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Abstract

It is widely accepted that cellular requirements and environmental conditions dictate the architecture of genetic

regulatory networks. Nonetheless, the status quo in regulatory network modeling and analysis assumes an invariant

network topology over time. In this paper, we refocus on a dynamic perspective of genetic networks, one that can

uncover substantial topological changes in network structure during biological processes such as developmental

growth.

We propose a novel outlook on the inference of time-varying genetic networks, from a limited number of noisy

observations, by formulating the networks estimation as a target tracking problem. We overcome the limited

number of observations (small n large p problem) by performing tracking in a compressed domain. Assuming

linear dynamics, we derive the LASSO-Kalman smoother, which recursively computes the minimum mean-square

sparse estimate of the network connectivity at each time point. The LASSO operator, motivated by the sparsity

of genetic regulatory networks, allows simultaneous signal recovery and compression, thereby reducing the amount

of required observations. The smoothing improves the estimation by incorporating all observations. We track the

time-varying networks during the life cycle of the Drosophila Melanogaster. The recovered networks show that

few genes are permanent, whereas most are transient, acting only during specific developmental phases of the

organism
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1 Introduction
1.1 Motivation

A major challenge in systems biology today is to understand the behaviors of living cells from the dynamics

of complex genomic regulatory networks. It is no more possible to understand the cellular function from

an informational point of view without unraveling the underlying regulatory networks than to understand

protein binding without knowing the protein synthesis process. The advances in experimental technology

have sparked the development of genomic network inference methods, also called reverse-engineering of ge-

nomic networks. Most popular methods include (probabilistic) Boolean networks [1,2], (dynamic) Bayesian

networks [3–5] information-theoretic approaches [6–9] and differential equation models [10–12]. A compar-

ative study is compiled in [13]. The DREAM (Dialogue on Reverse Engineering Assessment and Methods)

project, which built a blind framework for performance assessment of methods for gene network inference,

showed that there is no single inference method that performs optimally across all data sets. In contrast,

integration of predictions from multiple inference methods shows robust and high performance across diverse

data sets [14].

These methods, however, estimate one single network from the available data, independently of the

cellular “themes” or environmental conditions under which the measurements were collected. In signal

processing, it is senseless to find the Fourier spectrum of a non-stationary time series [15]. Similarly, time-

dependent genetic data from dynamic biological processes such as cancer progression, therapeutic responses

and developmental processes, cannot be used to describe a unique time-invariant or static network [16],

[17]. Inter and intracellular spatial cues affect the course of events in these processes by rewiring the

connectivity between the molecules to respond to specific cellular requirements, e.g., going through the

successive morphological stages during development. Inferring a unique static network from a time-dependent

dynamic biological process results in an “average” network that cannot reveal the regime-specific and key

transient interactions that cause cell biological changes to occur. For a long time, it has been clear that the

evolution of the cell function occurs by change in the genomic program of the cell, and it is now clear that

we need to consider this in terms of change in regulatory networks [16], [17].

1.2 Related Work

While there is a rich literature on modeling static or time-invariant networks, much less has been done

towards inference and learning techniques for recovering topologically rewiring networks. In 2004, Luscombe

et al. made the earliest attempt to unravel topological changes in genetic networks during a temporal
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cellular process, or in response to diverse stimuli [17]. They showed that, under different cellular conditions,

transcription factors, in a genomic regulatory network of Saccharomyces cerevisiae, alter their interactions to

varying degrees, thereby rewiring the network. Their method, however, is still based on a static representation

of known regulatory interactions. To get a dynamic perspective, they integrated gene expression data for five

conditions: cell cycle, sporulation, diauxic shift, DAN damage and stress response. From these data, they

traced paths in the regulatory network that are active in each condition using a trace-back algorithm [17].

The main challenge facing the community in the inference of time-varying genomic networks is the

unavailability of multiple measurements of the networks or multiple observations at every instant t. Usually,

one or at most a few observations are available at each instant. This leads to the “large p small n” problem,

where the number of unknowns is smaller than the number of available observations. The problem may seem

ill-defined because no unique solution exists. However, we will show that this hurdle can be circumvented

by using prior information.

One way to ameliorate this data scarcity problem is to presegment the time-series into stationary epochs,

and infer a static network for each epoch separately [18, 18–23]. The segmentation of the time-series into

stationary pieces can be achieved using several methods including estimation of the posterior distribution

of the change points [19], HMMs [20], clustering [18], detecting geometric structures transformed from time

series [21], MCMC sampling algorithm to learn the times of non-stationarities (transition times) [23], [22].

The main problem with the segmentation approach for estimating time-varying gene networks is the limited

number of time points available in each stationary segment, which is a subset of the already limited data.

Since the time-invariant networks are inferred in each segment using only the data points within that segment

and disregarding the rest of the data, the resulting networks are limited in terms of their temporal resolution

and statistical power.

A semi-flexible model based on a piecewise homogeneous dynamic Bayesian network, where the network

structure in each segment shares information with adjacent segments, was proposed in [24]. This setting

allows the network to vary gradually through segments. However, some information is lost by not considering

the entire data samples for the piecewise inference. A more flexible model of time-varying Bayesian networks

based on a non parametric Bayesian method for regression was recently proposed in [25]. The nonparametric

regression is expected to enable capturing nonlinear dynamics among genes [24]. However, a full-scale study

of a time-varying system was lacking; the approach was only tested on an 11-gene Drosophila melanogaster

network.

Full resolution techniques, which allow a time-specific network topology to be inferred from samples
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measured over the entire time series, rely on model-based approaches [26], [27]. However, these methods

learn the structure (or skeleton) of the network but not the detailed strength of the interactions between the

nodes. Dynamic Bayesian networks (DBNs) have been extended to the time varying case [28], [29], [30], [31].

Among the earliest models is the time varying autoregressive (TVAR) model [29], which describes nonsta-

tionary linear dynamic systems with continuously changing linear coefficients. The regression parameters

are estimated recursively using a normalized least-squares algorithm. In time-varying DBNs (TVDBN), the

time-varying structure and parameters of the networks are treated as additional hidden nodes in the graph

model [28].

In summary, the current state-of-the-art in time-varying network inference relies on either chopping the

time-series sequence into homogeneous subsequences [18–23, 32–35] (concatenation of static networks) or

extending graphical models to the time-varying case [28–31] (time modulation of static networks).

1.3 Proposed Work and Contributions

In this paper, we propose a novel formulation of the inference of time-varying genomic regulatory networks as

a tracking problem, where the target is the set of incoming edges for a given gene. We show that the tracking

can be performed in parallel: there are p independent trackers, one for each gene in the network; thus avoiding

the curse of dimensionality problem and reducing the computation time. Assuming linear dynamics, we use

a constrained and smoothed Kalman filter to track the network connections over time. At each time instant,

the connections are characterized by their strength and sign, i.e., stimulative or inhibitive. The sparsity

constraint allows simultaneous signal recovery and compression, thereby reducing the amount of required

observations. The smoothing improves the estimation by incorporating all observations for each smoothed

estimate. The paper is organized as follows: In Section 2, we formulate the networks inference problem

in a state-space framework, where the target state, at each time point, is the network connectivity vector.

Assuming linear dynamics of gene expressions, we further show that the model can be decomposed into p

independent linear models, p being the number of genes. Section 3 derives the LASSO-Kalman smoother,

which renders the optimal network connectivity at each time point. The performance of the algorithm is

assessed using synthetic data in Section 4. The LASSO-Kalman smoother is subsequently used to recover the

time-varying networks of the Drosophila Melanogaster during the time course of its development spanning

the embryonic, larval, pupal and adulthood periods.
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2 The State-Space Model

Static gene networks have been modeled using a standard state-space representation, where the state xk

represents the gene expression values at a particular time k and the microarray data yk constitutes the set of

noisy observations [36], [37]. A naive approach to tackle the time-varying inference problem is to generalize

this representation of time-invariant networks, and augment the gene profiles state vector by the network

parameters at all time instants. This approach, however, will result in a very poor estimate due to the large

number of unknown parameters. Instead, we propose to re-formulate the state-space model as a function of

the time-varying connections or parameters rather than the gene expression values. In order to do so, we

need to model the time evolution of the parameters using, for instance, prior knowledge about the biological

process. Denoting by ak the network parameters to be estimated, the state-space model of the time-varying

network parameters can be written as

a(k + 1) = fk(a(k)) +w(k), (1)

y(k) = gk(a(k)) + v(k). (2)

The function fk models the dynamical evolution of the network parameters, e.g., smooth evolution or abrupt

changes across time. The observation function gk characterizes the regulatory relationships among the genes,

and can be, for instance, derived from a differential equation model of gene expression (see Eq. (8)). In

particular, observe that the state-space model in (1)-(2) does not incorporate the “true” gene expression

values, which have to be estimated and subsequently discarded. It only includes the measured gene expression

values with an appropriate measurement noise term.

2.1 The Observation Model

We model the concentrations of mRNAs, proteins, and other molecules using a time-varying ordinary differ-

ential equation (ODE). More specifically, the concentration of each molecule is modeled as a linear function

of the concentrations of the other components in the system. The time-dependent coefficients of the linear

ODE capture the rewiring structure of the network. We have

ẋi(t) = −λi(t)xi(t) +

p
∑

j=1

wij(t)xj(t) + biu(t) + vi(t), (3)

where i = 1, · · · , p, p being the number of genes, xi(t) is the expression level of gene i at time t, ẋi(t) is

the rate of change of expression of gene i at time t, λi is the self degradation rate, wij(t) represents the

time-varying influence of gene j on gene i, bi is the effect of the external perturbation u(t) on gene i and
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vi(t) models the measurement and biological noise. The goal is to infer the time-varying gene interactions

λi(t), {wij(t)}
p
i,j=1, given a limited number of measurements n < p.

To simplify the notation, we absorb the self degradation rate λi(t) into the interaction parameters by

letting aij(t) = wij(t) − λi(t)δij , where δij is the Kronecker delta function. The external perturbation is

assumed to be known. The model in (3) can be simplified by introducing a new variable

yi(t) = ẋi(t)− biu(t). (4)

The discrete-time equivalent of (3) can, therefore, be expressed as

yi(k) =

p
∑

j=1

aij(k)xj(k) + vi(k), i = 1, · · · , p, k = 1, . . . , n. (5)

Writing (5) in matrix form, we obtain

y(k) = A(k) x(k) + v(k), (6)

where y(k) = [y1(k), . . . , yp(k)]
T , A(k) = {aij(k)} is the matrix of time-dependent interactions, x(k) =

[x1(k), . . . xp(k)]
T and v(k) = [v1(k), . . . , vp(k)]

T .

Let 1 ≤ mk < p be the number of available observations at time k. Taking into account all mk observa-

tions, Eq. (6) becomes

Y(k) = A(k) X(k) +V(k), (7)

where Y (k),X(k) and V (k) ∈ R
p×mk with the mk observations ordered in the columns of the corresponding

matrices.

The linear model in Eq. (7) can be decomposed into p independent linear models as follows:

yt
i(k) = at

i(k)X(k) + vt
i(k), (8)

where yt
i(k),a

t
i(k) and vt

i(k) are the i
th rows of Y (k),A(k) and V (k), respectively. In particular, the vector

ai(k) represents the set of incoming edges to gene i at time k. Equation (8) represents the observation

equation for gene i.

2.2 The Linear State-Space Model

The state equation models the dynamics of the state vector ai(k) given a priori knowledge of the system. In

this work, we assume a random walk model of the network parameters. The random walk model is chosen

for two reasons. First, it reflects a flat prior or a lack of a priori knowledge. Second, it leads to a smooth

6



evolution of the state vector over time (if the variance of the random walk is not very high). The state space

model of the incoming edges for gene i is, therefore, given by







ai(k + 1) = ai(k) +wi(k)

yi(k) = Xt(k)ai(k) + vi(k),
(9)

where i = 1, · · · , p, wi(k) and vi(k) are, respectively, the process noise and the observation noise, assumed

to be zero mean Gaussian noise processes with known covariance matrices, Q(k) and R(k), respectively. In

addition, the process and observation noise are assumed to be uncorrelated with each other and with the

state vector ai(k). In particular, we have p independent state-space models of the form (9) for i = 1, · · · , p.

Thus, the connectivity matrix A can be recovered by simultaneous recovery of its rows. Another important

advantage of the representation in (9) is that the state vector ai(k) has dimension p (the number of genes

in the network) rather than p2 (the number of possible connections in the network); thus avoiding the curse

of dimensionality problem. For instance, in a network of 100 genes, the state vector will have dimension 100

instead of 10,000! Though the number of genes p can be large, we show in simulations that the performance

of the Kalman tracker is unchanged for p as large as 5000 genes by using efficient matrix decompositions to

find the numerical inverse of matrices of size p. A graphical representation of the parallel architecture of the

tracker is shown in Fig. 1.

It is well known that the minimum mean square estimator, which minimizes E[‖a(k) − â(k)‖22], can be

obtained using the Kalman filter if the system is observable. If the system is unobservable, then the classical

Kalman filter cannot recover the optimal estimate. In particular, it seems hopeless to recover ai(k) ∈ R
p

in (9) from an under-determined system where mk < p. Fortunately, this problem can be circumvented by

taking into account the fact that ai(k) is sparse. Genomic regulatory networks are known to be sparse: each

gene is governed by only a small number of the genes in the network [11].

3 The LASSO-Kalman Smoother
3.1 Sparse Signal Recovery

Recent studies [38], [39] have shown that sparse signals can be exactly recovered from an under-determined

system of linear equations by solving the optimization problem

min ‖ẑ‖0 s.t. ‖y −Hẑ‖22 ≤ ǫ, (10)
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Figure 1: The LASSO-Kalman Smoother tracker. Top row: parallel architecture of the tracker. The
tracking is performed for each gene separately to find its incoming edges. The connectivity matrix A(k) =
[at

1; · · · ;a
t
p]. Bottom row: the LASSO-Kalman smoother: the prior estimate is predicted to give ak|k−1.

The filter is updated with the observations to give the unconstrained estimate ak|k. The projection operator
projects this estimate to enforce the constraint. This procedure is repeated for all time steps k = 1, · · · , n.
Then a forward-backward smoother is applied to reduce the covariance of the estimate and lead to the final
constrained and smoothed estimate.
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for a sufficiently small ǫ and where the l0-norm, ‖z‖0, denotes the support of z or the number of non-zero

elements in z. The optimization problem in (10) can be extended to the stochastic case as follows

min ‖ẑ‖0 s.t. Ez|y[‖z − ẑ‖22] ≤ ǫ. (11)

Unfortunately, the above optimization problem is, in general, NP hard. However, it has been shown that if the

observation matrix H obeys the restricted isometry property (RIP), then the solution of the combinatorial

problem (10) can be recovered by solving instead the convex optimization problem

min ‖ẑ‖1 s.t. ‖y −Hẑ‖22 ≤ ǫ. (12)

This is a fundamental result in the emerging theory of compressed sensing(CS) [38], [39]. CS reconstructs

large dimensional signals from a small number of measurements, as long as the original signal is sparse

or admits a sparse representation in a certain basis. Compressed sensing has been implemented in many

applications including digital tomography [38], wireless communication [40], image processing [41] and camera

design [42]. For a further review of CS, the reader can refer to [38], [39].

Inspired by the compressed sensing approach given that genomic regulatory networks are sparse, we

formulate a constrained Kalman objective

min
ẑ

Ez|y

[

‖z − ẑ‖22
]

s.t. ‖ẑ‖1 ≤ ǫ. (13)

The constrained Kalman objective in (13) can be seen as the regularized version of least squares known

as least absolute shrinkage and selection operator (LASSO) [43], which uses the l1 constraint to prefer

solutions with fewer non-zero parameter values, effectively reducing the number of variables upon which the

given solution is dependent. For this reason, the LASSO and its variants are fundamental to the theory of

compressed sensing.

3.2 Constrained Kalman Filtering

Constrained Kalman filtering has been mainly investigated in the case of linear equality constraints of the

form Dx = d, where D is a known matrix and d is a known vector [44]. The most straightforward method

to handle linear equality constraints is to reduce the system model parametrization [45]. This approach,

however, can only be used for linear equality constraints and cannot be used for inequality constraints (i.e.,

constraints of the form Dx ≤ d). Another approach is to treat the state constraints as perfect measurements

or pseudo-observations (i.e., no measurement noise) [46]. The perfect measurements technique applies only
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to equality constraints as it augments the measurement equation with the constraints. The third approach

is to project the standard (unconstrained) Kalman filter estimate onto the constraint surface [44]. Though

non-linear constraints can be linearized and then treated as perfect observations, linearization errors can

prevent the estimate from converging to the true value. Non-linear constraints are, thus, much harder to

handle than linear constraints because they embody two sources of errors: truncation errors and base point

errors [47], [48]. Truncation errors arise from the lower order Taylor series approximation of the constraint,

whereas base point errors are due to the fact that the filter linearizes around the estimated value of the

state rather than the true value. In order to deal with these errors, iterative steps were deemed necessary to

improve the convergence towards the true state and better enforce the constraint [47], [48], [49]. The number

of necessary iterations is a tradeoff between estimation accuracy and computational complexity.

In this work, the non-linear constraint is the l1-norm of the state vector. We adopt the projection

approach, which projects the unconstrained Kalman estimate at each step onto the set of sparse vectors,

as defined by the constraint in (13). Denoting by ã the unconstrained Kalman estimate, the constrained

estimated, â, is then obtained by solving the following (convex) LASSO optimization

â = argmin
a

‖ã− a‖22 + λ‖a‖1, (14)

where λ is a parameter controlling the tradeoff between the residual error and the sparsity. This approach

is motivated by two reasons: First, we found through extensive simulations that the projection approach

leads to more accurate estimates than the iterative pseudo-measurement techniques (PM) in [47], [48], [49].

Additionally, the sparsity constraint is controlled by only one parameter, namely λ, whereas in PM, the

number of iterations is a second parameter that needs to be properly tuned and presents a tradeoff between

accuracy and computational time. Second, for large-scale genomic regulatory networks (few thousands

of genes), the iterative PM approaches render the constrained Kalman tracking problem computationally

prohibitive.

3.3 The LASSO-Kalman Smoother

The Kalman filter is causal, i.e., the optimal estimate at time k depends only on past observations {y(i), i ≤

k.In the case of genomic measurements, all observations are recorded and available for post-processing. By

using all available measurements, the covariance of the optimal estimate can be reduced; thus improving the

accuracy. This is achieved by smoothing the Kalman filter using a forward-backward approach [44]. The

forward-backward approach obtains two estimates of a(j). The first estimate, âf , is based on the standard

10



Kalman filter that operates from k = 1 to k = j. The second estimate, âb, is based on a Kalman filter

than runs backward in time from k = n back to k = j. The forward-backward approach combines the two

estimates to form an optimal smoothed estimate. The LASSO-Kalman smoother algorithm is summarized

below (see also Fig. 1).

The LASSO-Kalman Smoother algorithm:

1. Initialization: Initialize the state vector a0|0 = â and state estimation error covariance V 0|0 = 0.

2. Constrained Kalman Filtering: For k = 1, · · · , n, do

• Prediction:

ak|k−1 = ak−1|k−1 (15)

V k|k−1 = V k−1|k−1 +Qk (16)

• Filtering:

Kk = V k|k−1Xk(X
t
kV k|k−1H

t
k +Rk)

−1, (17)

ak|k = ak|k−1 +Kk(yk −Xt
kak|k−1), (18)

V k|k = (I −KkX
t
k)V k|k−1. (19)

• Projection: Project the estimated state onto a sparse space by solving the LASSO problem in
(14).

3. Smoothing: Smooth the estimate ak|n as follows

Φk = V k|kV
−1

k+1|k, (20)

ak|n = ak|k +Φk(ak+1|n − ak+1|k), (21)

V k|n = V k|k +Φk(V k+1|n − V k+1|k)Φ
t
k. (22)

4 Results and Discussion
4.1 Synthetic Data

In order to assess the efficacy of the proposed LASSO-Kalman smoother in estimating the connectivity of

time-varying networks, we first perform Monte Carlo simulations on generated data to assess the prediction

error using the following criterion

‖aij − âij‖ ≤ α|aij | (23)

Where aij is the (i, j)th true edge value and âij is the corresponding predicted edge value. The criterion

in (23) counts an error if the estimated edge value is outside an α-vicinity of the true edge value. In our

simulations, we adopted a value of α equal to 0.2. That is, the error tolerance interval is ±20% of the true
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value. The percentage of total correct or incorrect edges in a connectivity matrix is used to determine the

accuracy of the algorithm.

We first investigate the effect of the network size on the estimation error. We generate networks of different

sizes according to the model in (7), and calculate the prediction error. Figure 2a shows the prediction error

as a function of the network size with a number of measurements equal to 70% the network size p. We

observe that the network estimation error is about constant between p = 100 to p = 1000, and is thus

unaffected by how large the network is, at least for networks of size few thousand genes. The reason for this

outcome may be the linear increase of the size vector with the number of genes, which is due to the splitting

of the original connectivity estimation problem (p2 parameters) into p smaller problems, that can be solved

simultaneously.

(a) Error v.s. number of genes (b) Error v.s. number of observations

Figure 2: (a) Effect of the network size on the prediction error; (b) Effect of the number of observations on
the prediction error

We subsequently investigated the effect of the number of measurements m on the prediction accuracy.

Fig 2b shows the prediction error as a function of the number of observations for a network of size p = 100.

The estimation error seems to be constant up to 50 measurements then decreases rapidly as the number

of observations increase to 100. But even for a small number of observations (10% of the network size),

the estimation error is fairly small (less than 18 %). This is an important result because in real-world

applications the number of available observations is very limited. We believe that the reason the error

stays about constant for a small number of measurements (up to 50) is due to the good initial condition

that is adopted in these simulations (see below for details on the estimation of the initial condition). For

randomly chosen initial conditions, the LASSO-Kalman smoother takes a longer time, and thus requires

more observations, to converge.

Figure 3 shows a ten-gene directed time-varying network over five time points (3(a)). For each time point,
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(a) Time-varying true network evolving over five time points, with seven observations available per time point.

(b) Estimated time-varying network using the LASSO-Kalman smoother.

(c) Estimated time-varying network using the LASSO-Kalman filter (no smoothing)

(d) Estimated time-varying network using the classical Kalman filter.

Figure 3: Tracking of a 10-gene network evolving over five time points, with seven observations or measure-
ments available at each time point.
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we assume that seven observations are available. The thickness of the edge indicates the strength of the

interaction. Blue edges indicate stimulative interactions, whereas red edges indicate repressive or inhibitive

interactions. In order to show the importance of the LASSO formulation and the smoothing, we track the

network using the classical Kalman filter (3(d)), the LASSO online Kalman filter (3(c)) and the LASSO

Kalman smoother (3(b)). It can be seen that the LASSO constraint is essential in imposing the sparsity

of the network, hence significantly reducing the false positive rate. The smoothing improves the estimation

accuracy by reducing the variance of the estimate.

In order to obtain a more meaningful statistical evaluation of the proposed LASSO-Kalman, we randomly

generated 10,000 sparse ten-gene networks evolving over five time points. The true positive (TP), true

negative (TN), false positive (FP), false negative (FN) rates as well as the sensitivity, specificity, accuracy

and precision are shown in Table 1. The results reported in Table 1 do not take into account the sign or

strength of the interactions, but consider only the presence or absence of an interaction between two genes.

Observe that the TP rate of the classical Kalman filter is high because the Kalman filter is very dense and

contains many spurious connections. This leads to an “artificially” high sensitivity (97% ability to detect

edges) but a very low specificity (50% ability to detect the absence of an interaction or sparsity) for the

Kalman filter. The smoothed LASSO-Kalman results in a sparser network, missing more edges than the

unsmoothed LASSO-Kalman. In particular, the FP rate of the smoothed LASSO-Kalman is higher than

its unsmoothed counterpart; but the FN rate of the smoothed LASSO-Kalman is lower, resulting in less

spurious connections.

TP TN FP FN sensitivity specificity accuracy precision
Classical Kalman 71.06% 13.60% 13.11 % 2.22% 0.97 0.50 0.85 0.84
Unsmoothed LASSO-Kalman 80.21% 11.52% 4.32% 3.93% 0.95 0.72 0.91 0.94
Smoothed LASSO-Kalman 81.11% 10.21% 5.63% 3.02% 0.96 0.64 0.91 0.93

Table 1: Performance analysis of the smoothed LASSO-Kalman, unsmoothed LASSO-Kalman and the
classical Kalman filter.

Estimation of λ: Equation (14) introduces the penalty parameter λ. This parameter controls the sparsity

of the resulting estimate, and hence a correct estimate of λ is of paramount importance. Tibshirani [43]

enumerates three methods for the estimation of the sparsity parameter: cross-validation, generalized cross-

validation and an analytical unbiased estimate of risk. The first two methods assume that the observations

(X , Y ) are drawn from some unknown distribution, and the third method applies to the X-fixed case. We

adopt the second approach with a slight variation to improve the estimation accuracy. As proposed in [43],
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(a) Evolution of degree distribution (b) Evolution of clustering coefficient

Figure 4: Temporal network characteristics: (a) Evolution of the degree distribution using its power law
exponent; (b) Evolution of the clustering coefficients for each snapshot of the temporal network.

this method is based on a linear approximation of the LASSO estimate by the ridge regression estimator.

In this paper, instead of calculating the ridge regression estimate as an approximation to the LASSO, we

calculate the actual LASSO and determine the number of its effective parameters in order to construct the

generalized cross-validation style statistic. The sparsity of the constrained solution is directly proportional

to the value of λ. If λ is small, the solution will be less sparse and if it is large, the solution will be very

sparse. At the limit, when λ −→ ∞, the solution to (14) is the zero vector. To find the optimum value for λ

for the specific data at hand, we compute the generalized cross-validation statistic for different values of λ

with a coarse step size to determine the neighborhood of the optimum value of λ. Then, we perform a finer

search in this neighborhood to find the optimal λ for the data. This two-step procedure finds an accurate

estimate of λ while keeping the computational cost low.

Estimation of the initial condition: The fact that very few observations are available (at each time point)

implies that the Kalman filter may take considerable time to converge to the true solution. To make the

tracker converge faster, we generate an initial condition based on the maximum likelihood estimate of the

static network, as proposed in [11]. This gives the Kalman filter the ability to start from an educated guess

of the initial state estimate, which will increase the convergence time of the filter and hence its estimation

accuracy over time.

4.2 Time-Varying Gene Networks in Drosophila Melanogaster

A genome-wide microarray profiling of the life cycle of the Drosphila melanogaster revealed the evolving

nature of the gene expression patterns during the time course of its development [50]. In this study, cDNA
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microarrays were used to analyze the RNA expression levels of 4028 genes in wild-type flies examined during

66 sequential time periods beginning at fertilization and spanning embryonic, larval, pupal and the first 30

days of adulthood. Since early embryos change rapidly, overlapping 1-hour periods were sampled; adults

were sampled at multiday intervals [50]. The time points span the embryonic (samples 1-30; time E01h till

E2324h ), larval (samples 31-40; time L24h till L105h), pupal (samples 41-58; M0h till M96h) and adulthood

(samples 59-66; A024h till A30d) periods of the organism.

Figure 5: Gene degree connectivity ordered
by onset of their first increase. Each row
represents data for one gene, and each col-
umn is a developmental time point; blue in-
dicates low degrees and red indicates high
degrees.

Costello et al. [51] normalized the Arbeitman et

al. raw data [50] using the optimized local intensity-

dependent normalization (OLIN) algorithm [52]. De-

tails of the normalization protocol can be found at

http://www.sciencemag.org/content/suppl/2002/09/

26/297.5590.2270.DC1/ArbeitmanSOM.pdf. In their pro-

cedure, a gene may be flagged for several reasons: the

corresponding transcript not being expressed under the

considered condition, the amplification of the printed cDNA

was reported as “failed” in the original data, or the data

is missing for technical reasons. A statistical test was

also conducted to determine if the expression of a labeled

sample is significantly above the distribution of background

values. Spots with a corrected p-value greater than 0.01 were

considered absent (or within the distribution of background

noise). In this study, we downloaded the Costello et al.

dataset [51] and considered the unflagged genes only, which

amount to a total of 1863 genes.

The LASSO-Kalman smoother was used to estimate 21

dynamic gene networks, one per 3 time points, during the

life cycle of Drosophila melanogaster. Figure 4 shows the

estimated networks, where edges with absolute strength less

than 10−3 were set to zero. The networks were visualized in Cytoscape using a force-directed layout [53].

Markov clustering [54] was used to identify clusters within each network. Clusters containing more than

thirty gene were tested for functional enrichment using the BiNGO plugin for Cytoscape [55]. The Gene
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Ontology term with the highest enrichment in a particular cluster was used to label the cluster on the

network. The changing connectivity patterns are an evident indication of the evolution of gene connectivity

over time.

Figure 5 shows the evolution of the degree connectivity of each gene as a function of time. This plot

helps visualize the hubs (high degree nodes) at each time point; and shows which genes are active during

the phases of the organism’s development. It is clear that certain genes are mainly active during specific

developmental phases (transient genes), whereas others seem to play a role during the entire developmental

process (permanent genes).

We quantified the structural properties of the temporal network by its degree distribution and clustering

coefficient. We found that the degree distribution of each snapshot network follows a power law distribution,

which indicates that the networks self-organize into a scale-free state (a global property). The power law

exponents of the snapshot networks are plotted in Fig. 4(a). The clustering coefficient, shown in Fig.

4(b), measures the cliquishness of a typical neighborhood (a local property) or the degree of coherence inside

potential functional modules. Interestingly, the trends (maximums and minimums) of the degree distribution

and the clustering coefficients over time corroborate the results in [56], except for the clustering coefficient

during early embryonic period. The LASSO-Kalman found a small clustering coefficient in early embryonic,

whereas the model-based Tesla algorithm in [56] reported a high clustering coefficient for that phase.

To show the advantages of dynamic networks over a static network, we compared the recovered interac-

tions against a list of known undirected gene interactions hosted in Flybase. The LASSO-Kalman algorithm

was able to recover 1065 gene interactions (ignoring all interactions smaller or equal than 10−3). The static

network, computed as one network across all time periods using the algorithm in [11], recovers 248 inter-

actions. Using the segmentation approach, we also computed four networks, where each network uses the

number of samples in each developmental phase of the organism (embryonic, larval, pupal and adulthood).

The embryonic-stage network uses the 30 time points sampled during the embryonic phase, and recovers

121 interactions. The larval-stage network uses the 9 time points available for the larval phase, and recovers

28 known interactions. The pupal-stage network uses 18 time points collected during the pupal period, and

recovers 125 interactions. The adult-stage network utilizes 8 time points sampled during adulthood, and

recovers 41 interactions. Hence, in total, the segmentation approach recovers 315 interactions. The dynamic

networks of Tesla [56] were able to recover 96 known interactions. We mention that, in [56], the network

size was 4028 genes, whereas we considered a subset of 1863 unflagged genes. Thus, Tesla’s recovery rate is

2.4%, whereas LASSO-Kalman recovery rate is 57.2%. The low recovery rate of Tesla in [56] may be due to
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the presence of spurious samples since flagged genes were included in the networks.

4.3 High Performance Computing Implementation

Figure 6: High Performance Computing Implementation

The proposed LASSO-Kalman smoother

algorithm was first tested and validated

in MATLAB. Subsequently, a High Per-

formance Computing (HPC)-based imple-

mentation of the algorithm was developed

to allow a large number of genes. Each H-

PC core computes the interactions of one

gene at a time. The communication be-

tween the individual processes is coordi-

nated by the Open Message Passing Inter-

face (Open MPI). Due to the large-scale

of the problem, both the Intel(R) C++

Compiler and the Intel(R) Math Kernel

Library (Intel(R) MKL) were used on a

Linux-based platform for maximum per-

formance. This approach enabled an im-

plementation that is highly efficient, in-

herently parallel and has built-in support for the HPC architecture. The implementation starts by the main

MPI process spawning the child processes: each child process is assigned an individual gene to compute,

based on the gene expression data that is made available to it using the file system. The child process returns

the computed result to the main process, which then assigns the next gene until all genes are processed.

Finally, the master process compiles the computed results in a contagious matrix. Figure 6 summarizes the

HPC implementation process. The memory requirement of the algorithm, however, is still high. At each

time point, two p× p covariance matrices must be stored and computed (the a priori and a posteriori error

covariance matrices), where p is the number of genes. In order to alleviate the memory requirement, we

used a memory mapped file, which swaps the data between the local disk and the memory. We used the

Razor II HPC system at the Arkansas High Performance Computing Center (AHPCC) at the University

of Arkansas at Fayetteville. The AHPCC has sixteen cores per node, with 32 Giga Bytes of memory; each
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node is interconnected using a 40 Gbps QLogic quad-data rate QDR InfiniBand. In our implementation,

we were allowed to use 40 such nodes at a given time. This implementation is scalable and supports a

larger number of genes for future investigations. Further details of the implementation are available at

http://users.rowan.edu/~bouaynaya/EURASIP2014.

5 Conclusion

Due to the dynamic nature of biological processes, biological networks undergo systematic rewiring in re-

sponse to cellular requirements and environmental changes. These changes in network topology are im-

perceptible when estimating a static “average” network for all time points. The dynamic view of genetic

regulatory networks reveals the temporal information about the onset and duration of genetic interactions; in

particular showing that few genes are permanent players in the cellular function while others act transiently

during certain phases or “regimes” of the biological process. It is, therefore, essential to develop methods that

capture the temporal evolution of genetic networks, and allow the study of phase-specific genetic regulation

and the prediction of network structures under given cellular and environmental conditions.

In this paper, we formulated the reverse-engineering of time-varying networks, from a limited number of

observations, as a tracking problem in a compressed domain. Under the assumption of linear dynamics, we

derived the LASSO-Kalman smoother, which provides the optimal minimum mean-square sparse estimate

of the connectivity structure. The estimated networks reveal that genetic interactions undergo significant

rewiring during the developmental process of an organism such as the Drosophila Melanogaster. We anticipate

that these topological changes and phase-specific interactions apply to other genetic networks underlying

dynamic biological processes, such as cancer progression, therapeutic treatment and development.

Finally, we anticipate that the rapid breakthroughs in genomic technologies for measurement and data

collection will make the static representation of biological networks obsolete and establish instead the dynamic

perspective of biological interactions.
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(c) t61 − t63 (adult)

Figure 4: Snapshots of the time-varying networks at 21 time epochs (3 time points for every network) depict-
ing the connectivity patterns between the 1863 genes of the Drosophila melanogaster during its development
cycle. Genes are represented as nodes and interactions as edges. Colored nodes are sets of genes enriched
for Gene Ontology summarized by the indicated terms. The nodes were distributed using a force-directed
layout in Cytoscape.
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