides a local statistical characterization of the image. This
is achieved by integrating the probabilistic non-negative matrix
factorization (PNMF) framework [8] into the level set formu-
lation. Specifically, the image is divided into m blocks, and the
histogram of every block is computed. An n×m data matrix V
is then created whose columns are the histograms of the image
blocks, and n is the number of intensity bins. We show that the
PNMF decomposes the histogram matrix V into a mixture of
k ≤ m basic histograms using the factorization V ≈ WH .
The columns of the factor matrix W consist of the basic
histograms of the k regions (to be segmented) in the image.
We subsequently model the pixel intensities in every image
region using a Gaussian distribution whose mean and variance
are given by the mean and variance of the corresponding basic
histogram in the factor matrix W . In addition, the bias field
is added as a multiplicative factor for each pixel to handle
intensity inhomogeneity. The maximum a posteriori probability
of the image regions given the pixels intensity values defines
the external energy functional of the level set formulation.

This paper is organized as follows: Section II reviews the
framework of the level set formulation. Section III introduces
the proposed PNMF-based level set approach. In Section IV,
we provide and discuss the simulation results based on syn-
thetic and real brain MRI images. Then the main contributions
of this paper are summarized in Section V.

II. THE LEVEL SET FRAMEWORK

A. Mumford-Shah Model [9]

Let Ω be the image domain, and I : Ω → R be a
gray-value image. The goal of the segmentation is to find a
contour C, which separates the image domain Ω into disjoint
regions Ω1, · · · ,Ωk, and a piecewise smooth function u that
approximates the image I and is smooth inside each region
Ωi. This is formulated as the minimization of the following
Mumford-Shah (MS) functional:

FMS(u,C) =

∫
Ω

(I − u)2dx+µ

∫
Ω\C
|∇u|2dx+ ν|C|, (1)

where |C| is the length of the contour C. In the right hand
side, the first term is the external energy term, which drives u
to be close to the image I , and the second term is the internal
energy, which imposes smoothness on u within the regions
separated by the contour C. The third term regularizes the
contour. The MS model is very general and does not assume a
specific form for approximating the function u. It also assumes
that the objects to be segmented are homogeneous.

B. Chan and Vese Model [10]

Chan and Vese simplified the Mumford-Shah model by
assuming that the approximating function u is piecewise
constant:

FCV (φ, c1, c2) =

∫
Ω

|I(x)− c1|2H(φ)dx

+

∫
Ω

|I(x)− c2|2(1−H(φ))dx + ν

∫
Ω

|∇H(φ)|dx, (2)

where H is the Heaviside function, and φ is a level set
function, whose zero level contour C partitions the image
domain Ω into two disjoint regions Ω1 = {x : φ(x) > 0} and
Ω2 = {x : φ(x) < 0}. Equation (2) is a piecewise constant
model, as it assumes that the image I can be approximated by
constant ci in region Ωi. In the case of more than two regions,
two or more level set functions can be used to represent the
regions Ω1, · · ·Ωk.

III. THE PROPOSED PNMF-LEVEL SET SEGMENTATION
APPROACH

A. PNMF-based Clustering Framework

We divide the image into m blocks, and compute the
histogram of every block. An n × m data matrix V is then
created, where n is the number of intensity bins in the image.
As shown in Fig. 1, the columns of V are the histograms of
the blocks in the image. Specifically, the (i, j)th entry, vij ,
is the number of pixels in the block j having intensity range
in bin i. The rows of V describe the spatial distribution of
intensity bin i in the image blocks. The goal is to find k ≤ m
“basic histograms” that correspond to the distinct regions in
the image. This can be achieved using non-negative matrix
factorization (NMF). The NMF seeks to factor the data matrix
V into two matrices with positive entries V ≈ WH , where
W has size n × k, with each of the k columns defining a
metablock, or a region in the image; the entry wij corresponds
to the number of pixels within the intensity bin i in metablock
j. The matrix H has size k × m, with each of the m
columns representing the metabin region representations of the
corresponding block; the entry hij represents the number of
pixels in region i and block j.

Nonnegative matrix factorization involves the non-
negativity constraints on the matrix entries which is appro-
priate for clustering the histogram data matrix. Other matrix
decomposition techniques, such as principal component anal-
ysis (PCA) or singular value decomposition (SVD) do not
guarantee the nonnegativity constraint, and hence loose the
physical interpretation of the factorization. However, this non-
negativity requirement makes the factorization problem more
challenging. We use the PNMF algorithm in [8], which also
takes into account the noise in the data matrix. The algorithm
starts by randomly initializing matrices W and H with non-
negative entries, which are iteratively updated to maximize the
maximum a posteriori probability (MAP) criterion assuming
the data matrix is corrupted by additive white Gaussian noise.
The update equations are given by:Hij ← Hij

(WTV )ij
(WTWH+H)ij

Wij ←Wij
(V HT )ij

(WHHT +W )ij
,

(3)



It was shown in [8] that the update equations in (3) minimize
the following weighted regularized optimization problem:

f(W,H) = ‖V −WH‖2F + ‖W‖2F + ‖H‖2F . (4)

Fig. 1: Building the data matrix and histogram factorization
using PNMF.

The PNMF factorization V ≈ WH induces a clustering
of the histogram data matrix into k basic histograms which
correspond to k regions Ωi, i = 1, · · · , k. Thus, the PNMF
can detect the regions in the image automatically. In the sequel,
we will investigate how the non-negative matrix W provides
statistical information about the clustered regions in the image.
We first consider the synthetic binary image in Fig. 2. The
PNMF of the data matrix of this image with k = 2 and a
block size of 16 × 16 results in the W matrix shown in Fig.
2. Plotting the entries of each column of W , we obtain two
sharp peaks: one peak at the (0− 1) range of intensity value,
corresponding to the black region, and a second peak at the
(254− 255) range, corresponding to the white region. Hence,
the matrix W seems to provide the distribution of the pixel
intensity values in each region, and from this distribution, we
can obtain the statistical mean and standard deviation of every
region in the image. The same interpretation can be reached
on a synthetic gray-scale image (though not shown here for
space considerations).

B. Proposed Variational Framework

We consider the matrix W in the PNMF factorization
V ≈WH , which induces a clustering of the image blocks into
k regions Ωi, i = 1, · · · , k defined by their basic histogram
characteristics given in the matrix W . This clustering model
will form the basis of the external energy functional in the
level set formulation. Let us assume that the ith column of the
matrix W , wi, is the histogram of the ith image region Ωi. Let
µi and σi be the mean and standard deviation, respectively,
of wi. We model the intensity value of a pixel x ∈ Ωi as
normally distributed with mean µib(x) and standard deviation

σi, where b(x) is the bias field at pixel x. The problem
of image segmentation is then formulated as computing the
maximum a posteriori (MAP) p({Ω}|I) of the image regions
{Ω} = {Ω1,Ω2, · · · ,Ωk} for the image intensity values I(x).
According to the Bayes’ rule p({Ω}|I) ∝ p(I|{Ω}) p({Ω}).
Assuming that the prior probabilities of all partitions p({Ω})
are equal, and the pixels within each region are indepen-
dent, the MAP estimate reduces to finding the maximum
of
∏k
i=1

∏
x∈Ωi

pi(I(x)), where pi(I(x)) = p(I(x)|Ωi),
i = 1, 2, ..., k. By taking the logarithm, the maximization
can be converted to the minimization of the following energy
function:

E =

k∑
i=1

∫
Ωi

− log pi(I(x))dx, (5)

where pi(I(x)) is given by

pi(I(x)) =
1√

2πσi
exp(− (I(x)− µib(x))2

2(σi)2
). (6)

The energy function E is then combined in the level
set formulation by representing the disjoint regions with a
number of level set functions. We first start with the two-phase
formulation, then the regions Ω1,Ω2 can be represented with
their membership functions defined by M1(φ) = H(φ) and
M2(φ) = 1 − H(φ) respectively, where H is the Heaviside
function. For more than two regions, two or more level set
function are then defined. The minimization problem in Eq.
(5) can be equivalently expressed as the following level set
energy functional:

E(φ,b) =
k∑
i=1

∫
Ω

(
log(
√

2πσi) +
(I(x)− µib(x))2

2σ2
i

)
Mi(φ)dx.

(7)

Fig. 2: Non-negative Matrix Factorization V ≈ WH: The
factor “W” of this synthetic binary image provides the basic
histograms of the two (white and black) regions in the image.



Equation (7) can be rewritten as:

E(φ,b) =

k∑
i=1

[∫
Ω

ei(x,b)Mi(φ(x))dx

]
, (8)

where ei(x,b) = log(
√

2πσi) + (I(x)−µib(x))2

2σ2
i

.

By adding the geometrical constrains to the energy func-
tional E(φ,b), we obtain the total energy functional in the
level set framework,

F(φ,b) = αE(φ,b) + βR(φ) + γLg(φ), (9)

where R(φ) and Lg(φ) are the regularization terms, and α,
β and γ are weighting parameters. The first term, R(φ), is
a distance regularization term [11] that is minimized when
|∇φ| = 1, a property of the signed distance function. This
term is defined by

R(φ) =
1

2

∫
Ω

(|∇φ| − 1)2dx. (10)

The second regularization term is defined by

Lg(φ) =

∫
Ω

g|∇H(φ(x)|dx, (11)

which computes the arc length of the zero level set contour,
(
∫

Ω
|∇H(φ(x)|dx), and therefore maintains the smoothness

of the contour. The contour length is weighted by the edge
indication function defined by

g =
1

1 + |∇(Gσ ∗ I)|2
, (12)

where Gσ ∗ I is the convolution of the image I with the
smoothing Gaussian kernel Gσ . The edge indication function
g works to stop the level set evolution near the variational
edges because it is close to zero at this place and positive
otherwise. Therefore, the length regularization term Lg works
to minimize the length of the contour at the boundaries of the
objects in the image.

Finally, the total level set energy functional that needs to
be minimized in order to achieve segmentation is expressed
as:

F(φ,b) = α

k∑
i=1

[∫
Ω

ei(x,b)Mi(φ(x))dx

]
+
β

2

∫
Ω

(|∇φ| − 1)2dx+ γ

∫
Ω

g|∇H(φ)dx. (13)

C. Energy Minimization

Segmentation is achieved by minimizing the energy func-
tional F with respect to the two variables φ and b. The energy
minimization is achieved iteratively by minimizing F with
respect to each variable given the other held constant at each
value during the previous iteration. We first fix b, then the
minimization of the energy functional F(φ, b) with respect
to φ is achieved by using standard gradient descent method,
namely solving the gradient flow equation:

∂φ

∂t
= −∂F

∂φ
. (14)

By calculus of variations, we compute the derivative ∂F
∂φ and

express Eq. (14) as follows:

∂φl
∂t

= −α
k∑
i=1

(
∂Mi(φ)

∂φl
ei

)
+ β

(
∇2φl − div

(
∇φl
|∇φl|

))
+ γδ(φl) div

(
g
∇φl
|∇φl|

)
, (15)

Then, for fixed φ the optimal bias field b that minimizes the
energy F is estimated by:

b =

∑k
i=1

∫
Ω
I(x)µi

σ2
i
Mi(φl)d(x)∑k

i=1

∫
Ω

µ2
i

σ2
i
Mi(φl)d(x)

. (16)

In implementation, the Heaviside function is approximated by
[12]

Hε(x) = 0.5 sin(arctan(
x

ε
)) + 0.5, (17)

and the dirac delta function, δε(x), is estimated by

δε(x) = 0.5 cos(arctan(
x

ε
))

ε

ε2 + x2
. (18)

IV. SIMULATION RESULTS AND DISCUSSION

We first assess the performance of the proposed PNMF-
based level set approach by segmenting synthetic images and
then apply it to real brain MRI images with and without
the glioblastoma tumor, though we do not show the normal
brain segmentation for space consideration. Specifically, we
are interested in delineating the gray-matter, white matter,
cerebrospinal fluid (CSF) and tumor regions within the brain.
We automate the initialization of the level set function by
using the fuzzy c-means (FCM) algorithm and initiate the level
set function as φo = −4ε(0.5 − Bk), where ε is a constant
regulating the Dirac function, and Bk is a binary image ob-
tained from the FCM result. We compare the proposed method
to the level set formulations of Li et al (localized-LSM) [6]
and Chen et al [7] (LGDF-LSM), and study the robustness
to noise. The segmentation accuracy is quantitatively assessed
using the root mean square error (RMSE). We set the internal
and external energy weighting coefficients α = β = γ = 1
so that all energy terms are equally weighted. We found that
the segmentation results are robust to these coefficients in the
interval [0.1, 20]. We also choose the block size to be 8×8 for
partitioning the images. The choice of the block size presents a
tradeoff between the smallest size of the region that we would
like to capture and computational complexity. A small block
size is able to capture a similarly small distinct region in the
image at the expense of computational power.

A. Robustness to noise

We study the robustness of the proposed PNMF-based level
set method to noise and intensity inhomogeneity by comparing
it with the localized-LSM model in [6], and the improved
LGDF-LSM model in [7] using RMSE. Figure 3 shows three
synthetic images with the segmentation results of the three
models. We can notice that the proposed PNMF-LSM is more
robust to noise and intensity inhomogeneity than the other two
approaches. Table (I) presents the comparison, using RMSE
values, between the three methods on 10 synthetic images.



Fig. 3: Performance evaluation of the proposed PNMF-LSM approach, the localized-LSM in [6] and the improved LGDF-LSM
in [7] on three synthetic images corrupted with different level of noise and intensity inhomogeneity. The first column represents
the original images. The second column shows the segmentation of the proposed PNMF-based level set algorithm. The third and
fourth columns show the results of the localized-LSM and the improved LGDF-LSM models, respectively.

TABLE I: Quantitative evaluation based on RMSE of the
three segmentation models: The proposed PNMF-LSM, the
localized-LSM [6] and the improved LGDF-LSM [7], applied
to 10 synthetic images.

Image No. Proposed PNMF-LSM Localized-LSM Improved LGDF-LSM

1 0.2181 0.7205 0.7239

2 0.0851 0.0763 0.8710

3 0.1940 0.5095 0.3854

4 0.2802 0.6103 0.9220

5 0.1426 0.4335 0.2230

6 0.0741 0.0377 0.8624

7 0.0257 0.0452 0.8879

8 0.0687 0.9976 0.0761

9 0.0916 0.3100 0.1292

10 0.2015 0.2358 0.1212

As seen from the table, the proposed PNMF-based level set
model provides more stable and lower RMSE values than the
localized-LSM and the improved LGDF-LSM models.

B. Application to Real Brain MRI Images

We apply the proposed PNMF-based level set approach
on real brain MRI images with a tumor obtained from the
University of Alabama at Birmingham School of Medicine.
The main goal is to segment the different brain and tumor

structures into the following regions: gray matter, white matter,
cerebrospinal fluid (CSF), edema, and tumor (if it exists).
Figure 4 shows the segmentation result of the proposed ap-
proach on a gadolinium-enhanced T1-Weighted MRI scan of
a patient with glioblastoma multiform. The green contour in
Fig. 4b indicates the growing tumor, the red contour in Fig. 4d
indicates the gray matter, the blue contour in Fig. 4e indicates
the white matter, and the yellow contour in Fig. 4f indicates
the the CSF with the back ground. The pink contour in Fig. 4c
indicates the region of the brain that corresponds to necrosis
and invasive tumor/edema. The red and blue arrows in its
binary representation Fig. 4i point to the area of necrosis and
high signal intensity in Fluid-attenuated Inversion Recovery
(FLAIR) sequences (not shown), respectively. We notice from
Fig. 4 that the PNMF-LSM model is able to separate the
different brain structures. The binary representations of each
brain structure in Fig. 4 show the exact boundaries of these
structures. The proposed PNMF-based level set approach re-
trieves the histogram of each region (or brain structure, see
Fig. 4m obtained from the factor matrix W . We show also
the bias field in the MRI image (Fig. 4g), which is estimated
through the level set formulation. We also apply PNMF-LSM
to a normal brain MRI images though not shown in this paper
for space consideration.

V. CONCLUSION

In this paper, we proposed a new deformable model for
image segmentation based on a variational level set formula-
tion and probabilistic non-negative matrix factorization. The
PNMF algorithm clusters the histogram data matrix into basic
histograms that correspond to the distinct brain regions in the
image. The proposed model is also able to account for the
intensity inhomogeneity in medical images without a priori
knowledge. The segmentation is achieved by minimizing an
energy functional with respect to the level set function and



Fig. 4: Segmentation of a gadolinium-enhanced T1-Weighted MRI scan of a patient with glioblastoma multiform using the
proposed PNMF-LSM algorithm. The green contour in (b) indicates the growing tumor, the red contour in (d) indicates the gray
matter, the blue contour in (e) indicates the white matter, and the yellow contour in (f) indicates the the CSF with the back
ground. The proposed PNMF-based level set approach retrieves the histogram of each brain structure shown in (m) obtained
from the factor matrix W . The bias field in the MRI image is shown in (g). The pink contour in (c) indicates the region of the
brain that corresponds to necrosis and invasive tumor/edema. The red and blue arrows in its binary representation (i) point to the
area of necrosis and high signal intensity in Fluid-attenuated Inversion Recovery (FLAIR) sequences (not shown), respectively.
(h), (j), (k) and (l) show the binary representations of the growing tumor, the gray matter, the white matter and the CSF with
the background, respectively.

the bias field only. Unlike other approaches in the level set
framework, no additional parameters need to be estimated.
Moreover, the proposed PNMF-LSM is robust to noise com-
pared to other state-of-the-art level set approaches, and it is
computationally efficient as well. This can be explained by the
fact that the proposed PNMF-LSM: 1) relies on the histogram
of the image for clustering rather than the pixel intensity
values, and 2) does not estimate additional parameters other
than the level set functions and the bias field.
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