Robustness of Inverse Perturbation for Discrete
Event Control

Nidhal Bouaynayy Roman Shterenbetgand Dan Schonfefd

!Dept. of Systems Engineering, University of Arkansas atlé iRock
“Dept. of Mathematics, University of Alabama at Birmingham
3Dept. of Electrical and Computer Engineering, Universifyllinois at Chicago

Abstract—We study the robustness of the inverse perturba- way, rather than finding the new steady-state given a known
tion solution in discrete-time systems modeled by homogenes perturbation of the system [4]. Observe that, as formulated
Markov chains. We cast the optimal inverse perturbation comrol - he jnyerse perturbation problem is a feasibility probléte
as a strictly convex optimization problem, which admits a urique further propose to find the optimal perturbation matrix, svhi
global solution. We show that the optimal inverse perturbaton i e !
control is robust to estimation errors in the original network. ~Minimizes the “energy” between the initial and perturbett ne
The derived results are applied to the Human melanoma gene works as measured by the Frobenius norm of the perturbation
regulatory network, where the aim is to force the network to matrix. We cast the optimal inverse perturbation problera as
converge to a desired steady-state distribution of gene regation. strictly convex optimization problem, thus admitting a qué

global solution, which can be efficiently computed for large

I ndex TefmS—Flnlte M.a..rI(OV Chains; Perturbation theory; networks using convex optimization solvers [5]

Inverse perturbation; stability; robustness. We further investigate the robustness of the optimal pertur
bation matrix to estimation errors in the original probépil
. INTRODUCTION transition matrix. In practical applications, errors malieing

Perturbation analysis examines the effect of small petata extraction, feature selection, and network inferemitle
turbations on system parameters. Specifically, it has besmpagate and impact the actual success of the designed
proved that the the infinitesimal perturbation analysis/ies control. An efficient intervention approach must possesseso
unbiased or strongly consistent estimates of the perfocmaniegree of “robustness” or insensitivity to data and esiionat
for many systems [1], [2]. In this paper, we consider disereterrors. In this paper, we show that the optimal inverse per-
time systems, which can be modeled by finite-state Markeyrbation control is robust to errors in the original protiab
chains. Examples include queueing networks, resourceaallotransition matrix, in the sense that the estimation errathef
tion, social and biological networks, and machine replea@m optimal control solution is bounded by the estimation eabr
Finite state Markov chains are among the most widely uséte probability transition matrix.
probabilistic models of discrete event stochastic phermme The proposed inverse perturbation control is apphed to
It is therefore of interest to obtain their performance sefhe Human melanoma gene regulatory network. Biological
sitivities under various kinds of perturbations. Of partér evidence suggests that steady-state distributions of qulale
importance is the sensitivity of the steady-state distiitiu networks reflect the phenotype of the cell. In other wordsh bo
to perturbations in the probablllty transition matrix ofeth ma”gnant (eg Cancer) and benign phenotypes Correspond
chain. The steady-state perturbation problem in Markowrshato steady-state distributions in dynamic system models of
can be formulated as follows: Given an initial Markov Chai@ene regu|atory networks. The inverse perturbation cbntro
characterized by its probability transition matd, consider jntroduces an isolated, one-time intervention by optimet p
linear perturbations of% as P(¢) = Py + ¢C, whereC' is tyrbation in order to ensure that the network converges to
a fixed zero-row sum matrix and < e < emax What is 3 desired steady-state distribution of gene regulatiore Th
the relationship between the stationary distributioft) of yltimate goal is to develop engineering methods that will be
the perturbed chain and the original (unperturbed) stat¥pn employed to intervene in living organisms to drive cells gwa
distribution W(O) Schweitzer [3] solved this problem in thefrom a ma“gnant state and into a benign one.
case of irreducible Markov chains.

In this paper, we harness the perturbation problem into
a control strategy that forces the chain to converge towards I1. MATHEMATICAL NOTATION
a desired steady-state distribution. Specifically, we esklr
the following question: “Given a Markov chain charactedze We denote byM the Euclidean space of x n square ma-
by its probability transition matrix?, and given a desired trices equipped with the inner product A, B >= Tr(A!B),
steady-state distribution;, can we find a perturbation matrixwhere TfA) denotes the trace off € M. 1 denotes a
C that forces the chaifP, + C) to converge towards the vector all of whose components are equal to one. The equality
desired distributionr;?” We call this formulatiorthe inverse and inequality symbols+=, < and > denote component-wise
perturbation problenbecause it aims at finding a perturbatiorequality and inequality, respectively, for arrays of thensa
which changes the dynamics of the network in a desiraldeze.



I1l. I NVERSE PERTURBATION CONTROL of the perturbation matrix. The minimum energy constraint
Definition 1: A row probability vectoru! is called a sta- €an be imposed to limit the structural changes in the network

tionary distribution or a steady-state distribution f&y if before and after control. _ o
[t Py = ut. The Optimal Inverse Perturbation Control'he optimal in-

BecauseP, is stochastic (i.e., its rows sum up t), the Verse perturbation problem can be formulated as the fotigwi
existence of stationary distributions is guaranteed. lis trPPtimization problem:

paper, we assume th_ﬂ) is irreduciple, thus having a unique Minimize ||C||% subjectto C € D, (6)
steady-state distributiong. In practice, there are several fast
algorithms for checking irreducibility in graphs [6]. where ||.| » denotes the Frobenius norm given Bg'|7 =

We wish to alter the stationary distributiony by linearly >7, >, ¢i; = Tr(CC"), and D is the feasible set in
perturbing the probability transition matrik,. Specifically, Eq. (3).
we consider the perturbed stochastic matrix Observe that the optimization problem in (6) is convex, i.e.
the objective function is convex, the equality constraiats
P=R+C @ affine and the inequality constraints are convex [5]. Mosgpv
where C' is a zero row-sum perturbation matrix. The zergince the square of the Frobenius norm is strictly convex, th
row-sum condition is necessary to ensure that the perturb@gimization problem in (6) has a unique global solution [5]
matrix P is stochastic. Let us denote by, the desired It is important to notice, however, that the optimal peredb
stationary distribution. We seek to design an optimal zefgatrix may not be irreducible. Nonetheless, it converges
row-sum perturbation matrig' such that the perturbed matrixtowards the desired steady-state starting from its basin of
P is irreducible and converges to the desired steady-st@éraction.
distribution 7. The following proposition provides a geometrical characte
The Inverse Perturbation ProbleniThe set of perturbation ization of the optimization problem in (6).
matricesC, which force the chain to transition from, to m, Proposition 2: Let Cy = 17 — Py. Then, the optimal
satisfy the following constraints: perturbation matrix is given by

() 5 =7 (Py + C), (i) C1 =0, (iii) Po+C>0. (2) C*=Cy—CF, 7

Constraint(i) guarantees that the perturbed chain or networkhereC} denotes the unique projection 6f onto the convex
converges towards,;. Constraintgii) and(iii) ensure that the setI’ ! given in Eq. (5).

perturbed matrixP is a proper probability transition matrix: In practice, one can use numerical algorithms to find the
constraint(i¢) imposes that the perturbation matrikis zero- projection onto the convex sét[7].

row sum, and constrainfizi) requires the matrixP to be

element-wise non-negative. L& denote the feasible set of IV. ROBUSTNESS OF THEOPTIMAL INVERSE
perturbation matrices , i.e., PERTURBATION CONTROL
D={CeR"™" 7} =r4(Py+C),C1=0,P,+C >0}. We now assume that the estimated probability transition

(3) matrix Py is given by
D is a polyhedra as the solution of a finite number of linear B — Py + 6P ®)
equalities and inequalities [5]. In particuldP, is convex [5]. E 0
Moreover,D is non-empty because it contains the perturbatiaghere § P, is a zero-row sum matrix representing noisy and
matrix Co = 17— P,. Therefore, at least one feasible solutiomissed data and estimation errorsfin We will show that the

exists. norm of the error in the optimal inverse perturbation maisix
Proposition 1: Let Cy = 17, — Py. Any feasible solution bounded by the norm of the error ift. We first present the
C € D can be written as following Lemma.
C=Cy+V, @) Lemma 1:Consider a vector subspa€e equipped with an
’ inner product nornjl.||, and a convex subsétC &. Letxy, zo
whereV € T" and be two points in, andpy, p> be their respective closest points

P = {(VeM:V1=0,Vlr =0,V >—1x}. (5 MC Then, we have

Observe that = 0 e T. In particular, there may be lp1 = pall < llz1 — 2] ©)
numerous (possibly infinite) perturbation matric€swhich  proposition 3: The estimated optimal perturbation matrix,
can force the chain to transition from an undesirable steady* satisfiesC* = C* + 6C*, where C* is the optimal

state to a desirable one. All such perturbations, in priecip perturbation matrix andC* is an error zero-row sum matrix
constitute plausible control strategies and can therdfergsed satisfying

to drive the network from one steady-state to another. Inyman 16C*|F < ||6Ps || p- (10)

applications, however, we would like to find the optimal per-

turbation matrix, in a specified sense. One optimality dotg N . . , _
Note that projection, here, refers to minimal distance ® gkt. Sincd”

of interest, is to minimize the “energy” between the 9“@1'”% not a vector subspace, we cannot define (orthogonal) giajeontoT.
and perturbed networks, as measured by the Frobenius nefswever, we can determine the closest poinTitto a given point inM.



_ intervention control in order to change the network’s dyitam
e C S and force it to converge to a desirable steady-state disimi.
T We further investigated the robustness of the optimal swer
perturbation solution with respect to estimation errorghia
/ P2 probability transition matrix of the chain. We showed tHa t
p estimation error in the optimal inverse perturbation colnis
bounded by the error in the probability transition matrixiod
\/ chain. We applied the proposed optimal inverse perturbatio
control to the Human melanoma gene regulatory network to
ensure that it converges to a desired steady-state disbribu
of gene regulation. The ultimate goal is to develop enginger
Fig. 1. Graphical illustration of the proof of Lemma 1. methods that will be employed to intervene in living orgamss
to drive cells away from a malignant state and into a benign
one.

m

V. SIMULATION RESULTS

We apply the inverse perturbation control to the melanoma APPENDIX
gene regulatory network, which is one of the most studied Proof of Proposition 1: The proof is straightforward

gene regulatory networks in the literature [8]. The contr%ly checking that matrices of the for@ = Cy + V, where

strategy is to reduces WNT5A's action in inducing a metwsta%/ € T satisfy the three conditions in Eq. (2). Conversely, given

phenotype. A seven-gene probabilistic Boolean networkeho feasibl : .

.. . turbat triX € D t thatC' — C T.
of the melanoma network containing the genes WNT5A, pirin, casible perturbation matrix < =7 we get tha 0€ -
S100P, RET1, MART1, HADHB, and STC2 was derived in Proof of Proposition 2. From Proposition 1, the op-

ation problem in (6) is equivalent to minimizing the

[8]. Note that the Human melanoma Boolean network consiﬂﬁ]iz
robenius norm of(Cy + V) subject toV e T. It is

of 27 = 128 states ranging from0---0 to 11--- 1, where the
states are ordered as WNTS5A, pirin, S100P, RET1, MART traightforward that the solution to this problem is

HADHB, and STC2, with WNT5A and STC2 denoted by the
most significant bit (MSB) and least significant bit (LSB), V= -C}. (12)
respectively. The probability transition matrix of the Ham « _ AT
melanoma network, used in this paper, is courtesy of D'I;hergiggef,%’f L_ergoma fo .Consider the line(ps, po). Let H.
Ranadip Pal. : L F2): !
We consider the (fictitious) desired steady-state distidbu é(:gzg";_{;) .II_Ohee;hj hﬂzzz;pgaenteo ('sl:teh(ljgf(t) noa;;l{@(ls’ epeQ)F?g; b 11)
3 f2) 1 1 1 . 1

where the probability of the states having WNT5A upregulat . . . o
is 104 and the probability of the other states, which corrltherwise some point strictly inside the segmgnt po[C T

spond to WNT5A downregulated is chosen randomly such th Il be closer toz, thanp,. Similarly, z> must be to the right
o ; . Of Ho. Therefore|x1 — x2|| > |lp1 — p2|. [ |

the total probability mass is equal to 1 (see Fig. 2(c)). Qlese Proof of Proposition 3: From proposition 2, we have

that the states from 0 to 63 have WNT5A downregulated ' ’

(0) and hence are desirable states, as compared to states Cr—C* = (Ch—C)y—(Cy—Ch) (12)

64 to 127 that have WNTSA upregulated (1) and hence = (Co—Co)+ (CF M) (13)

are undesirable. The probability transition matrices of th 5P +(C,I‘ ) (14)

Human melanoma networks corresponding to the original and 0 0 0/

perturbed networks are portrayed in Fig. 2(a) and Fig. 2(l)et £ be the subspace defined by the two equality constraints,

respectively. Note that the controlled and desired stesdie i.e.,£ = {V € M :V1=0,Vinr; = 0}. Let us consider the

distributions are identical. Figures 2(d) and 2(e) show thliecomposition o6 P, as

matricesé P, and §C*, respectively. In this simulationjF, i

is the zero-row sum matrix having only two non-zero entries 0Py =05 + 6P, (15)

in each row, equal te;, —¢;, 1 < i < n, wheree; is wheres P§ anddP¢ are, respectively, the projections &P,

chosen such thaty = Py + 6F is a proper probability onto the subspacé and its orthogonak-. Then Eq. (14)

transition matrix, i.e.,P, is stochastic with positive entries.necomes

We verify the stability of the inverse perturbation solatjo . A < et - -

i.e., [|6C%||F = 2.6690 < ||6P||r = 4.8149, as displayed in C"=C" =0y + 0Py +(Cy = Cy). (16)

Fig. 2(f). This simulation has been implemented in MATLAB et ys further decomposeP? into the subspaces parallel and

and the (strictly) convex optimization problem in (6) hagie orthogonal toCl — CF, ie.,

solved using the CVX software for convex optimization [9].

SP5 = 6Pyj + 0P (17)
VI. CONCLUSION We have
We developed a mathematical framework for the solution A N
p P8 +C5 —ChIP = [0R + RS +Ch - b

of the optimal inverse perturbation problem for irredueibl
Markov chains. Our aim was to derive a minimal-perturbation

18P} + Cg = CE 11> + 5P |I*.
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Initial and controlled probability transition mates for the Human melanoma gene regulatory network: Theixnplbts are obtained using the

function MatrixPlot in MATHEMATICA. The color of entries varies from white to rezbrresponding to the values of the entries in the range wf 1: (a)
the probability transition matrix of the original melanomatwork Py; (b) the optimal perturbed probability transition matik‘; (c) The original (red line),
desired (blue line), and minimal-perturbation energy waled (green line) steady-state distributions of the Homaelanoma gene regulatory network. The
z-axis represents the 128 states of the network, and,theis indicates the probability of each state; (d) The oagierrord Py; (e) the inverse perturbation
solution error§C*; (f) The Frobenius norms of Py and 5C*.
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Fig. 3. Graphical illustration of the proof of Proposition 3

From Lemma 1 and given théPoﬁ is in the opposite direction

asC} — C (see Fig. 3), we have

l6Pof + Cf = G5 II* < [l Pof |1

Therefore,

I8P5 + C§ — Co' 1> < ISPoffII* + 6P [1% = [16P 1%,

Finally, Eq. (16) becomes

lc* —C)?

IN

|6PE + 6PE" + CF — CF |12

(18)

(19)

~ L
I6P5 +Cg = Co 1> + 6P |I* (20)

L
8PS 11 + [I6F5 |12 = 6P

(21)
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