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Abstract—We study the robustness of the inverse perturba-
tion solution in discrete-time systems modeled by homogeneous
Markov chains. We cast the optimal inverse perturbation control
as a strictly convex optimization problem, which admits a unique
global solution. We show that the optimal inverse perturbation
control is robust to estimation errors in the original network.
The derived results are applied to the Human melanoma gene
regulatory network, where the aim is to force the network to
converge to a desired steady-state distribution of gene regulation.
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I. I NTRODUCTION

Perturbation analysis examines the effect of small per-
turbations on system parameters. Specifically, it has been
proved that the the infinitesimal perturbation analysis provides
unbiased or strongly consistent estimates of the performance
for many systems [1], [2]. In this paper, we consider discrete-
time systems, which can be modeled by finite-state Markov
chains. Examples include queueing networks, resource alloca-
tion, social and biological networks, and machine replacement.
Finite state Markov chains are among the most widely used
probabilistic models of discrete event stochastic phenomena.
It is therefore of interest to obtain their performance sen-
sitivities under various kinds of perturbations. Of particular
importance is the sensitivity of the steady-state distribution
to perturbations in the probability transition matrix of the
chain. The steady-state perturbation problem in Markov chains
can be formulated as follows: Given an initial Markov chain
characterized by its probability transition matrixP0, consider
linear perturbations ofP0 as P (ǫ) = P0 + ǫC, whereC is
a fixed zero-row sum matrix and0 < ǫ < ǫmax. What is
the relationship between the stationary distributionπ(ǫ) of
the perturbed chain and the original (unperturbed) stationary
distribution π(0). Schweitzer [3] solved this problem in the
case of irreducible Markov chains.

In this paper, we harness the perturbation problem into
a control strategy that forces the chain to converge towards
a desired steady-state distribution. Specifically, we address
the following question: “Given a Markov chain characterized
by its probability transition matrixP0 and given a desired
steady-state distributionπd, can we find a perturbation matrix
C that forces the chain(P0 + C) to converge towards the
desired distributionπd?” We call this formulationthe inverse
perturbation problembecause it aims at finding a perturbation,
which changes the dynamics of the network in a desirable

way, rather than finding the new steady-state given a known
perturbation of the system [4]. Observe that, as formulated,
the inverse perturbation problem is a feasibility problem.We
further propose to find the optimal perturbation matrix, which
minimizes the “energy” between the initial and perturbed net-
works as measured by the Frobenius norm of the perturbation
matrix. We cast the optimal inverse perturbation problem asa
strictly convex optimization problem, thus admitting a unique
global solution, which can be efficiently computed for large
networks using convex optimization solvers [5].

We further investigate the robustness of the optimal pertur-
bation matrix to estimation errors in the original probability
transition matrix. In practical applications, errors madeduring
data extraction, feature selection, and network inferencewill
propagate and impact the actual success of the designed
control. An efficient intervention approach must possess some
degree of “robustness” or insensitivity to data and estimation
errors. In this paper, we show that the optimal inverse per-
turbation control is robust to errors in the original probability
transition matrix, in the sense that the estimation error ofthe
optimal control solution is bounded by the estimation errorof
the probability transition matrix.

The proposed inverse perturbation control is applied to
the Human melanoma gene regulatory network. Biological
evidence suggests that steady-state distributions of molecular
networks reflect the phenotype of the cell. In other words, both
malignant (e.g. cancer) and benign phenotypes correspond
to steady-state distributions in dynamic system models of
gene regulatory networks. The inverse perturbation control
introduces an isolated, one-time intervention by optimal per-
turbation in order to ensure that the network converges to
a desired steady-state distribution of gene regulation. The
ultimate goal is to develop engineering methods that will be
employed to intervene in living organisms to drive cells away
from a malignant state and into a benign one.

II. M ATHEMATICAL NOTATION

We denote byM the Euclidean space ofn×n square ma-
trices equipped with the inner product< A, B >= Tr(AtB),
where Tr(A) denotes the trace ofA ∈ M. 1 denotes a
vector all of whose components are equal to one. The equality
and inequality symbols,=,≤ and≥ denote component-wise
equality and inequality, respectively, for arrays of the same
size.
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III. I NVERSE PERTURBATION CONTROL

Definition 1: A row probability vectorµt is called a sta-
tionary distribution or a steady-state distribution forP0 if
µtP0 = µt.
BecauseP0 is stochastic (i.e., its rows sum up to1), the
existence of stationary distributions is guaranteed. In this
paper, we assume thatP0 is irreducible, thus having a unique
steady-state distributionπ0. In practice, there are several fast
algorithms for checking irreducibility in graphs [6].

We wish to alter the stationary distributionπ0 by linearly
perturbing the probability transition matrixP0. Specifically,
we consider the perturbed stochastic matrix

P = P0 + C, (1)

where C is a zero row-sum perturbation matrix. The zero
row-sum condition is necessary to ensure that the perturbed
matrix P is stochastic. Let us denote byπd the desired
stationary distribution. We seek to design an optimal zero
row-sum perturbation matrixC such that the perturbed matrix
P is irreducible and converges to the desired steady-state
distributionπd.

The Inverse Perturbation Problem: The set of perturbation
matricesC, which force the chain to transition fromπ0 to πd

satisfy the following constraints:

(i) πt
d = πt

d(P0 + C), (ii) C1 = 0, (iii) P0 + C ≥ 0. (2)

Constraint(i) guarantees that the perturbed chain or network
converges towardsπd. Constraints(ii) and(iii) ensure that the
perturbed matrixP is a proper probability transition matrix:
constraint(ii) imposes that the perturbation matrixC is zero-
row sum, and constraint(iii) requires the matrixP to be
element-wise non-negative. LetD denote the feasible set of
perturbation matrices , i.e.,

D = {C ∈ R
n×n : πt

d = πt
d(P0 + C), C1 = 0, P0 + C ≥ 0}.

(3)
D is a polyhedra as the solution of a finite number of linear
equalities and inequalities [5]. In particular,D is convex [5].
Moreover,D is non-empty because it contains the perturbation
matrixC0 = 1πt

d−P0. Therefore, at least one feasible solution
exists.

Proposition 1: Let C0 = 1πt
d − P0. Any feasible solution

C ∈ D can be written as

C = C0 + V, (4)

whereV ∈ Γ and

Γ = {V ∈ M : V 1 = 0, V tπd = 0, V ≥ −1πt
d}. (5)

Observe thatV = 0 ∈ Γ. In particular, there may be
numerous (possibly infinite) perturbation matricesC which
can force the chain to transition from an undesirable steady-
state to a desirable one. All such perturbations, in principle,
constitute plausible control strategies and can thereforebe used
to drive the network from one steady-state to another. In many
applications, however, we would like to find the optimal per-
turbation matrix, in a specified sense. One optimality criterion,
of interest, is to minimize the “energy” between the original
and perturbed networks, as measured by the Frobenius norm

of the perturbation matrix. The minimum energy constraint
can be imposed to limit the structural changes in the network
before and after control.

The Optimal Inverse Perturbation Control: The optimal in-
verse perturbation problem can be formulated as the following
optimization problem:

Minimize ‖C‖2

F subject to C ∈ D, (6)

where ‖.‖F denotes the Frobenius norm given by‖C‖2

F =∑n

i=1

∑n

j=1
c2

ij = Tr(CCt), and D is the feasible set in
Eq. (3).

Observe that the optimization problem in (6) is convex, i.e.,
the objective function is convex, the equality constraintsare
affine and the inequality constraints are convex [5]. Moreover,
since the square of the Frobenius norm is strictly convex, the
optimization problem in (6) has a unique global solution [5].
It is important to notice, however, that the optimal perturbed
matrix may not be irreducible. Nonetheless, it converges
towards the desired steady-state starting from its basin of
attraction.

The following proposition provides a geometrical character-
ization of the optimization problem in (6).

Proposition 2: Let C0 = 1πt
d − P0. Then, the optimal

perturbation matrix is given by

C∗ = C0 − CΓ

0
, (7)

whereCΓ

0
denotes the unique projection ofC0 onto the convex

setΓ 1 given in Eq. (5).
In practice, one can use numerical algorithms to find the
projection onto the convex setΓ [7].

IV. ROBUSTNESS OF THEOPTIMAL INVERSE

PERTURBATION CONTROL

We now assume that the estimated probability transition
matrix P̂0 is given by

P̂0 = P0 + δP0, (8)

whereδP0 is a zero-row sum matrix representing noisy and
missed data and estimation errors inP0. We will show that the
norm of the error in the optimal inverse perturbation matrixis
bounded by the norm of the error inP0. We first present the
following Lemma.

Lemma 1:Consider a vector subspaceE , equipped with an
inner product norm‖.‖, and a convex subsetC ⊆ E . Let x1, x2

be two points inE , andp1, p2 be their respective closest points
in C. Then, we have

‖p1 − p2‖ ≤ ‖x1 − x2‖. (9)

Proposition 3: The estimated optimal perturbation matrix,
Ĉ∗, satisfiesĈ∗ = C∗ + δC∗, where C∗ is the optimal
perturbation matrix andδC∗ is an error zero-row sum matrix
satisfying

‖δC∗‖F ≤ ‖δP0‖F . (10)

1Note that projection, here, refers to minimal distance to the set. SinceΓ
is not a vector subspace, we cannot define (orthogonal) projection ontoΓ.
However, we can determine the closest point inΓ to a given point inM.



3

Fig. 1. Graphical illustration of the proof of Lemma 1.

V. SIMULATION RESULTS

We apply the inverse perturbation control to the melanoma
gene regulatory network, which is one of the most studied
gene regulatory networks in the literature [8]. The control
strategy is to reduces WNT5A’s action in inducing a metastatic
phenotype. A seven-gene probabilistic Boolean network model
of the melanoma network containing the genes WNT5A, pirin,
S100P, RET1, MART1, HADHB, and STC2 was derived in
[8]. Note that the Human melanoma Boolean network consists
of 27 = 128 states ranging from00 · · ·0 to 11 · · ·1, where the
states are ordered as WNT5A, pirin, S100P, RET1, MART1,
HADHB, and STC2, with WNT5A and STC2 denoted by the
most significant bit (MSB) and least significant bit (LSB),
respectively. The probability transition matrix of the Human
melanoma network, used in this paper, is courtesy of Dr.
Ranadip Pal.

We consider the (fictitious) desired steady-state distribution
where the probability of the states having WNT5A upregulated
is 10−4 and the probability of the other states, which corre-
spond to WNT5A downregulated is chosen randomly such that
the total probability mass is equal to 1 (see Fig. 2(c)). Observe
that the states from 0 to 63 have WNT5A downregulated
(0) and hence are desirable states, as compared to states
64 to 127 that have WNT5A upregulated (1) and hence
are undesirable. The probability transition matrices of the
Human melanoma networks corresponding to the original and
perturbed networks are portrayed in Fig. 2(a) and Fig. 2(b),
respectively. Note that the controlled and desired steady-state
distributions are identical. Figures 2(d) and 2(e) show the
matricesδP0 and δC∗, respectively. In this simulation,δP0

is the zero-row sum matrix having only two non-zero entries
in each row, equal toǫi,−ǫi, 1 ≤ i ≤ n, where ǫi is
chosen such that̂P0 = P0 + δP0 is a proper probability
transition matrix, i.e.,P̂0 is stochastic with positive entries.
We verify the stability of the inverse perturbation solution,
i.e., ‖δC∗‖F = 2.6690 ≤ ‖δP0‖F = 4.8149, as displayed in
Fig. 2(f). This simulation has been implemented in MATLAB,
and the (strictly) convex optimization problem in (6) has been
solved using the CVX software for convex optimization [9].

VI. CONCLUSION

We developed a mathematical framework for the solution
of the optimal inverse perturbation problem for irreducible
Markov chains. Our aim was to derive a minimal-perturbation

intervention control in order to change the network’s dynamics
and force it to converge to a desirable steady-state distribution.
We further investigated the robustness of the optimal inverse
perturbation solution with respect to estimation errors inthe
probability transition matrix of the chain. We showed that the
estimation error in the optimal inverse perturbation control is
bounded by the error in the probability transition matrix ofthe
chain. We applied the proposed optimal inverse perturbation
control to the Human melanoma gene regulatory network to
ensure that it converges to a desired steady-state distribution
of gene regulation. The ultimate goal is to develop engineering
methods that will be employed to intervene in living organisms
to drive cells away from a malignant state and into a benign
one.

APPENDIX

Proof of Proposition 1: The proof is straightforward
by checking that matrices of the formC = C0 + V , where
V ∈ Γ satisfy the three conditions in Eq. (2). Conversely, given
a feasible perturbation matrixC ∈ D we get thatC−C0 ∈ Γ.

Proof of Proposition 2: From Proposition 1, the op-
timization problem in (6) is equivalent to minimizing the
Frobenius norm of(C0 + V ) subject to V ∈ Γ. It is
straightforward that the solution to this problem is

V ∗ = −CΓ

0
. (11)

Therefore,C∗ = C0 − CΓ

0
.

Proof of Lemma 1: Consider the line(p1, p2). Let H1

(resp.,H2) be the hyperplane orthogonal to(p1, p2) at p1

(resp.,p2). Then,x1 must be to the left ofH1 (see Fig. 1),
otherwise some point strictly inside the segment]p1, p2[⊆ Γ
will be closer tox1 thanp1. Similarly, x2 must be to the right
of H2. Therefore,‖x1 − x2‖ ≥ ‖p1 − p2‖.

Proof of Proposition 3: From proposition 2, we have

C∗ − Ĉ∗ = (C0 − CΓ

0 ) − (Ĉ0 − ĈΓ

0 ) (12)

= (C0 − Ĉ0) + (ĈΓ

0
− CΓ

0
) (13)

= δP0 + (ĈΓ

0 − CΓ

0 ). (14)

Let E be the subspace defined by the two equality constraints,
i.e., E = {V ∈ M : V 1 = 0, V tπd = 0}. Let us consider the
decomposition ofδP0 as

δP0 = δP E
0

+ δP E⊥

0
, (15)

whereδP E
0 andδP E⊥

0 are, respectively, the projections ofδP0

onto the subspaceE and its orthogonalE⊥. Then Eq. (14)
becomes

C∗ − Ĉ∗ = δP E
0 + δP E⊥

0 + (ĈΓ

0 − CΓ

0 ). (16)

Let us further decomposeδP E
0 into the subspaces parallel and

orthogonal toĈΓ

0
− CΓ

0
, i.e.,

δP E
0

= δP0
E
‖ + δP0

E
⊥. (17)

We have

‖δP E
0 + ĈΓ

0 − CΓ

0 ‖
2 = ‖δP0

E
‖ + δP0

E
⊥ + ĈΓ

0 − CΓ

0 ‖
2

= ‖δP0
E
‖ + ĈΓ

0
− CΓ

0
‖2 + ‖δP0

E
⊥‖

2.
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Fig. 2. Initial and controlled probability transition matrices for the Human melanoma gene regulatory network: The matrix plots are obtained using the
function MatrixPlot in MATHEMATICA. The color of entries varies from white to redcorresponding to the values of the entries in the range of0 to 1: (a)
the probability transition matrix of the original melanomanetworkP0; (b) the optimal perturbed probability transition matrixP ∗; (c) The original (red line),
desired (blue line), and minimal-perturbation energy controlled (green line) steady-state distributions of the Human melanoma gene regulatory network. The
x-axis represents the 128 states of the network, and they-axis indicates the probability of each state; (d) The original errorδP0; (e) the inverse perturbation
solution errorδC∗; (f) The Frobenius norms ofδP0 andδC∗.

Fig. 3. Graphical illustration of the proof of Proposition 3

From Lemma 1 and given thatδP0
E
‖ is in the opposite direction

as ĈΓ
0 − CΓ

0 (see Fig. 3), we have

‖δP0
E
‖ + ĈΓ

0
− CΓ

0
‖2 ≤ ‖δP0

E
‖‖

2. (18)

Therefore,

‖δP E
0 + ĈΓ

0 − CΓ

0 ‖
2 ≤ ‖δP0

E
‖‖

2 + ‖δP0
E
⊥‖

2 = ‖δP0
E‖2.

Finally, Eq. (16) becomes

‖C∗ − Ĉ∗‖2 = ‖δP E
0 + δP E⊥

0 + ĈΓ

0 − CΓ

0 ‖
2 (19)

= ‖δP E
0

+ ĈΓ

0
− CΓ

0
‖2 + ‖δP E⊥

0
‖2 (20)

≤ ‖δP E
0
‖2 + ‖δP E⊥

0
‖2 = ‖δP0‖

2 (21)
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