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Abstract—We present a novel formulation that employs task-
specific muscle synergies and state-space representation of neural
signals to tackle the challenging myoelectric control problem for
lower arm prostheses. The proposed framework incorporates
information about muscle configurations, e.g., muscles acting
synergistically or in agonist/antagonist pairs, using the hypothesis
of muscle synergies. The synergy activation coefficients are
modeled as the latent system state and are estimated using a con-
strained Kalman filter. These task-dependent synergy activation
coefficients are estimated in real-time from the electromyogram
(EMG) data and are used to discriminate between various tasks.
The task discrimination is helped by a post-processing algorithm
that uses posterior probabilities. The proposed algorithm is
robust as well as computationally efficient, yielding a decision
with > 90% discrimination accuracy in approximately 3 ms.
The real-time performance and controllability of the algorithm
were evaluated using the targeted achievement control (TAC)
test. The proposed algorithm outperformed common machine
learning algorithms for single- as well as multi-degree-of-freedom
(DOF) tasks in both off-line discrimination accuracy and real-
time controllability (p < .01).

Index Terms—Myoelectric control, EMG, Muscle synergies,
constrained Kalman filter, single- and multi-DOF tasks.

I. INTRODUCTION

The pattern classification algorithms that may identify re-
peatable patterns of muscle activations have been successfully
employed for task discrimination in the myoelectric control
[1]. In the pattern classification framework, an analysis win-
dow of the electromyogram (EMG) data is formed and a set of
representative features is extracted. Classification algorithms
are trained using extracted features to discriminate between
various tasks. Pattern classification systems have produced
promising results in terms of classification accuracy (generally
>90%) and real-time performance [1], [2]. Though conven-
tional pattern classification algorithms have helped extract
movement intent from the myoelectric signals [3], [4], their
clinical viability is not commensurate with their classification
accuracy [5], [6]. In essence, a true multifunction and dexter-
ous bionic limb with a natural movement control algorithm has
yet to be realized [6]. One reason for this shortcoming may
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have been that the pattern classification systems do not take
into account available information about the underlying system
physiology. In particular, crucial information involving the
underlying neural processes generating the observable mus-
cle activation patterns cannot be explicitly incorporated into
pattern classification systems. For example, while performing
a reaching or grasping task, some muscles in the forearm may
act synergistically or in agonist/antagonist pairs, depending
on their physiological configuration and task requirements.
Such physiologically relevant information cannot be explicitly
incorporated into generic machine learning algorithms, e.g.,
the linear discriminant analysis (LDA), a commonly used
algorithm in myoelectric control applications [3], [7]. In this
paper, we develop an alternative approach to task discrimina-
tion that readily incorporates muscle synergy information into
the modeling and problem solving framework.

Muscle synergies are hypothesized as discrete elements or
primitive building blocks for generation of purposeful behavior
by the central nervous system (CNS) [8]. By definition,
muscle synergies are fixed relative activation levels of different
muscles [8]. It is hypothesized that the CNS may employ
muscle synergies to recruit a large number of muscles using a
smaller number of independent control signals (the synergy
activation coefficients) [8]. Furthermore, shared and task-
specific muscle synergies may also exist [9] and an optimal
motor behavior might result from a combination of shared and
task-specific muscle synergies [10]. Mathematically, muscle
synergies can be interpreted as the basis functions for efficient
representation of muscle activations in a lower-dimensional
subspace [11]. The hypothesis of muscle synergies assumes
that the synergy matrix linearly transforms the activation
coefficients descending from the CNS into individual muscular
activations. Whether the CNS employs such a low-dimensional
embedding for generating purposeful behavior or not is still an
open question and authors have generally avoided associating
physiological relevance to synergies [12]. This study shows
that the hypothesis of muscle synergies carries relevance for
real-time task discrimination and subsequent control of a
virtual myoelectric prosthetic limb.

Recently, the hypothesis of muscle synergies has been
successfully employed in multiple research studies to control
prosthetic devices in real-time [13]-[16]. For example, Choi
and Kim employed a non-negative muscle synergy matrix to
map muscle activities in the forearm into four predefined wrist
movement intents (flexion/extension and radial/ulnar devia-
tion) [14]. Similarly, Jiang et al. employed muscle synergies
for simultaneous and proportional control of two degrees-of-
freedom (DOFs) with promising results [16]. The authors em-
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ployed the nonnegative matrix factorization (NMF) algorithm
to extract muscle synergies, which were later used to obtain the
control signals in real-time for simultaneous control of wrist
flexion/extension and pronation/supination. In this study, we
adopt a similar synergies based approach to the task discrim-
ination problem. We primarily focus on involving three basic
DOFs that included pronation/supination, flexion/extension
and hand open/close, and their simultaneous combinations, i.e.,
6 single-DOF tasks and 12 two-DOF tasks (treating them as
separate tasks, in contrast to the simultaneous approach as in
[16]). Furthermore, Matrone et al. have previously employed
the principal component analysis (PCA) technique to drive
two-DOF multi-fingered hand prosthesis in real-time [15]. In
this study, we employ probabilistic independent component
analysis (pICA) to obtain task-specific muscle synergies. We
additionally develop a state-space process dynamics model
and use a constrained Kalman filter to estimate the control
signals in real-time. The proposed Muscle Synergy based task
Discrimination (MSD) algorithm outperforms conventional
discrimination schemes (referred to as academic state-of-the-
art in [16]) in off-line classification accuracy as well as real-
time controllability evaluated using the targeted achievement
control (TAC) test [17].

The paper is organized as follows: in section II, we outline
our mathematical model using the state-space representation of
neural signal evolution and the hypothesis of muscle synergies.
We also discuss estimation of the activation coefficients, task
discrimination, and post-processing in the same section. In
Section III, we provide experimental details for EMG data
collection and data processing. We present our results and
discussion in Sections IV and V, respectively.

II. MATHEMATICAL MODEL AND ANALYTIC METHODS

To address the task discrimination problem for lower arm
prosthesis, we seek a mathematical model that would allow
us to use EMG data to discriminate between a set of tasks
in real-time. The hypothesis of muscle synergies allows us to
capture the temporal evolution of the task-dependent neural
control signals, or the synergy activation coefficients that are
hypothesized to originate from the CNS and terminates at the
peripheral muscles. These activation coefficients represent the
contribution of each muscle synergy towards the final muscular
activation during performance of a task. The proposed mathe-
matical model allows us to estimate the activation coefficients
using real-time EMG data and the task-specific muscle synergy
matrices. The task-specificity of these synergies allows us to
discriminate between different tasks.

A. The State-Space Model

The state-space representation consists of a process dy-
namics model that captures the temporal evolution of the
system state, and a measurement model, which represents
the relationship between the system state and the system
output [18]. We adopt a white noise driven state-space model
[19] to capture the evolution of the EMG signals. In such
representation, the activation coefficients act as the state of the
system, whereas the EMG data, i.e., the muscular activations,

represent the system output. The state-space representation
includes a random walk model for the process dynamics
complemented by muscle synergies in the measurement model,
and is given as:

(1a)
(1b)

Xk4+1 = Xk + W,
Y = Wxp + vy,

where x;, € R™~ represents the system state, i.e., the activation
coefficients, y, € R"v represents the system output (the EMG
signal), W € R™ x R"™ is the synergy matrix, k € N is
the time index, n, and n, are the dimensions of the system
state (number of muscle synergies) and the output (number of
channels of the EMG signal) respectively. w and vy, are zero-
mean process and measurement noise sequences respectively
with known Gaussian probability density functions, i.e., wy €
N(0,Qy) and vi, € N(0, Ry). It is known that the surface
EMG recorded from bipolar electrodes during constant force
constant-angle non-fatiguing contractions can be well modeled
as a zero-mean, correlation-ergodic, random process which
is Gaussian distributed [20], [21]. However, the Gaussian
assumption may not hold during dynamic contractions [20],
[21]. Nonetheless, the Kalman filter is the optimal estimator
when the noise is Gaussian; and is also the best linear estimator
for non-Gaussian noise [22].

A random walk model was chosen to represent process
dynamics in order to ensure a smooth time-evolution of the
state. The model also reflects lack of a priori knowledge about
the process dynamics. The measurement model (1b), derived
from the hypothesis of muscle synergies, relates the recorded
EMG signal y;, to the latent system state X through a linear
mapping, i.e., the muscle synergy matrix W. The mathematical
model (1) can be expressed in terms of probability density
functions [23] to provide additional insight into the modeling
process.

(2a)
(2b)

p(Xk|Xk71) = Puwy, (Xk - ka1),

P(Ye|xk) = po, (Y& — Wxg),

where, p,,, and p,, represent density functions of the process
and measurement noise respectively. Equation (2a) charac-
terizes the evolution of the activation coefficients over time
and (2b) is the likelihood of observations as specified by
the muscle synergies. We present a schematic description of
the proposed model in Fig. 1. The latent system state, i.e.,
the activation coefficients evolve over time and the muscle
synergies relate the system output, i.e., the EMG signal to the
activation coefficients.

B. The Muscle Synergy Matrix

Muscle synergies serve as basis functions for muscular
activations. They are represented as column vectors in the
muscle synergy matrix that forms the observation model. For
the case of m muscles and n muscle synergies, we have

yi = Wxg, 3)

where W = {w;; };2}';_; is the synergy matrix of size m xn,
— [l ’
Ve = [

,y}f]T is the muscle activation vector (EMG
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System state x;, : the control signals or synergy activation coefficients

P(Xk|Xpe-1)
Transition density

P(Vilxi)
Likelihood density

Output yy : Multichannel EMG signal

Fig. 1. The proposed mathematical model. The activation coefficients evolve
over time and are modeled as the system state. The system output is the EMG
signal. The hypothesis of muscle synergies relates the output to the latent
system state.

signal) and xj, = [z}, ..., 277 are the activation coefficients.
To obtain task-specific muscle synergies, we consider K trials
of a given task, resulting in consolidated output matrix given

as:
Ym,XK = men X XTLXK7 (4)

where the subscripts in (4) indicate matrix dimensions. In
the above relation, the matrices W and X are unknown
while Y is a known quantity. Various unsupervised learning
algorithms can be employed to estimate the parameters of the
mixing system W and the true physical sources X [24]. Such
algorithms exploit a priori knowledge about the true nature or
structure of the hidden variables such as non-negativity, statis-
tical independence, sparseness, spatio-temporal de-correlation,
smoothness, and the lowest possible complexity [24].

In the case of muscle synergies, several separation algo-
rithms have been suggested that include principal component
analysis (PCA), factor analysis (FA), independent component
analysis (ICA), nonnegative matrix factorization (NMF), and
probabilistic ICA (pICA) [11]. Our preliminary investigation
into the various algorithms showed that the pICA algorithm
performs better than all others for the proposed scheme. We
accordingly employ the mean field approach to estimate the
synergies W and their corresponding activation coefficients
X [25]. Furthermore, we enforce a non-negativity condition
on all elements of the mixing matrix and the sources, i.e.,
W > 0and X > 0, where > implies element-wise inequality.
Using the pICA algorithm, we estimate ¢ task-specific synergy
matrices, i.e., {W?}%_,, where ¢ is the total number of tasks
considered in the experiment, i.e.,

(W' X" =pICA(Y?) i=1,...,q. 5)

A representative set of muscle synergies from a participant
hand movement are shown in Fig. 2. The synergies were
extracted from the EMG data recorded with eight equally-
spaced EMG electrodes placed around the forearm while the
participant performed six single-DOF tasks. Prior to synergy
extraction (by the pICA algorithm), non-overlapping analysis
windows (250 ms) were formed from the raw EMG data and
root mean square (RMS) values were calculated. The figure
represents the contribution of different muscles (or parts of
a muscle under the particular EMG channel) for performing
various tasks. It is evident from the plots that the synergies
are different between tasks. Such a difference in synergies
between various tasks relates to the task-specificity of these
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Fig. 2. Representative synergies extracted using the pICA for the first
participant. For every single-DOF task, two muscle synergies were extracted
from the processed EMG data. The synergy coefficients have been normalized
to the maximum value.

muscle synergies. The same phenomenon is later exploited by
the proposed MSD algorithm for task discrimination.

C. The Activation Coefficients

The muscle synergy matrices {W*}¢_, obtained from the
pICA algorithm completely specify the proposed state-space
model (1) for the given task. Since we have adopted a linear
observation model with additive zero-mean white Gaussian
noise, the Kalman filter is the optimal recursive Bayesian
estimator for such systems [22]. Given the measurement yy
at time k, the Kalman filter recursively estimates the state
Xr. We initialized the Kalman filter with the system state
Xojo = 0 and state covariance Pyg = M, where M is a
randomly generated positive definite matrix with large values.
The large values in the covariance matrix indicate a lack of
confidence in our initial state, i.e., xgg = 0 [22]. For the
process and measurement noise statistics, we first estimated
their covariance matrices () and Ry respectively) using the
Autocovariance Least-Squares (ALS) method [26]. Later, the
Kalman filter was manually tuned using the following proce-
dure: the filter was run in the off-line mode and the estimated
system state was used to reconstruct muscle activations using
synergy matrices [27]. An RMS error was calculated between
the actual and the estimated muscle activations. The process
and measurement noise statistics were tuned to minimize the
RMS error. We used the pilot EMG data from a participant for
estimation of noise statistics and tuning the Kalman filter. The
estimated statistics were later used for all subsequent testing
(real-time as well as off-line) in the study. In Fig. 3, we show
the effect of process noise on the state estimation accuracy
for a participant during the hand open task. The EMG data
was processed to form analysis windows of 250 milliseconds
(ms) and the pICA algorithm was used to extract three muscle
synergies.

D. The Kalman Filtering

Once a measurement yj; in the form of EMG data is
available, we run ¢ Kalman filters in parallel, one for each
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High Process Noise
T T

Normalized System State

Fig. 3. The effect of process noise on state estimation from EMG data
collected during hand-open task. For high process noise, the nature of the
process dynamics model (random walk) ensures that the Kalman filter’s
search-space for the unknown system state is adequately large, thus leading
to a better approximation of the unknown state. The time points on the
horizontal axis refer to the analysis windows. The state vector consisted of
three coefficients, out of which only one is shown here.

synergy matrix {W*}?_, in the measurement model. Our
formulation of the problem restricts the state estimates to be
non-negative, i.e., X; > 0; however, such a constraint cannot
be directly incorporated into the Kalman filter framework.
However, we can modify the Kalman filter in a suitable way
[28]. Various approaches for modifying the Kalman filter in
the presence of constraints have been proposed [28]. We used
the projection-based approach, where the estimated state X is
projected onto a nonnegative subspace to find a non-negative
state estimate X [29], i.e.

% = argmin(% — X)7®(%X — %), such that X >=0, (6)

X

where ® is a positive definite weighting matrix. It can be
verified that for ® = I,,_, the optimization problem in (6)
results in a non-negative solution, where all negative elements
in the estimated state are replaced with zeros. The estimated
states from the ¢ Kalman filters along with their corresponding
task-specific synergy matrices are subsequently used for the
task discrimination.

E. The Task Discrimination

The proposed scheme for task discrimination is based on
the assumption that for a specific task, the pair consisting
of the relevant task-specific synergy matrix and its activation
coefficients {W?*, X} will reconstruct the actual muscle
activations yy, better than all others {W", X} }7_, ;... To find
this pair, we run ¢ Kalman filters in parallel using all synergy
matrices {W*}?_, in the measurement model, and find ¢ state
estimates {X}7_,. For each pair, {W?, ®i}%_,, we find the
estimated muscle activations ¥}, using

=W, i=1....q ()
To assess which pair {W*, %} out of all ¢ pairs best recon-
structs the actual state, we employ a similarity measure (SM)

that finds a representative real number (called the similarity

index) based on the similarity between the estimated {§%}7_,
and actual muscle activations yg, i.e.,

L =SM[yL. v, i=1,....q (8)

We can employ various similarity measures, e.g., cosine
similarity, the sample Pearson correlation coefficient, the Eu-
clidean, or the coefficient of determination 2. All similarity
measures are formally defined in the Appendix and their
comparison is presented in Section I'V-C. Finally, we find the
index of the maximum of all similarity indexes {d}}_,, i.e.

- Ay, €))

where the function maxlI finds the index of the maximum of
its argument. The resulting index value I}SD represents the
performed task at time k.

IMSP — maxI[d}, . .

F. The Post-Processing

The post-processing uses the results from LDA to improve
the discrimination accuracy of the proposed scheme. The
motivation for the post-processing stems from the observation
that the MSD and the LDA generally show a low probability
of committing the same misclassification. The post-processing
routine is invoked when a conflicting decision results from the
LDA and the MSD algorithms, i.e., when /P4 £ [MSD,
In such event, we make use of the posterior probability
pr(Ik|yx) calculated by the LDA and the similarity index
dj, calculated by the similarity measure function in Eq. (8).
The intuition is that if the LDA posterior probability is high
enough (Thy > 0.98) and the LDA decision lies within a
(The < 2.5%) neighborhood of the MSD similarity index
di, then we choose the LDA decision. In all other cases, we
choose the MSD decision. For instance, consider the case
where the LDA results in the decision “hand open” with
posterior probability 99%, and the MSD results in the decision
”supination” with a similarity index dy = 8. If the decision
”hand open” is within the MSD neighborhood 6 < d; < 10,
we decide “hand open”. Otherwise, we decide “’supination”.
We tuned the threshold values (7'hy and T'hs) in the off-line
mode using pilot EMG data from a participant. Later, we used
the same threshold values for all real-time as well as off-
line testing for all participants. The post-processing part of
the algorithm significantly increased the task discrimination
accuracy (p < .001).

G. The Algorithms

The input for the proposed MSD scheme is the multichannel
EMG data and its output is the identified task. The MSD
scheme consists of two stages.

1) Offline task-specific synergies extraction. The recorded
EMG data from the training session is processed and
divided into multiple bins, where each bin corresponds to
a specific task (Algorithm-I). By employing the pICA, we
obtain task-specific muscle synergies from each bin using
Eq. (5). Additionally, the LDA coefficients are calculated
to be used later in the post-processing.

2) Real-time task discrimination. The EMG data is buffered
for a certain duration as specified by the analysis window
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Fig. 4. A schematic layout of the proposed MSD algorithm for task discrimination using task-specific muscle synergies. The input to the MSD algorithm is
a multichannel EMG signal and the output is the identified task Ij. The algorithm consists of two sequential stages. In the first stage, task-specific muscle
synergies are extracted using the pICA algorithm, while in the second stage task discrimination is performed in real-time. Abbreviations used are, MAV :
Mean Absolute Value, ZC : Zero Crossing, SSC : Slope Sign Change, WL : Waveform Length. Definitions and further details about LDA features can be

found in [1].

Algorithm-I : Task-specific synergy extraction.

Algorithm-II : Task discrimination.

Inputs: Raw EMG data Y, Number of tasks q.
Outputs: Task-specific synergy matrices {W?}7_,, LDA coef-
ficients Crpa.
Parameters: Contraction time percentage (cTp), Analysis win-
dow size T,, Window increment time 1;,,..

procedure [W?, C;pa] = EXTRACT SYNERGY(Y, q)
: Remove transient parts of the EMG data.
Form analysis windows and calculate RMS values.
Segment RMS data into ¢ bins {Y*}7_,.
for i=1:qgdo

(W X7 = pICA(Y?)

end for
Crpa =LDA (Y)

1:
2
3
4:
S:
6
7
8
9: end procedure

size (see Section IV-B), processed and passed on to the
Kalman filters for estimation of the activation coefficients
followed by task discrimination (Algorithm-II). In the
case of a conflicting decision by the MSD and the LDA,
post-processing (Algorithm-III) is performed to reduce
the possibility of error.

A schematic representation of the MSD algorithm is presented
in Fig. 4, while detailed description for the synergy extrac-
tion, task discrimination and post-processing are presented in
Algorithm-I, -II and -III.

Inputs: Raw EMG data y, {W*}_,, Crpa.
Outputs: Iy.
Parameters: cTp, Ty, Tine-
1. procedure [I;] = DISCRIMINATE(y, {W*}L_,, CLpa)

2: Buffer and calculate RMS values of the EMG data.
3: Initialize Kalman filter (KF), z¢|9, Fpjo, Qo, and Ro.
4: for i=1:qdo

s i, = KF ()

6: 9, = W'y,

7 L= SM (yx, 9}

8: end for

9. IMSD=maxI [d},...,d}]

10: [TEPA pi(I|yx)] = LDA (yr,Crpa)

1: if IFPA £ [MSD then

12: I, = PostProc (IMSP di TEPA py(I]yy))

13: end if

14: end procedure

III. EXPERIMENTAL METHODS

The study received approval from the Institutional Review
Board of the University of Arkansas at Little Rock. A total
of twelve volunteers (height 171.4£8.8 cm (mean=std), mass
73.2+12.3 Kg and age 28.2+6.5 years) participated in the
study. A written informed consent was obtained from all
participants before start of the data collection. All participants
were right hand dominant with no known history of neuro-
muscular disorders.
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Algorithm-III : Post processing.

Inputs: IMSP di TEPA py (Ily).
Outputs: Iy.
Parameters: Thy = 98%, Thy = 2.5% of di.

1. procedure I, = POSTPROC(IMSP di TEPA py(I|yx))
2 I = [M5P

3 if pk-(I]gDAkyk) > Th,; then

4 if /FP4 within Thy then

5: I = I]fDA

6 end if

7 else if I, = I;_> then

8: I, = I,

9: end if

10: end procedure

A. Experimental Design

1) Tasks: For each participant, we record data in two
separate sessions on the same day. The first session consisted
of single-DOF tasks (six in total), and the second session
consisted of single as well as multi-DOF tasks (18 in total).
The first session (referred to as 1-DOF tasks) consisted of
hand open/close, wrist flexion/extension, and forearm prona-
tion/supination. The second session included six 1-DOF tasks
and twelve multi-DOF tasks, i.e., all possible pairs of 1-DOF
tasks, open + flex hand, close + flex hand, open + extend
hand, close + extend hand, open hand + pronation, close hand
+ pronation, open hand + supination, close hand + supination,
flex hand + pronation, extend hand + pronation, flex hand +
supination, and extend hand + supination (referred to 1+2-DOF
tasks).

2) Electrode Configuration: In order to record EMG data
from the forearm, we considered two possible electrode config-
urations, i.e., muscle targeting and symmetrical arrangement.
For muscle targeting, we used the configuration proposed by
Farrell and Weir [30]. For a symmetrical arrangement, we
placed five electrodes around the circumference of the forearm
symmetrically with the first electrode placed beneath in line
with the medial epicondyle of the humerus. Electrodes were
placed around the proximal end of the forearm at a location
1/3 of the distance between medial epicondyle of the humerus
and styloid process of the ulna.

B. EMG Data Recording

We used Noraxon TeleMyo Direct Transmission System
(DTS) (Noraxon USA Inc) with wireless sensors to record the

Visual feedback
E——

Wireless link g Wired | 25-pinribbon usB
connection gl cable cable

DTS analog
output module

Real-time
Processing PC

TeleMyo
DTS receiver

USB data acquisition
card, NI-USB 6009

Fig. 5. The hardware setup for EMG data collection.

EMG data. This equipment has inbuilt filtering scheme (band-
pass filter of 10-500 Hz) and provides a single differential
data. We used disposable, self-adhesive silver/silver chloride
(Ag/AgCl) snap electrodes with two circular conductive areas
of 1 cm each and an inter-electrode distance of 2 cm. We used
a NI-USB 6009 (National Instruments Corporation, Austin,
Texas) data acquisition card to acquire and digitize the EMG
data at the rate of 2000 samples per second. We modified
the BioPatRec software to acquire and process the EMG data
[31]. A schematic layout of the experimental setup is given in
Fig. 5. Before start of the data collection, each participant sat
comfortably in a chair with right arm resting over a table in
front. Visual cues were provided to participants to guide them
throughout the data collection process. Participants performed
each task for 5 secs with a 5 sec rest between two consecutive
tasks. A single trial consisted of performing all tasks once.
Participants were instructed to maintain a comfortable and
repeatable force level for all tasks.

C. Data Analysis

In order to expound the efficacy of the proposed scheme,
we performed detailed investigation in two distinct modes, i.e.,
off-line mode and real-time mode. In the off-line analysis both
data sets (1-DOF tasks and 1+2-DOF tasks) were processed
under various conditions and parameter values. The real-time
testing was performed only on the 1-DOF tasks using the TAC
test.

We evaluated the performance of the MSD algorithm for
various parameters and under different conditions, i.e., the
analysis window size 7T, window time increment 75,,., number
of task-specific muscle synergies, contraction time percentage
(cTp), processing time 7, training time, EMG electrode
arrangement and similarity measures. For the purpose of
performance evaluation, the EMG data from all trials was
randomly divided into two bins with 75% of the data in the
first bin and the remaining 25% in the second bin. The first
bin was used for synergy extraction (or training for other
classification algorithms) while the second bin was used for
task discrimination (i.e., cross-validation). Task discrimination
accuracies reported are average values across all runs (fifteen
in total) for all participants.

We employed the TAC test to evaluate the MSD algorithm
in a real-time environment. Participants 3 and 9 could not
complete the TAC test and therefore were excluded from the
results. Both participants felt that the control of the virtual
prosthetic hand was unintuitive and reported fatigue after
making various efforts using both algorithms, i.e., the LDA and
the MSD. All the remaining participants performed six 1-DOF
tasks with both the MSD and the LDA in a single session. We
assumed that training and familiarization with the experiment
may have a significant impact on the TAC test. Therefore, we
randomized the order in which participants performed TAC
test with the MSD or the LDA, i.e., five participants performed
the TAC test first with the LDA and other five performed
it with the MSD first. Both algorithms were analyzed using
three metrics, i.e., task completion rate, task completion time,
and the path efficiency [17]. Both algorithms were tested
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using the following parameter selections: number of trials = 2,
repetitions = 3, test time = 15 secs, allowed range = 5 degrees,
and dwell time = 1 sec.

Identifying the number of synergies yielding the best dis-
crimination accuracy is important for the MSD algorithm. The
variance accounted for (VAF) is a common metric used to
ascertain the correct number of synergies required to repre-
sent the data effectively in a low dimensional subspace. An
increase in the number of muscle synergies usually results
in an increased VAF. However, the effect of VAF on the
task discrimination accuracy was not evident. Therefore, we
considered the task discrimination accuracy to quantify the
effect of the number of synergies on the MSD algorithm.

It is known that the decision stream, i.e., the number
of discrimination decisions per unit time provided by the
algorithm, should be as dense as possible [32]. The density
of the decision stream is directly affected by T}, and Tj,..
Keeping the processing times 7, = 3 secs in mind, we chose
a value of 10 ms for Tj},., i.e., a discrimination decision will
be available after every 10 ms in real-time.

Transient parts of the EMG signal at the initiation and
termination of a movement affect the task discrimination
accuracy of the algorithm. We can specify the cTp in the MSD
algorithm and control how much of the transient information
is available for synergy extraction (i.e., off-line processing). A
cTp value of 50% will remove all transient information (from
both sides of the signal) while a value of 100% will retain all
information. With an increase in the cTp value, as expected,
the discrimination accuracy decreases. However, it is known
that including the transient information of the EMG signal into
discrimination algorithms improves the real-time performance,
albeit a decrease in the off-line accuracy [33]. In this respect,
a cTp of 70% provides an acceptable compromise between
off-line accuracy and real-time performance [31].

We compared discrimination errors of the MSD algorithm
with three other algorithms: 1) the LDA, 2) the artificial neural
network (ANN), 3) one-vs-all support vector machine (SVM).
We used a common set of EMG features (MAV, ZC, SSC,
and WL [1], [3]) for all three algorithms. All four algorithms
were tested under identical conditions using the same EMG
data (e.g., the amount of training and testing EMG data, the
number of movement classes, and number of EMG channels
and features). We used an analysis window T, = 250 ms,
window increment time 7;,. = 150 ms and cTp = 0.7 for the
EMG data. We selected a feed-forward ANN with one hidden
layer having five neurons. The output layer had neurons equal
to the number of tasks (that included all movements plus a
‘rest’ class, i.e., 7 for 1-DOF and 19 for 1+2-DOF). The ANN
was trained using the Levenberg-Marquardt backpropagation
algorithm.

All statistical tests, i.e., repeated measure analysis of vari-
ance (ANOVA) with a Greenhouse-Geisser correction and
post hoc investigations using the Bonferroni correction (where
required) were performed using IBM SPSS version 22. All
statistical tests were performed at a 95% significance level.

IV. RESULTS
A. Number of Task-Specific Muscle Synergies

In Fig. 6(a) we present the task discrimination accuracy as
a function of the number of muscle synergies (1 through 6)
for both data sets. We found significant synergies effects on
the discrimination accuracy (p < .001) for both data sets.
Investigation using pairwise comparisons showed that two
or more synergies were sufficient to achieve maximum task
discrimination accuracy for 1-DOF tasks (p < .01). Any fur-
ther increase in the number of synergies did not significantly
improve discrimination accuracy. An investigation along the
same lines for 14+2-DOF tasks found that three synergies were
sufficient for maximum discrimination accuracy.

B. Analysis Window Size (T,)

The analysis window size, T}, controls the amount of infor-
mation available to the MSD algorithm for task discrimination
and therefore directly affects its performance. We analyzed the
MSD algorithm for different analysis window sizes, starting
from 100 ms to 400 ms with an increment of 50 ms as shown
in Fig. 6(b). Repeated measure ANOVA showed a significant
effect for the window size (p < .001) on the task discrimi-
nation accuracy for both data sets. A post hoc investigation
revealed that an increase in T, provided a significant increase
in the task discrimination accuracy. However, due to the real-
time requirements, 7}, cannot be increased arbitrarily. In [34],
the following relationship between T,, increment time Tj,,.,
processing time 7}, and the controller delay D was suggested:

1

1
D= §Ta + iTznc + Tp7 (10)

We selected Ty, = 250 ms, T;,. = 10 ms, and T}, = 3 ms (see
Fig. 6(c) for T},), which corresponded to a controller delay
of D = 133 ms. The resulting value is slightly higher than
the acceptable value of 120 ms [35], however, the selected
parameters, i.e., T, = 250 ms and T;,. = 10 ms provided
good performance in real-time.

C. Similarity Measures

Similarity measures were employed to ascertain how close
the estimated muscle activations §i are to the actual ones
yi. We investigated four different similarity measures in this
study, including a cosine similarity measure, the Euclidean
distance, the Pearson correlation coefficient, and the coefficient
of determination r? (defined in Appendix). The differences
between all four similarity measures were not considered
statistically significant (p = .149).

D. Real-time processing and Synergy Extraction Times

The real-time processing corresponds to the time required
by the MSD algorithm to execute a single measurement
of the EMG signal, while the synergy extraction time can
be considered as the training time for the proposed MSD
algorithm. In Fig. 6(c), we show the time consumed by the
MSD algorithm to process a single measurement for task
discrimination using various numbers of synergies. We also
present the time consumed by the algorithm to extract the
synergy matrices (right vertical axis in Fig. 6(c)).
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nation errors of both the LDA and the MSD algorithm are plotted against the
LDA errors (top row) and against the MSD errors (bottom row) for all twelve
participants for individual data sets (1-DOF tasks and 142-DOF tasks).

E. Comparison with the Other Classification Algorithms

Figure 6(d) shows the mean and standard deviation of
the discrimination error for the different algorithms (MSD,
LDA, ANN and SVM). The boxes’ heights correspond to the
mean discrimination error and the vertical bar above each
box corresponds to one standard deviation of the error. We
found statistically significant differences between discrimina-
tion accuracies p < .001. Further investigation using pairwise
comparison showed that differences between means of all
groups were significant p < .001, except for the MSD and
ANN p = .147. At the same time, a large variance in the
ANN classification accuracy as compared to the MSD was
observed, which was later verified with the Levene’s test of
equality of variances (p < .001).

F. Robustness of the MSD Algorithm

We hypothesized that the proposed MSD algorithm is more
robust to discrimination errors than the widely used LDA. To
test our hypothesis, we analyzed the discrimination errors of
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Fig. 8. Completion rates for the TAC test. (a) Individual completion rate are
shown where each marker represents a participant’s completion rate using the
LDA (blue triangular marker) or the MSD algorithm (black square marker). (b)
Cumulative completion rate for all participants showing average performance
of both algorithms.

both algorithms for all twelve participants (Fig. 7). In Figs.
7(a) and 7(b), we present discrimination errors of the MSD
and the LDA plotted against the LDA error for 1-DOF and
1+2-DOF data sets, respectively. In both Figs., each marker
represents a particular participant. The blue triangular markers
show the average LDA discrimination error, while the black
square markers indicate the average MSD discrimination error.
The blue lines, with a slope m = 45° in both Figs., show
the LDA errors plotted against the LDA errors. Once we
performed a linear fit to MSD errors (black lines), we found
that the fitted lines had lower slope values, i.e., m = 31° for
1-DOF tasks and m = 34° for 14+2-DOF tasks. These slope
values indicate that the rate of increase of the MSD error is
lower than that of LDA, i.e., once the LDA error grows, the
MSD error grows at a lower rate, i.e., when the LDA has an
error rate of 1, the MSD algorithm has error rates of 0.59
and 0.68 for 1-DOF and 1+2-DOF tasks, respectively. These
results show that the proposed MSD algorithm is relatively
more robust to discrimination errors. Similar and supporting
results were found by plotting discrimination errors of both
algorithms against the MSD error (Fig. 7(c) and Fig. 7(d)),
where the LDA exhibits a higher discrimination error increase
rate.

G. Real-time Testing using the TAC Test

Results of the TAC test for both algorithms are given in
Table 1. The values presented in the table are averaged across
all tasks for all participants. The superior performance of the
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TABLE I
TAC TEST RESULTS

Metric MSD LDA
(mean+std)  (mean+std)
Completion rate 0.90£0.19 0.7840.27
Completion time (secs) 4.92 +1.11 495 +1.13
Path efficiency 0.95+0.06 0.93£0.08

MSD algorithm is evident from the task completion rate (p <
.01) as shown in Fig. 8. There were no significant difference
observed in completion time and path efficiency. However,
these two parameters are calculated for completed tasks only
and therefore should be interpreted in the light of the task
completion rate.

V. DISCUSSION

We formulated the problem of task discrimination as a real-
time estimation problem of activation coefficients within a
state-space dynamical model. The proposed MSD algorithm
for real-time task discrimination is both efficient and robust.
The real-time part of the MSD algorithm, which consists of
estimating the activation coefficients, task discrimination and
post-processing, is executed in approximately 1 ms (Lenovo
IdeaPad Y500 Laptop) for 1-DOF tasks and 3 ms for 1+2-
DOF tasks. For the training time, in the current setting the
participants perform each task for 5 secs with a 5 sec rest
between two tasks and each task was repeated three times. In
this scenario, the total training time for 1-DOF tasks is about
2 mins and 45 sec (inclusive of all breaks). The holding time
for each task and inter-task break can be reduced from 5 secs
to 3 secs without compromising the average discrimination
accuracy [36]. In this case, the training time is reduced to
approximately 99 secs for 1-DOF tasks and 5 mins and 15
secs for 1+2-DOF (18 tasks).

Our investigation revealed no differences between mus-
cle targeting or symmetrical arrangement of electrodes for
EMG data collection, which confirmed earlier results [30],
prompting us to proceed with a symmetrical arrangement of
electrodes.

The number of task-specific muscle synergies directly in-
fluences the performance of the MSD algorithm. We found
that, in general, three or more synergies provide a superior
discrimination accuracy for all possible tasks (1-DOF as well
as 14+2-DOF tasks). Therefore, we recommend using three
muscle synergies for the general discrimination problem. Our
investigation into the analysis window size T}, led us to select
a value of 250 ms, which is supported by previous research
[32]. Furthermore, due to the fact that we have 7}, = 3 ms for
1+2 DOF tasks, we may choose a T}, > 10 ms to provide a
dense decision stream.

Various machine learning algorithms including the LDA,
quadratic discriminant analysis, different flavors of ANN, k-
nearest neighbors, and SVMs have been tried in myoelectric
control. Nevertheless, all classifiers perform equally well and
no statistical differences have been reported in their classi-
fication accuracies [37]. We compared the performance of
the MSD algorithm with three of them: the LDA, feed-
forward ANN and the one-vs-all SVM, and found that the

MSD algorithm performs better than others in terms of off-
line classification accuracy (p < .05) except for the ANN.
However, an increased training time along with a higher value
of variance (p < .001) was observed for the ANN.

We showed that the proposed MSD algorithm is robust to
misclassification in the presence of a degrading EMG signal.
As the error rate of the LDA increases, the MSD discrimi-
nation errors increase at a significantly lower rate. An ideal
discrimination scheme will have a horizontal line (a line with
slope zero) in Fig. 7, meaning in the presence of classification
errors by an algorithm, the ideal scheme performs robustly
with no effect on the discrimination accuracy. In this respect,
the MSD algorithm (m = 31° and m = 34° for 1-DOF
and 1+2-DOF tasks, respectively) is relatively more robust
than the LDA (m = 45°). Therefore, we infer that for users
(e.g., amputees) with lower amplitude/noisy EMG signals,
the MSD algorithm will perform more robustly and provide
comparatively higher discrimination accuracies.

We considered a linear form process dynamics and obser-
vation model, which may be a simplification of the underlying
physical phenomenon. We acknowledge that a nonlinear model
would likely improve the performance of the proposed MSD
algorithm in terms of classification accuracy as well as real-
time controllability. However, with a nonlinear system model,
the Kalman filter cannot be used for the estimation of the
activation coefficients and will need to be replaced by a
nonlinear Bayesian estimator, such as the extended Kalman
filter, unscented Kalman filter, or the Particle filter. The non-
negativity constraint on the latent system state further com-
plicates the estimation of activation coefficients. Additionally,
the computational demands of nonlinear estimation techniques
may prohibit their use for real-time application.

We used a modified form of the Kalman filter for the syn-
ergy coefficient estimation due to the non-negativity constraint
on the unknown system state. Though different methodologies
can be adopted to constrain the unknown state, for a linear
system with linear constraints all methods result in similar
state estimate [28].

We have shown, using the TAC test, that the proposed MSD
algorithm performs better than the LDA especially in terms
of task completion rate, with p < .01. From Table I, we
see that for other two metrics, i.e., completion time and path
efficiency, the MSD algorithm again performs better than the
LDA, though differences may not be significant. However, it
is important to highlight that these two metrics are calculated
only from the completed tasks (i.e., excluding data of all tasks
which were not completed).

VI. CONCLUSION

We have presented a new conceptual and computational
scheme to address the challenging problem of real-time task
discrimination for myoelectric control. The problem was for-
mulated in a new way using state-space representation and
the task-specific muscle synergies. The proposed discrimi-
nation algorithm is robust and outperforms other commonly
employed classification algorithms both in terms of off-line
accuracy as well as real-time performance (p < .01).
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APPENDIX
SIMILARITY MEASURES

We used four similarity measures for the MSD algorithm,

ie.,

cosine similarity, the sample Pearson correlation coeffi-

cient, the Euclidean distance, and the coefficient of determi-
nation 72. Given two vectors = and z;, the four measures are
defined as:

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

Cosine = =1 @:/\/sTz,2Tz,, where T represents transpose.
Correlation = [¢1,@::/\/2T x, 0Tz, |, Where x;; = (z; —
f,;), SEZ‘ = ZIU

J
Euclidean = /(5 — )T (5 — 24)
r? Index = [(zs — )" (2 — @) [(ws — 3)T (25 — 7))
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