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Abstract— Two-dimensional (2D) autoregressive moving av-
erage (ARMA) random fields have been proven to be accurate
models of ultrasound breast images. However, the stability
properties of these models have not been examined. In this
paper, we investigate the stability of 2D ARMA models in
ultrasound breast images, and use the estimated 2D ARMA
coefficients as a basis for statistical inference using artificial
neural networks. Specifically, we use the estimated 2D ARMA
coefficients as inputs to a Multi layer perceptron (MLP) neural
network to classify the ultrasound breast image into three
regions: healthy tissue, benign tumor, and cancerous tumor. Our
simulation results on various cancerous and benign ultrasound
breast images illustrate the power of the proposed algorithm
as attested by different learning algorithms and classification
accuracy measures.

I. INTRODUCTION

Using ultrasound in addition to mammography has helped
doctors spot significantly more breast cancers in high-risk
women compared with mammograms alone, but it also
resulted in four times as many false alarms [6]. These false
alarms lead to unnecessary biopsies, which are expensive and
unpleasant procedures for the patients. The purpose of our
study is to prevent unnecessary biopsies resulting in benign
diagnoses by designing a computer-aided diagnosis (CAD)
system to improve the accuracy of ultrasound diagnoses.
The proposed CAD system uses an artificial neural network
(ANN) to select ARMA features for breast cancer diagnosis.

In general, a CAD system for breast tumor detection and
classification consists of two stages: (i) feature extraction
and (ii) feature classification. Incorporating different features
into classification tools results in different CAD systems
with varying performances. This is in particular true with
CAD systems based on neural networks, whose performance
heavily depends not only on the structure of the network but
also on the feature vectors used. Neural networks have been
used in various ways for the detection and classification of
tumors and microcalcifications in ultrasound breast images.
In [8], a method for the automatic classification of lesions
in ultrasound images by artificial neural networks has been
presented. The parameters used for the training of the net-
work are texture and shape related indicators. This choice of
training parameters relies on the assumption that the inner
part of the lesion and its shape are homogeneous. In [2],
a learning vector quantization neural network was used as a
classifier to differentiate between malignant and benign solid
breast nodules. An autocorrelation feature vector was ex-
tracted from a region of interest located by a physician. Woo
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et al. [11] extracted five shape feature parameters, and fed
them to an artificial neural network classifier. They achieved
an accuracy of 0.914 on 584 cases. In [7], a hybrid neural
network, a combination of an unsupervised self-organizing
mapping network and a multilayer perception network with
the error backpropagation algorithm, was studied to classify
breast tumors using the contour complexity feature estimated
by the divider-step method. Their results, on a limited data
set of images, achieved an accuracy of 0.93.

The majority of the previous studies relied on raw (grey-
level, shape or texture) feature vectors, which are directly
extracted from the ultrasound image. However, the underly-
ing physical principles of the imaging modality makes the
ultrasound image (and thus all her raw attributes) highly
noisy due to speckle, depth dependency and artifacts (e.g.,
shadowing) which affect the image quality [3]. One way to
obtain more reliable image attributes is to replace the noisy
image by a stable and accurate model of it. Two-dimensional
auto-regressive moving average (ARMA) random fields have
been proven to be an accurate model for ultrasound breast
images [1]. However, the stability of these models has not
been investigated. In this paper, we address the stability issue
of 2D ARMA models for ultrasound breast images, and
use the estimated 2D ARMA coefficients as feature vectors
for a multi-layer perceptron neural network, which classifies
the ultrasound image into: (i) normal, (ii) benign tumor,
or (iii) cancerous tumor. Furthermore, we test our CAD
system using different learning algorithms for the ANN, and
compare their respective performances in tumor detection
and classification in ultrasound breast images.

II. T WO-DIMENSIONAL ARMA M ODELING

We represent the breast image as a 2D random field
{x[n, m], (n, m) ∈ Z

2} [1]. We define a total order on the
discrete lattice as follows [1]

(i, j) ≤ (s, t) ⇐⇒ i ≤ s and j ≤ t. (1)

The 2D ARMA(p1, p2, q1, q2) model is defined for theN1×
N2 imageI = {x[n, m] : 0 ≤ n ≤ N1−1, 0 ≤ m ≤ N2−1}
by the following difference equation
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where{w[n, m]} is a white noise field with varianceσ2, and
the coefficients{aij}, {bij} are the parameters of the model.
From Eq. (2), the image{x[n, m]} can be viewed as the
output of the linear time-invariant causal systemH(z1, z2)
excited by a white noise input, where
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(3)
with a00 = 1. A Two-stage Yule-Walker Least Squares
parameter estimation method was proposed in [1]. First, the
noise sequence{w[n, m]} is assumed to be known. The
ARMA parameter estimation problem is then reduced to a
simple input-output system identification problem, which is
solved by a least-squares (LS) method. The final estimate
is then obtained by estimating the noise, using a truncated
autoregressive (AR) model, and plugging it back in the Least
Squares solution [1].

III. STABILITY OF TWO-DIMENSIONAL ARMA M ODELS

A 2D-ARMA model can be considered as a discrete
system with transfer functionH(z−1

1 , z−1
2 ), given by Eq. (3),

whereB(z−1
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2 ) and A(z−1
1 , z−1

2 ) are co-prime polyno-
mials in the independent complex variablesu1 = z−1

1 and
u2 = z−1
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the second kind, i.e., there are no points(u∗

1, u
∗
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∗
2) = 0. It is well-known that the system

is bounded-input bounded-output (BIBO) stable if and only
if [5]:

A(z−1
1 ,∞) 6= 0, |z1| ≥ 1, and (4)
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2 ) 6= 0, |z1| = 1, |z2| ≥ 1. (5)

Jury’s test for one-dimensional stability problems [4], sum-
marized in the below proposition, can be easily adapted to
apply to (4).

Proposition 1 (Jury’s test [4]): Let A(z) be represented
as
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ā0 ā1 ā2 0 0 ān

. . .
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where the over bar indicates complex conjugates.
Now, to check Eq. (5), let us writeA(z−1
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The entries of this matrix are functions ofz−1
1 with |z1| = 1.

It was pointed out by Siljak in [10] that for positivity check-
ing of such a matrix, one requires the positivity checking of
the matrix at one point, say atz0 = 1, and the positivity
checking of the determinant for all|z1| = 1.

Theorem 1: [5] A(z−1
1 , z−1

2 ) 6= 0 for |z1| = 1, |z2| ≥ 1
if and only if

• ∆2p2
(z0) is PI for az0, |z0| = 1;

• Det {∆2p2
(z−1

1 )} > 0, for all z1, |z1| = 1,

where Det denotes the determinant.

Example: stability of a 2D ARMA(1,1,1,1) model: For a
2D ARMA(1,1,1,1), we have
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where we assume that all the coefficients are real, anda00 6=
0. The first stability condition, described in Eq. (4), yields

a00 + a10z
−1
1 6= 0 for all z1, |z1| ≥ 1 if and only if |

a10

a00
| < 1.

Equation (5) establishes the second stability condition, and
can be verified by considering the matrix∆2, where
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The determinant of∆2 is given by Det{∆2} = |a00 +
a10z

−1
1 |2 − |a01 + a11z

−1
1 |2. After some simplifications, we

obtain thatDet{∆2} > 0, for all z1, |z1| = 1 if and only
if (a2

00 − a2
11 + a2

10 − a2
01) + 2(a00a10 − a01a11)x ≥ 0 for

all −1 ≤ x ≤ 1. Finally, the following proposition states the
necessary and sufficient conditions for a 2D ARMA(1,1,1,1)
to be stable.

Proposition 2: Consider the 2D ARMA(1,1,1,1) model
given by Eq. (8). Let

α = a2
00 − a2

11 + a2
10 − a2

01, (9)

and

β = 2(a00a10 − a01a11). (10)

Then the model is stable if and only if the following two
conditions are satisfied:

(i) |a10

a00

| < 1

(ii)

{

α − β > 0, if β > 0;
α + β > 0, if β < 0.



IV. N EURAL NETWORK FORTUMOR DETECTION AND

CLASSIFICATION

Multi-layer perceptron neural network (MLP) is the most
popular and widely used nonlinear network for solving many
practical problems in applied science, biology, and engineer-
ing. The reason for the popularity of the MLP network is
that it is very flexible and can be trained to assume the shape
of the patterns in the data, regardless of the complexity of
these patterns. The training of the MLP is supervised in that,
for each input, the corresponding output is also presented to
the network. The initial weights are set at random. The mean
square error (MSE), the most commonly used error indicator,
of the prediction over all training pattern for a network with
one output neuron can be written as [9]:

E =
1

2N

N
∑

i=1

(ti − yi)
2, (11)

where E denotes the MSE,ti and yi are the target and
predicted output for theith training pattern, respectively, and
N is the total number of training patterns. Depending on the
error surface equation, the MLP weights are adjusted using
three different methods:

a) Back propagation with momentum method:

Wnew = Wold + ∆W ; ∆W = −η
∂E

∂w
+ α∆Wold, (12)

where η and α are the learning rate and momentum rate,
respectively.

b) Delta bar delta learning (adaptive learning rate):

Wnew = Wold − η+
∂E

∂w
, (13)

where

η+ =

{

ηold + a, if ∂E
∂w

> 0;
ηoldb, if ∂E

∂w
≤ 0,

(14)

whereη+ is the adaptive learning rate,a andb are constants
less than one.

c) The Levenberg-Marquard algorithm:

Wnew = Wold + ∆W ; ∆W = −
∂E
∂w

H + eγI
, (15)

where H is the Hessian matrix of the MSE with respect
to the weights. The termeγ produces a conditioning effect
on the second derivative such that the error monotonically
decreases.

V. SIMULATION RESULTS

we found that ARMA(1, 1, 1, 1) is a sufficient model
order to accurately represent ultrasound breast images [1].
Figure 1 shows two ultrasound images, one with a cancerous
tumor and one with a benign tumor, and their respective
ARMA(1, 1, 1, 1) models. The ARMA parameters were es-
timated using a window of size16 × 16. The choice of
the window size presents an inherent trade-off between
the accuracy of the representation and the accuracy of the
classification [1]. A large window size would lead a better
representation of the ARMA model, but might include pixels

from different classes. We found that for256× 256 images,
a 16× 16 window size leads to good discriminatory ARMA
feature vectors. Each image is therefore represented by a
number of 1 × 8 ARMA feature vectors, which contain
the 8 parametersa00, a01, a10, a11, b00, b01, b10, b11 for each
16 × 16 sub-block image. Without loss of generality, we
chosea00 = b00 = 1. Therefore, the size of the feature
vectors reduces to 6 instead of 8. We decide that an image
has a cancerous (resp., benign) tumor if at least one of the
sub-block images is classified as a cancerous (resp., benign)
tumor. Otherwise, we conclude that the image is healthy and
contains no tumors.

We conducted our simulations using 573 ARMA feature
vectors of healthy, benign and cancerous ultrasound breast
images. The stability analysis, based on proposition 2, re-
vealed that all 573 feature vectors satisfied stability criterion
(i) and all but 5 vectors satisfied stability criterion(ii). It
would be interesting to investigate the medical implications
of the unstable ARMA features. Such an investigation will
be the focus of a future work, and will involve a larger data
set and a precise clinical evaluation of the images by our
medical collaborators.

The ARMA feature vectors were used as the input to an
MLP neural network with six input layer nodes, one hidden
layer containing four nodes, and three output nodes. The
three algorithms, presented in Section IV, were used to learn
the neural network: The momentum backpropagation (BP),
the delta-bar-delta, and the Levenberg-Marquardt algorithms.
The mean square error (MSE) curves of all three algorithms,
displayed in Fig. 2, converge in less than 200 epochs.
We observed that the performance of the delta-bar-delta
algorithm depends heavily on the choice of its parameters
a, b (see Eq. 14). For instance, fora = b = 0.1, the algorithm
fails to converge (Fig. 2(a)), whereas fora = 0.01, b = 0.1,
the algorithm converges, and thus results in a much better
classification accuracy (Fig. 2(b)). Therefore, if the delta-
bar-delta learning algorithm is used, one should carefully
chose its additive and multiplicative parameters by trial and
error. Table V summarizes the performance of the neural
network using the three learning algorithms. The steady-
state MSE, accuracy, sensitivity and specificity are listedfor
each case. We observe that the MLP neural network based
on the Levenberg-Marquardt algorithm achieves the highest
accuracy (95%), sensitivity (98%), and specificity (97%). In
particular, the MLP Levenberg-Marquardt outperforms the
k-means algorithm presented in [1].

VI. CONCLUSION

Ultrasound breast images can be accurately represented
by 2D ARMA models [1]. We showed that such models
are stable under mild conditions, and thus form a stable and
more robust (to noise) platform for the analysis of ultrasound
breast images. We used the estimated parameters of the 2D
ARMA models as feature vectors for tumor detection and
classification using an MLP neural network with various
learning algorithms. We observed that the performance of
the neural network heavily depend on the learning algorithm
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Fig. 1. Ultrasound images and their ARMA(1, 1, 1, 1) models: (a) Cancerous tumor; (b) ARMA(1, 1, 1, 1) model of (a); (c) Benign tumor; (d)
ARMA(1, 1, 1, 1) model of (c).

(a) (b) (c) (d)

Fig. 2. Mean square error (MSE) versus number of iterations.The MLP neural network was designed with six input layer nodes, one hidden layer
containing four nodes, and three output nodes: (a) MLP DeltaBar Delta with parametersa = b = 0.1; (b) MLP Delta Bar Delta with parameters
a = 0.01, b = 0.1; (c) MLP backpropagation with momentum rateα = 0.7; (d) MLP Levenberg-Marquardt algorithm.

TABLE I

MLP CLASSIFICATION ACCURACY OF CANCEROUS AND BENIGN TUMORS

Learning algorithm steady-state MSE Accuracy Sensitivity Specificity

Momentum BPA 0.18 83 % 96% 94 %
Delta Bar Delta 0.09 89% 94 % 96%

Levenberg-Marquard 0.065 95% 98% 97%

and its parameters. The proposed CAD system provides a
promising starting point to test the hypothesis that two-
dimensional ARMA models can contribute significantly to
the clinical goals of detection, classification, and testing of
breast cancer in ultrasound images.

VII. ACKNOWLEDGMENTS

The authors want to thank Dr. Karen Lin Xie from the Ra-
diology Department at the University of Illinois at Chicago
for providing the ultrasound breast images. The authors also
extend their gratitude to J. Zielinski, a doctoral student with
the Systems Engineering Department at the University of
Arkansas at Little Rock, for providing the MATLAB code
for the 2D ARMA parameter estimation.

REFERENCES

[1] N. Bouaynaya, J. Zielinski, and D. Schonfeld, “Two-dimensional
ARMA modeling for breast cancer detection and classification,” in
arXiv:0906.3722v1, June 2009.

[2] D. R. Chen, R. F. Chang, and Y. L. Huang, “Computer-aided diagnosis
applied to US of solid breast nodules by using neural networks,”
Radiology, vol. 213, pp. 407–412, 1999.

[3] C. Hansen, N. Httebruker, M. Hollenhorst, A. Schasse, L.Heuser,
G. Schulte-Altedorneburg, and H. Ermert, “An automated system
for full angle spatial compounding in ultrasound breast imaging,” in
European Conference of the International Federation for Medical and
Biological Engineering, vol. 22, February 2009, pp. 541–545.

[4] E. I. Jury and M. Mansour, “A note on new inner-matrix for stability,”
proceedings of the IEEE, vol. 69, pp. 1579–1580, December 1981.

[5] A. Kanellakis, S. Tzafestas, and N. Theodorou, “Stability tests for
2D system using schwarz form and the inners determinants,”IEEE
Transaction on circuits and systems, vol. 38, no. 9, pp. 1071–1077,
September 1991.

[6] C. K. Kuhl, S. Schrading, C. C. Leutner, N. Morakkabati-Spitz,
E. Wardelmann, R. Fimmers, W. Kuhn, and H. H. Schild, “Mam-
mography, breast ultrasound, and magnetic resonance imaging for
surveillance of women at high familial risk for breast cancer,” Journal
of Clinical Oncology, vol. 23, no. 33, pp. 8469–8476, November 2005.

[7] Z. Ling, L. Jiangli, L. Deyu, W. Tianfu, P. Yulan, and L. Yan,
“Classification of breast tumors on ultrasound images usinga hybrid
neural network,” inThe International Conference on Bioinformatics
and Biomedical Engineering, July 2007, pp. 574–576.

[8] C. Ruggiero, F. Bagnoli, R. Sacile, M. Calabrese, G. Rescinito,
and F. Sardanelli, “Automatic recognition of malignant lesions in
ultrasound images by artificial neural networks,” inIEEE International
Conference of Engineering in Medicine and Biology Society, October
1998, pp. 872–875.

[9] S. Samarasinghe,Neural Networks for Applied Science and Engineer-
ing. Taylor & Francis Group, LLC, 2007.

[10] D. Siljak, “Stability criteria for two variable polynomials,” IEEE
Transaction on circuits and systems, vol. 22, pp. 185–189, March
1975.

[11] S. Woo, Y. S. Yang, W. K. Moon, and H. C. Kim, “Computer-
aided diagnosis of solid breast nodules: Use of an artificialneural
network based on multiple sonographic features,”IEEE Transactions
on Medical Imaging, vol. 23, no. 10, pp. 1397–1400, Ocotber 2004.


