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Abstract—There is ongoing research at the Federal Aviation
Administration (FAA) and other private industries to examine a
concept for delegated separation in multiple classes of airspace
to allow unmanned aircraft systems (UAS) to remain well clear
of other aircraft. Detect and Avoid (DAA) capabilities are one
potential technology being examined to maintain separation.
To evaluate these DAA capabilities, input traffic scenarios are
simulated based on either simple geometric aircraft trajectories
or recorded traffic scenarios and are replayed in a simulator.
However, these approaches are limited by the breadth of the
traffic recordings available. This paper derives a new mathe-
matical algorithm that uses great circle navigation equations in
an Earth spherical model and an accurate aircraft performance
model to generate realistic aircraft encounters in any airspace.
This algorithm is implemented in a program called Encounters
from Actual Trajectories (EnAcT) and uses a number of user
inputs defining the encounter events, called encounter properties.
Given these encounter properties, the program generates two 4-
dimensional flight trajectories that satisfy these properties. This
encounter generator could be used to evaluate DAA systems as
well as initiate research in automation for conflict detection and
resolution.

Index Terms—Aerospace testing, algorithm design and analy-
sis, systems modeling, unmanned aircraft systems.

I. INTRODUCTION

The Federal Aviation Administration (FAA) and private
industry collectively within RTCA Special Committe (SC) 228
are working to define the minimum operational performance
standards (MOPS) for unmanned aircraft systems (UAS) to
allow for safe integration of UAS into the National Airspace
System (NAS). Part of defining the MOPS is ensuring the De-
tect and Avoid Algorithms (DAA) on UAS function properly
to adhere to the See and Avoid requirement of the 14 CFR 91 -
General Operating and Flight Rules imposed by the FAA. The
FAA Federal Aviation Regulation (FAR) requirement of See
and Avoid is essential to safe flight in manned aircraft. See
and Avoid refers to the ability of the pilot to visually scan the
surrounding airspace and determine possible risks. It is then
the pilot’s responsibility to avoid these risks by following the
rules defined in the FAR or by any means in the case of an
emergency. Thus, UASs without a pilot on board the aircraft
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are required to carry DAA systems that comply with 14 CFR
91.

The DAA system provides preventive, corrective, and warn-
ing guidance to the UAS pilot to assist in preventing loss
of separation with other aircraft. These systems have sig-
nificant technical challenges in establishing and maintaining
the relative position of one or more external threats (i.e.
aircraft) during an encounter. The entire DAA system consists
of surveillance sensors used to detect an intruder, tracker to
fuse and filter multiple sources of information to provide one
single track to the DAA algorithm.

To ensure DAA systems are capable of detecting other air-
craft, the systems need to be tested. Evaluating these systems
requires scenarios in which two or more aircraft have a close
encounter with each other. An encounter event can be an event
that has the two or more aircraft lose legal separation with
each other, called a conflict, or can be close to loss of legal
separation, which is called an encounter. Encounter/Conflict
definitions change with the different types of airspaces in the
NAS. In EnRoute (Class A) airspace, separation distances
are usually greater than those in terminal (Class B, C, D,
E) airspaces. The DAA system must be tested with cases of
encounters and conflicts in all airspace types to ensure they
can correctly identify when the UAS may stray too close to
another aircraft. This work focuses on encounters with two
aircraft.

In the NAS, no conflicts exist since the controllers keep
the traffic separated thus preventing the use of unmodified
recorded air traffic. Scenarios need to be generated to be
able to simulate these desired encounters. Current capabilities
of generating rely on simulated input traffic scenarios based
on either simple linear aircraft trajectories or recorded traffic
scenarios [1]–[5]. However, these approaches are either limited
by the simplicity of their models or by the breadth of the
traffic recordings available. Thus, there is a need for more
realistic and complex algorithms to generate a large set of
user specified traffic scenarios.

In the literature, the generation of conflicting aircraft tra-
jectories can be divided into three categories: (1) fitting
probabilistic distributions and statistical models over the range
of encounter variables [6], [7]; (2) using recorded air-traffic
data through time-shifting the flights [1]–[5]; and (3) ad-hoc
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generation of aircraft trajectories for the main purpose of
studying conflict detection. [8]–[12]. Each of these approaches
considers different assumptions and addresses different con-
cerns with regard to what type of conflicts are generated and
why they are needed.

The encounter model in [6], developed by the Massachusetts
Institute of Technology’s (MIT) Lincoln Laboratory, describes
a probabilistic aircraft encounter model. This model is cur-
rently limited to generating encounters in the EnRoute envi-
ronment, where flights are typically cruising and not changing
altitude often. Also, the encounters are all generated at random
(according to the probabilistic properties), and you cannot
specify what kind of encounter you would like to have. MIT
Lincoln Laboratory is currently working on a new encounter
model, but it is not ready for generating encounters at the time
of this publication.

The FAA has traditionally generated aircraft conflicts and
encounters through the use of time-shifting the flights in
a recorded air traffic scenario [1], [2]. These algorithms
consider the recorded flight data of aircraft that have flown
in the NAS, and shift the position of the aircraft in time
to induce encounters. The resulting trajectories contain the
same physical flight position data as the original recorded
traffic data, but the aircraft fly these tracks at new times. A
genetic algorithm was implemented to determine the optimal
time-shift values for each flight in the scenario [3]. Even
though more encounter criteria have been considered [4] and
the algorithm has been improved since its original version
[5], current algorithms only generate encounters from flights
that have existed in the NAS. This prevents the user from
specifying the exact parameters for each conflict, which is
useful for testing specific conditions. These algorithms have
only been tested on EnRoute (Class A) airspace, and not on
data from the terminal environment. These methods would
need to be evaluated for use in terminal environment and have
had limited use beyong en route airspace.

Other studies did not focus on the problem of aircraft con-
flict generation, but considered the issue of conflict detection
or resolution [8]–[12]. Aircraft conflicts in these studies are
typically fixed, and have only examined a subset of conflict
types. The trajectories of these aircraft are typically straight,
and use coordinates based on a flat-Earth system. While the
encounter properties are typically specified, the method in
which they are created is not conducive to generating millions
of encounters in a reasonable time span.

This paper addresses the need to simulate encounter traffic
events for the ultimate aim of testing the DAA capabilities of
UAS in all airspace types. This algorithm output will cover
gaps that exist in the types of encounters that are needed for
testing. Specifically, we propose a new encounter generator
algorithm that uses a spherical Earth model and performance
parameters from EuroControl’s Base of Aircraft Data (BADA)
[13] to generate pairs of 4D trajectories that satisfy a specified
set of encounter event properties. Phase 2 MOPS is looking
at the incorporation of UAS in the terminal airspace, which
this paper intends to address. The generator is formulated as

a constrained optimization problem in a spherical coordinate
system. A program was developed to use this algorithm, called
Encounters from Actual Trajectories (EnAcT).

This paper is organized as followed: In Section II, the
encounter generator is mathematically formulated as a con-
strained optimization problem in a spherical Earth model.
Section III discusses the implementation of the algorithm
within the EnAcT program. Section IV discusses the process
in which the input for the algorithm was set up, and Section
V discusses the results of testing the algorithm. Finally,
concluding remarks are given in Section VI.

II. MATHEMATICAL FORMULATION AND ALGORITHM

We define a conflict between two aircraft: an ownship and
an intruder. The time-varying latitude, longitude, altitude, and
heading of each aircraft are, respectively, denoted by φi(t),
λi(t), hi(t), and θi(t), where i ∈ {0, 1} represents the ownship
when zero and the intruder when one. We also define H(t)
and V (t) to be the horizontal spherical distance and the
vertical distance, respectively, between the aircraft. ∆θ(t) is
the difference in headings of the aircraft at time instant t.

Tangential and normal velocities of the ownship and intruder
are looked up from the Base of Aircraft Data (BADA) aircraft
performance model, which is an aircraft characteristics table
based on aircraft type and altitude. They are represented here
as tangential velocity vi,H and normal velocity vi,V, and are
assumed constant for the duration of the conflict model.

The radius of the spherical Earth is denoted by R. It is
sometimes more convenient to refer to distances and velocities
in their angular forms by dividing through by R. Let δ(t) =
H(t)
R and ωi =

vi,H
R .

For simplicity and without loss of generality, we will assume
that the closest point of approach (CPA) occurs at time t = 0.
The constraints of a given conflict, specified by the user,
are: i) the minimum horizontal and vertical distances at CPA,
denoted as H0 and V0, respectively; ii) the encounter angle
at CPA, which is the difference in initial headings, denoted
by ∆θ0; and iii) the location and heading of the ownship
at CPA. Thus, we have the following conflict requirements:
φ00, λ00, h00, and θ00. Observe that we can uniquely compute
θ10, the initial heading of the intruder at CPA, from θ00 and
∆θ0. Similarly, knowing h00 and V0 uniquely defines h10.
The aim is to construct pairs of four dimensional trajectories,
(t, φi(t), λi(t), hi(t)), representing the ownship and intruder,
that produce the conflict event specified by the three CPA
constraints.

In the sequel, we will drop the time-dependency notation for
clarity, i.e., we will write φ to denote the time-varying latitude
φ(t), and similarly for all other time-dependent variables. We
parameterize the trajectories using the unit normal vector,

N = (cosφ cosλ, cosφ sinλ, sinφ). (1)

The North and East unit vectors at N are given, respectively,
by

ν = (− sinφ cosλ, − sinφ sinλ, cosφ), (2)



and
ε = (− sinλ, cosλ, 0). (3)

Let
D = ν cos θ + ε sin θ (4)

be the directional unit vector. For any central angle σ0(t) =
ω0t traveled, the temporal parameterization of the ownship is
given by

N0(t) = cos(σ0(t))N00 + sin(σ0(t))D00. (5)

If we have a fixed start point and a fixed arc-distance to travel
δ0, we have an equation for the locus of all points, in unit
normal vector notation, equidistant from the ownship at CPA.
We need to place the intruder on this circle at CPA. The
corresponding bearing vector is:

B0(β0) = (cosβ0 ν00 + sinβ0 ε00) , (6)

and the vector representation of the intruder at CPA as a
function of bearing β0 is:

N10(β0) = cos δ0N00 + sin δ0B0(β0). (7)

The trajectory of the intruder can be formulated in a similar
manner. We, then, have

N1(β0, t) = cosσ1(t)N10(β0) + sinσ1(t)D10(β0), (8)

where N1(β0, t) is the unit normal vector of the intruder with
bearing β0 at time t, σ1(t) = ω1t is the angular distance
traveled by the intruder, and D10 is the directional vector of
the intruder at CPA found by solving φ10 and λ10 from N10,
using θ10 and substituting these values into (4).

In spherical coordinates, we can calculate the horizontal
distance between the two aircraft using the unit normal vector
of the intruder and the ownship. This means we will have to
add β0 to our parameterization of H while still maintaining
that H(β0, 0) = H0. The horizontal distance along a great
circle is given by:

H(β0, t) = 2R sin−1

(
‖N1(β0, t)−N0(t)‖

2

)
. (9)

The vertical distance is assumed to be linear:

V (t) = (v1,V − v0,V) t+ V0 = ∆vV t+ V0. (10)

Knowing the horizontal and vertical distances, the squared
distance between the two aircraft is:

H(β0, t)
2 + V (t)2. (11)

We need to minimize this squared distance at t = 0. Setting
the derivative to zero, we obtain

H0
∂H(β0, t)

∂t

∣∣∣∣
t=0

= −V0∆vV (12)

Computing the partial derivative ∂H(β0,t)
∂t , we find the equa-

tion that the bearing angle must satisfy to enforce all CPA
constraints:

− V0∆vV

H0
= v1,H

f(β0)√
1− g2(β0)

− v0,H cos(β0 − θ00), (13)

where f(β0) is:

f(β0) = cosφ00 cos δ0 cos θ10 cosβ0

− sinφ00 sin δ0 cos θ10

+ cosφ00 sin θ10 sinβ0 (14)

and g(β0) is:

g(β0) = cosφ00 sin δ0 cosβ0 + sinφ00 cos δ0. (15)

Observe that the above equation has only one unknown: the
bearing, β0, which satisfies all CPA constraints. This will give
us the starting locations for each aircraft in the general case.
It guarantees that the aircraft are at the required distances,
at a specified encounter angle and single set of speeds.
This constraint can be numerically solved, using an accepted
method like the Newton-Raphson algorithm.

III. ENACT PROGRAM

The algorithm developed in Section II is implemented in a
Java program known as Encounters from Actual Trajectories
(EnAcT). This program can be described with the pseudo-code
given in Algorithm 1:

Algorithm 1 EnAcT Program Run Sequence
1: Read in inputs
2: while There exists defined encounters to generate or

required number not met do
3: Calculate bearing at CPA based on given inputs
4: if Bearing exists then
5: Determine heading of aircraft at CPA
6: Build trajectories of each aircraft
7: Print trajectories to file
8: else
9: Log that bearing could not be found

10: Skip this set of inputs
11: end if
12: end while

This program accepts inputs in two formats: 1) each en-
counter is defined with each of its properties explicitly by
the user; or 2) probability distributions for each encounter
property is defined along with the number of encounters
to generate. The probability distributions can be given so
that all encounters generated will fit the given distributions.
Either set of inputs can generate an unlimited number of
encounter scenarios with synthetic trajectories that match the
given performance model (BADA). The properties define the
encounter at the closest point of approach (CPA), and are:

• Horizontal Separation Distance at CPA
• Vertical Separation Distance at CPA
• Latitude of Ownship at CPA
• Longitude of Ownship at CPA
• Encounter Angle at CPA
• Aircraft types
• Vertical Phase of flight for both aircraft
• Number of conflicts (if giving distributions)



The Java program uses Equation 13 to determine the bearing
between two aircraft at the closest point of approach (CPA)
based on the given inputs, which is step 3 in Algorithm 1. If
a bearing can be found, the program then uses a trajectory
engine, in this case BADA, to generate the trajectories of
the two aircraft based on the initial starting point and the
properties at CPA. The trajectories are then written out into a
Comma Separated Value (CSV) file. If the bearing cannot be
found, the attempt is skipped based on the given inputs, and
is logged.

IV. PROCESS FOR GENERATING ENACT INPUTS

EnAcT requires the distributions for each conflict property
to be able to generate millions of encounters that fall into these
distributions. To generate these distributions that are realistic
to what can be seen in the NAS, the Modeling and Simulation
Branch developed a process to determine these distributions. A
software tool that the branch developed, called the Trajectory
Conflict Probe [14], is the first step of the process. It inputs
recorded flight plans and surveillance position reports and
predicts when two aircraft are on a path that could violate these
separation distances. Air traffic controllers issue clearances
to alter one or both of the aircraft’s paths to resolve these
conflicts before they occur. The tool records both the initial
event and when the conflict is resolved. This allows the
team to determine theoretical encounters from recorded air
traffic data that had no actual encounters occuring due to air
traffic controller intervention. Figure 1 shows the flow of the
Trajectory Conflict Probe program.

As Fig. 1 illustrates, the Trajectory Conflict Probe performs
a pairwise analysis of flights from a given air traffic scenario.
It considers each aircraft’s flight plans, amendments, issued
controller clearances, and surveillance position reports. The
software first runs a gross filter to check rapidly for approxi-
mate temporal and spatial overlap of the pair of aircraft, based
on the given position reports, or track data, of the two aircraft.
This filter removes flight pairs that have no potential spatial
overlap, cutting down the processing needed. If the pair passes
this initial gross filter, the tool calls the Trajectory Predictor,
which generates a predicted trajectory at each incremental
time step that both aircraft have available track data. These
predicted trajectories pass through a sequence of filters in order
to determine if any predicted conflicts (violations of separation
standards) or encounters (larger separation events) occur.

Once an encounter is detected, the algorithm checks to
see if the encounter occurs within the user defined predicted
warning time. If it does, it immediately records the encounter.
If the detected encounter is predicted to occur outside of
the warning time, the algorithm checks the conflict detection
frequency. The conflict detection frequency is the number of
times the conflict probe predicts the conflict for each track
instantiated trajectory before the predicted event. The user
defines a percentage of the track instantiated trajectories that
have a positive detection of the predicted event for it to be
recorded as an encounter. The program continues to track the
prediction event for each track instantiated trajectory. Once
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For every mutually time coincident 
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Fig. 1. Flowchart of the Trajectory Conflict Probe algorithm [14]. This
program analyzes each flight pair that has paths that are close enough
to potentially cause a conflict. Using a trajectory engine and the relevant
clearance information, this program can predict where a conflict could have
occurred if it were not for controller intervention, as long as the generated
trajectories are valid.

the program detects the encounter has ended, it starts to count
these events from each new trajectory. If this percentage is met,
the encounter has ended and the results are recorded. These
checks are the frequency checks referenced in Fig. 1 flowchart
and act as stability filters for the encounter predictions. The
program outputs the resulting encounters it detects as alert
messages stored in a relational database. These alert messages
include the time of detection, the location of the predicted
event, and the location of the aircraft when the even was
predicted.

Using the Trajectory Conflict Probe tool, the characteristics
of potential NAS conflicts and encounters can be estimated
and matched by the conflict generation algorithm. The conflict



properties that were considered in this study are: Conflict
Location, Horizontal Separation Distance, Vertical Separation
Distance, Encounter Angle, Aircraft Type, and Vertical Phase
of Flight.

The FAA’s Operations Network (OPSNET) was to utilized
to select a day in the NAS with above average traffic count
but minimal delays, including from weather [15]. Conflict
count is proportional to traffic count, so a large traffic count
provides a significant sample for the measurement of the
conflict properties. By minimizing the delay as well, the
traffic and associated distributions are expected to exhibit
minimal reroutes thus reducing the variability in the generated
trajectories. The study resulted in selection of January 31, 2016
representing a peak winter traffic day with minimal delays

NASQuest was utilized to retrieve the 24-hour flight data
from ERAM for each of the 20 Air Route Traffic Control Cen-
ters (ARTCCs) in the NAS. Analysts processed the Common
Message Set (CMS) for each ARTCC using the Modeling and
Simulation Branch’s software suite. This suite analyzes the
CMS messages and inserts the data into a series of relational
tables within their database. A set of related tables is referred
to as a scenario.

With the historic flight data retrieved, the Trajectory Conflict
Probe software predicts the conflict events that would have
occurred without controller intervention. Alert messages are
created based on the predicted conflict events. Each message
created contains detailed information describing the specific
aircraft predicted to be in a specified conflict or encounter,
the location, and other properties of the event. This data is
stored in a set of tables in a relational database.

Upon completion of the Trajectory Conflict Probe software,
predicted conflict alerts and their properties are stored within
a database. Trajectory Conflict Probe produces multiple mes-
sages for a predicted event throughout the duration of the
event. The conflict property information is contained in the
first message of the alert. The information in this message
is collected and used to create distributions for each conflict
property.

The following subsections discuss the conflict properties
studies, the K-means process used for determining the distri-
bution of the conflict location property, and the process used
for determining the empirical distributions of the other conflict
properties.

A. Conflict Location

The location of a conflict event is described by three param-
eters: latitude, longitude, and altitude. This three-dimensional
location of the predicted start of the conflict event is examined
in a two-step process: the horizontal position and the vertical
position of the aircraft during the conflict.

First, the horizontal position of each aircraft in an event,
consisting of latitude and longitude, is investigated. A K-
means clustering algorithm is used to analyze the horizontal
location. Clusters are created based on the latitude and lon-
gitude of the aircraft involved in a predicted conflict event.
A cluster represents a section of airspace where a group of

Fig. 2. K-means cluster diagram representing the horizontal location of flight
conflicts in ZDV. The colored circles represent the clusters generated by the
K-means cluster algorithm, and each dot represents the location of an aircraft
conflict.

predicted conflict events occurs. A two-dimensional normal
distribution is used to model the center and spread of each
cluster. The centroid location (mean) is estimated by the mean
latitude and longitude of the aircraft at the beginning of the
conflict. The standard deviation represents the spread of the
locations for the given cluster.

For this study, the latitude and longitude of the subject
aircraft in each predicted conflict event is used. The K-means
clustering algorithm is set to produce 20 clusters for a given
airspace. Each cluster’s mean and standard deviation is stored
for input to the conflict generator software. Figure 2 shows
the results of the K-means cluster algorithm of the horizontal
position of conflicts in the Denver Center (ZDV).

Each colored circle in Fig. 2 forms a cluster produced
by the K-means algorithm. The solid dots are the locations
of predicted conflict events that the K-means algorithm uses
to generate these clusters. Latitude coordinates are on the
ordinate while the longitude coordinates are on the abscissa.
Each cluster is modeled by a two-dimensional normal distri-
bution with point estimates for the mean latitude and longitude
dimensions and associated standard deviations. These models,
in combination with the altitude distribution, estimated sep-
arately, represent the distribution of the location of conflict
events throughout ZDV.

The altitude of the conflict was measured separately from
the horizontal position as an empirical distribution. The alti-
tude data was split into bins of 2500 ft. The results from ZDV
are shown in Fig. 3. A three normal mixture model is the best
fit for this distribution of conflict event altitudes in ZDV. The
other ARTCCs’ altitudes are also best modeled using a three
normal mixture model.

B. Separation Distance

Minimum separation between two aircraft is typically 5 nmi
horizontally and 1,000 ft. (or 2,000 ft. if the aircraft is not



Fig. 3. Total number of hypothetical conflict alerts for each altitude bin in
ZDV. The bins are in 2500 ft increments, with the lower bound inclusive, and
the outer bound exclusive.

RVSM capable) vertically when in Class A (en route) airspace.
When examining the predicted conflict events produced by
Trajectory Conflict Probe, the distance between the aircraft is
used to categorize the flights into bins. Each bin’s lower bound
is inclusive, while the upper bound is exclusive.

For horizontal separation, there is a bin for every nautical
mile between 0 and 5. Figure 4 presents an example of the
binned predicted conflict events for ZDV. In this example,
the number of flights in the first four bins is similar, and the
number of flights in the 4 to 5 nmi bin is lower.

The vertical separation between the aircraft is binned in
500-foot intervals, from 0 to 2000 ft. As with the horizontal
separation bins, the bins for vertical separation have an in-
clusive lower bound and an exclusive upper bound. Figure 5
displays the results from examining ZDV’s vertical separation
between aircraft during conflict events. In ZDV, most of the
predicted conflict events occurred between 0 and 500 ft. Some
airspaces had different distributions, including near-uniform,
while others were similar to ZDV.

Fig. 4. Total number of hypothetical conflict alerts for each horizontal
separation bin in ZDV. The bins are in one nmi increments, with the lower
bound inclusive, and the upper bound exclusive.

C. Encounter Angle

The encounter angle is the difference between the aircraft
headings at the closest point of approach, measured in degrees
(°). Predicted events are counted and grouped into four bins:
0° to 15°, 15° to 90°, 90° to 165°, and 165° to 180°. The first

Fig. 5. Total number of hypothetical conflict alerts for each vertical separation
bin in ZDV. The bins are in 500 ft increments, with the lower bound inclusive,
and the upper bound exclusive.

bin, 0° to 15°, represents a predicted conflict where the two
aircraft are either in-trail (following the same horizontal path)
or are on similar paths and closing at a very shallow angle. A
special case of these events, referred to as overtake, is when
the aircraft are on the same path and the trailing aircraft is
faster than the leading aircraft. The second and third bins, 15°
to 90° and 90° to 165°, represent predicted conflicts that have
aircraft crossing paths from the right or left. The last bin from
165° to 180° represents predicted conflict events from aircraft
trajectories that are approaching one another either head-on or
near head-on.

Fig. 6. Total number of hypothetical conflict alerts for each encounter angle
bin in ZDV. The bins are separated into 0° to 15° for in-trail conflict, 15°
to 90° for crossing angle conflict from one side, 90° to 165° for a crossing
conflict on the mirror side, and 165° to 180° for a head on conflict. The lower
bound is inclusive, and the upper bound is exclusive.

These different categories of encounter angles are likely to
present different challenges to systems that need to predict
and resolve them. For example, in-trail encounter angles are
particularly sensitive to errors in aircraft speed calculations,
while head-on events may have high closure rates requiring
quick application of conflict resolutions.

Looking at the results from Trajectory Conflict Probe, the
majority of the predicted events in ZDV happened in crossing,
while very few head-on conflict events were predicted. Figure



Fig. 7. Total number of vertical phase of flight pairs for aircraft in hypothetical
conflict alerts in ZDV. Each bin is the pairwise combination of vertical phase
of flight of both the ownship and intruder during a conflict. ASC stands for
ascending, DSC stands for descending, and LEV stands for level.

6 illustrates the distribution of encounter angle between air-
craft in ZDV’s conflict events.

D. Vertical Phase of Flight

The vertical phase of flight describes whether the aircraft is
climbing, descending, or level. An aircraft is ascending (ASC)
when it is increasing in altitude and descending (DEC) when
it is decreasing in altitude. An aircraft is level (LEV) when
the aircraft remains at a constant altitude. This metric captures
information about the vertical profiles of the flights during the
predicted conflict event.

In this study, the vertical phase of flight for both aircraft
is considered, creating a vertical phase of flight pair. There
are nine combinations of vertical phase of flight: ASC ASC,
ASC DSC, ASC LEV, DSC ASC, DSC DSC, DSC LEV,
LEV ASC, LEV DSC and LEV LEV. The first code before
the underscore denotes the vertical phase of flight of the
ownship, while the code after the underscore denotes the
vertical phase of flight of the intruder.

For the results from Trajectory Conflict Probe, each conflict
event is placed into a bin that corresponded to the vertical
phase of flight of the pair. Figure 7 presents the results of
examining this property in ZDV. In ZDV, most of the flights
are level during a conflict event, while some occurred while
one aircraft was ascending or descending and the other was
level.

E. Aircraft Type

The last property examined was the aircraft type. This
parameter is a two- to four-character ICAO aircraft type
designator representing the type of aircraft involved in the
conflict event. Each aircraft has its own code. For example,
Boeing 737-700 aircraft have ICAO code B737, and Airbus
A321 aircraft have ICAO code A321. The choice of aircraft
type naturally affects the nominal aircraft performance data
retrieved from BADA, such as speed profile, climb and de-
scent rates, and weight. This aircraft performance information

Fig. 8. Total number of aircraft types involved in hypothetical conflict alerts
in ZDV. The bins are separated by aircraft type.

allows the conflict generator program to generate customized
trajectories for the aircraft involved in a conflict.

The results for the aircraft type parameter are simply binned
by each aircraft type, involved in the predicted conflict event,
that was generated by the Trajectory Conflict Probe software.
Both aircraft involved in the event are counted toward the total
for each aircraft type. Figure 8 describes the number of each
aircraft type present in the predicted events for ZDV. This
ARTCC had 66 different aircraft types involved in conflict
events, with at least two aircraft in each bin. The frequencies
in this graph mirror the representation of aircraft types found
in the airspace.

This section only described the results from one of twenty
ARTCCs. The same analysis was applied to every ARTCC for
the days worth of data that was collected. The results from all
of the ARTCCs are packaged into the Avro file, and used as
inputs to the conflict generator algorithm.

V. RESULTS OF ALGORITHM

The algorithm was tested in two ways: by generating a
million conflicts and comparing them to their expected values



TABLE I
MEAN ABSOLUTE ERROR FOR EACH CONFLICT PROPERTY

Property Name at CPA Mean Error St. Dev.

Horizontal Separation (ft) -3.72E-13 2.77E-9

Vertical Separation (ft) -3.05E-18 1.90E-14

Encounter Angle (°) -2.41E-13 1.97E-10

Ownship Latitude (°) -3.55E-17 4.83E-15

Ownship Longitude (°) -1.82E-15 1.06E-14

Ownship Altitude (°) 0 0

at the closest point of approach (CPA) and visual inspection
of a small subset of the conflicts. This section describes the
results of both of these methods.

A. Simulations

The first test performed to validate the algorithm was to
compare the parameters of the generated trajectories to the
user-specified CPA properties: horizontal separation distance,
vertical separation distance, encounter angle, ownship latitude,
ownship longitude, and ownship altitude at CPA.

We considered the mean absolute error between the user-
input conflict properties (ground truth) and the properties
of the generated conflicting trajectories. The mean errors,
averaged over 100,000 trajectories, are displayed in Table I
for each conflict property. Observe that these errors are of
the order of the numerical and rounding errors of the Java
virtual machine (JVM). This result is expected because the
algorithm adopts the user-specified conflict properties in an
exact mathematical formulation of the problem.

Fig. 9. Overhead view of the crossing conflict with both aircraft flying level.
The legal En Route separation distance is shown as circles around the aircraft,
and the small spheres represent a generated track point. Note: the aircraft
models are exaggerated in scale.

B. Visual Inspection

We used a visualization tool to visually inspect the gen-
erated conflicting trajectories for different conflict events.

Fig. 10. Distance between the aircraft over time. The x-axis represents time
in seconds, and the y-axis is the distance between the two aircraft in feet.
The color of the dots represents the vertical separation between the aircraft,
with red being the smallest distance and green being the furthest.

For instance, Table II shows three different conflict events:
a crossing conflict with both flights level, a shallow angle
conflict with one of the flights ascending and the other level,
and a crossing conflict with one flight ascending and the other
level.

The first conflict is a collision event set to occur with
both aircraft approaching each other at a 90° angle. Figure
9 shows an overhead view of the two aircraft flying their
generated trajectories for this conflict. The circles around the
aircraft are 2.5 nmi in diameter and are 1000 ft tall. These
circles represent the legal separation distance of two aircraft
in En Route airspace. If the circles overlap, it means that
the two aircraft have lost legal separation, i.e. conflict. This
visualization shows that the aircraft conflict is as expected
at 90° angle with a collision event. Figure 10 shows the
separation distance between the aircraft over time. This chart
confirms that the closest point of approach occurred at the
expected time of 60 seconds.

The second conflict spaced each other with a minimum dis-
tance of 2 nmi which resulted in a non-collision conflict event.
In this event, the ownship was ascending and approaching
the intruder at a shallow angle (0°− 15°). Figure 11 displays
the overhead view of the conflict event, while Fig. 12 shows
a side view. The trajectories generated matched what was
expected, with one flight ascending and the other level. Figure
15 illustrates the distance between both aircraft, proving that
the closest point of approach occurred around the expected
time of 60 seconds.

The third conflict was a combination of the first and second
events, with the aircraft trajectories forming a collision conflict
at a crossing angle of 90°, but with one aircraft ascending and
the other level. Figure 13 and Fig. 14 illustrate the overhead
and side views of the conflict, respectively. It can be seen that
the aircraft are following the expected trajectories based on
the given conflict properties. The distance between the aircraft
over time is shown in 16, which proves that the aircraft reach
minimum separation at the expected time of 60 seconds.



Fig. 11. Overhead view of the shallow angle conflict with one aircraft flying
level and the other ascending. The legal En Route separation distance is shown
as circles around the aircraft, and the small spheres represent a generated track
point. Note: the aircraft models are exaggerated in scale.

Fig. 12. Side view of the shallow angle conflict with one aircraft flying level
and the other ascending. The legal En Route separation distance is shown as
circles around the aircraft, and the small spheres represent a generated track
point. The Aircraft denoted at AA3 is ascending, while the other is level.
Note: the aircraft models are exaggerated in scale.

VI. CONCLUSION

For unmanned aircraft systems (UAS) to be integrated into
the National Airspace System (NAS), a detect and avoid
(DAA) system used to assist the ground pilot in preventing
loss of separation between other aircraft. To accurately train
and validate DAA systems for UAS, realistic encounter events
must be used. These types of conflicting events do not exist in
the NAS since air traffic controllers prevent them from happen-
ing. To use conflict events to train DAA systems, one must first
generate these conflict events. The FAA has partnered with
Rowan University to develop a conflict generator program,
which uses realistic flight properties to generate conflicts.

This paper describes an algorithm developed to generate
these realistic flight conflicts using a spherical coordinate
system. The generator is formulated mathematically as a
constrained optimization problem, the constraints being the

Fig. 13. Overhead view of the crossing conflict with one aircraft flying level
and the other ascending. The legal En Route separation distance is shown as
circles around the aircraft, and the small spheres represent a generated track
point. Note: the aircraft models are exaggerated in scale.

Fig. 14. Side view of the crossing conflict with one aircraft flying level and
the other ascending. The legal En Route separation distance is shown as circles
around the aircraft, and the small spheres represent a generated track point.
The Aircraft denoted at AA5 is ascending, while the other is level. Note: the
aircraft models are exaggerated in scale.

user-specified conflict properties at the Closest Point of Ap-
proach (CPA). The algorithm outputs a pair of conflicting 4D
trajectories that satisfy the given properties.

The algorithm was implemented in a Java program. The
program can generate the aircraft pair encounters using the
algorithm, based on user defined parameters for the encoun-
ters. The encounters can be defined manually by the user or
the user can input probability distributions for each encounter
property, with the desired number of flights. This method
allows the random generation of the encounters that fit the
given distributions.

TABLE II
CONFLICT PROPERTIES FOR EACH SPECIFIED CONFLICT EVENT IN FLITEVIZ4D

Ownship VPoF Intruder VPoF Horizontal Sep (nmi) Vertical Sep (ft) Encounter Angle (°) Altitude of Ownship at CPA (ft)

Level Level 0.05 0 90 35000

Ascending Level 2 500 15 35000

Ascending Level 0.05 0 90 35000



Fig. 15. Distance between the aircraft over time. The x-axis denotes time
in seconds, while the y-axis denotes the distance between the two aircraft
in feet. The color of the dots represents the vertical separation between the
aircraft, with red being the smallest distance and green being the furthest.

Fig. 16. Distance between the aircraft over time. The x-axis denotes time
in seconds, while the y-axis denotes the distance between the two aircraft
in feet. The color of the dots represents the vertical separation between the
aircraft, with red being the smallest distance and green being the furthest.

We conducted Monte Carlo simulations to test the algo-
rithm’s accuracy. As expected from an exact mathematical
derivation, the mean absolute error between the properties
of the generated trajectories at CPA is found to be within
the bounds of machine error. Also, visual inspection using
our visualization tool confirms that the trajectories generated
match what is expected based on the given input.

In the future, the algorithm can be upgraded to include
changing horizontal position of the two aircraft to simulate
a change in the horizontal phase of flight of the aircraft. This
will simulate the aircraft turning during the duration of the
conflict, which is a more likely scenario when the aircraft are
UAS. For the conflict properties study, more recorded traffic
will be examined to determine the empirical distributions for
the NAS conflict properties throughout the year. Also, conflicts
within terminal airspace could be studied and used as input to
the algorithm. This will allow more testing for UAS in these
areas with more realistic trajectories.
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