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Abstract—Synthetic aperture radar (SAR) image classification
is a challenging problem due to the complex imaging mecha-
nism as well as the random speckle noise, which affects radar
image interpretation. Recently, convolutional neural networks
(CNNs) have been shown to outperform previous state-of-the-
art techniques in computer vision tasks owing to their ability
to learn relevant features from the data. However, CNNs in
particular and neural networks, in general, lack uncertainty
quantification and can be easily deceived by adversarial attacks.
This paper proposes Bayes-SAR Net, a Bayesian CNN that
can perform robust SAR image classification while quantifying
the uncertainty or confidence of the network in its decision.
Bayes-SAR Net propagates the first two moments (mean and
covariance) of the approximate posterior distribution of the
network parameters given the data and obtains a predictive
mean and covariance of the classification output. Experiments,
using the benchmark datasets Flevoland and Oberpfaffenhofen,
show superior performance and robustness to Gaussian noise
and adversarial attacks, as compared to the SAR-Net homologue.
Bayes-SAR Net achieves a test accuracy that is around 10% higher
in the case of adversarial perturbation (levels > 0.05).

I. INTRODUCTION

Synthetic aperture radar (SAR) is an important remote
sensing tool that provides high-resolution images of earth
surface under all-weather and day-and-night conditions [1].
The image data from SAR is used in various applications
ranging from environmental and earth system monitoring [2],
geoscience and climate change research [3], 2-D and 3-D
mapping [4], 4-D mapping (space and time) [5] and security
and screening [1]. One of the advanced types of SAR is the
polarimetric SAR (PolSAR), which can penetrate observed
objects to a certain extent and record the complete scattering
information of these objects [6]. The fully polarimetric wave-
forms enable one to capture the scatter characteristics/matrix of
objects/targets [6]. Given the wide range of applications of SAR
and PolSAR images, it is crucial to process (e.g., classify) these
images using robust and reliable machine learning algorithms
[7], [8]. However, due to the unique nature, complex imaging
mechanism, and random speckle noise in SAR/PolSAR images,
the robust multi-class classification remains a challenging
problem [9], [10].

Recently, convolutional neural networks (CNNs), a special
class of deep neural networks (DNNs) that specialize in
processing grid data, have achieved human-level classification

performance on object recognition from images of natural
scenes [11]. In the field of SAR image processing and interpre-
tation, CNN-based models have recently demonstrated superior
performance [12] as compared to traditional machine learning
techniques, such as support vector machines (SVM) [13],
Wishart maximum likelihood (Wishart ML) [14] and random
forest [15]. Traditional classification algorithms depend on
hand-engineered features that usually require significant prior
knowledge and domain expertise. In contrast, CNNs can
learn hierarchical features and appropriate representations
automatically from the data without requiring explicit expert
human intervention [16]. However, the features extracted by
CNNs may not be robust due to many challenges including
over-fitting and the learned classifiers may fail under small
perturbations in the data, i.e., adversarial noise [17]. For
images, such perturbations are often too small to be perceptible,
yet they completely fool the models. We argue that this
vulnerability to designed perturbation attacks could be mitigated
by propagating uncertainty across the network. In general, the
quantification of uncertainty in the prediction is pivotal for
the deployment of these algorithms in real-world scenarios,
including SAR/PolSAR applications.

Bayesian neural networks are DNNs that provide a principled
approach to reason about uncertainty by introducing probability
distributions over the unknown parameters (i.e., network
weights and biases). In a Bayesian setting, all information
about the unknown parameters is provided by their posterior
distribution given the data. Since it is very hard to obtain the
posterior distribution of the network parameters given the train-
ing data, variational inference (VI) advances an approximation
technique that changes the problem of density inference to an
optimization problem [18]–[20]. Specifically, VI proposes to
minimize a measure, e.g., the Kullback-Leibler (KL) divergence,
between an approximating family of distributions and the true
unknown posterior density function.

In this paper, we propose a novel Bayesian CNN, referred to
as Bayes-SAR Net, which performs SAR image classification
and uncertainty estimation in a unique framework. Bayes-SAR
Net is built upon the extended VI framework proposed in [21]
for propagating uncertainty in CNNs. In Bayes-SAR Net, the
convolutional kernels are considered as random fields, and
their first two moments are propagated through all layers



(convolution, max-pooling and fully-connected) using first-
order Taylor series approximations.

The proposed Bayes-SAR Net performs three distinct tasks for
the SAR image classification problem: 1) learning hierarchical
representations of the features from the SAR images through
the multistage architecture of the convolutional layers, 2)
performing multi-class SAR image classification using the fully-
connected layers and the final Soft-Max layer, and 3) estimating
the confidence or uncertainty in SAR image classification.
Our experiments using two PolSAR datasets, acquired over
Flevoland in The Netherlands and Oberpfaffenhofen in Ger-
many, showed that Bayes-SAR Net achieves superior robustness
to Gaussian noise as well as adversarial attacks compared to
its classical (deterministic) CNN homologue [9].

II. Bayes-SAR Net

This section introduces the general framework of Bayes-SAR
Net, which is based on the extended VI approach [21].

A. Network Architecture

The architecture of Bayes-SAR Net is based on the classical
CNN, i.e., an input layer, several convolutional layers, max-
pooling, fully-connected layers, and a final classification layer
(e.g., Soft-Max classifier). The input data (e.g., an image) is
processed using multiple learnable convolutional kernels, that
are part of the convolutional layer, to extract distinguishing
features from the input data. The convolution operation is
followed by a nonlinear activation function, e.g., a rectified
linear unit (ReLU). The resulting features are then processed
using the max-pooling operation to reduce feature dimensions.
Generally, a CNN has multiple layers of the convolution
operation, ReLU function, and max-pooling before performing
classification. The convolutional kernels, which are responsible
for extracting distinguishing features from the input data, are
unknown and are estimated using a gradient descent-based
algorithm by minimizing a loss function defined between the
true and estimated labels. Note here that, in the classical CNN
framework, the unknown parameters or weights are real-valued
deterministic quantities.

B. Variational Inference Framework

In our setting, i.e., Bayes-SAR Net, the unknown weights of
the network Ω =

{
{{W(k)}Kk=1}Cc=1, {W(l)}Ll=1

}
are defined

as random variables with a prior probability distribution p(Ω),
where {{W(k)}Kk=1}Cc=1 is the set of C convolutional layers,
and {W(l)}Ll=1 is the set of L fully-connected layers. Once the
training data samples, i.e, D = {X(i),y(i)}Ni=1 are observed,
the posterior distribution of the weights given the training
data p(Ω|D) can be approximated by minimizing its Kullback-
Leibler (KL) divergence with a proposed distribution qθ(Ω)
that is easy to compute, i.e.,

θ∗ = argminKL [qθ(Ω)‖p(Ω|D)] (1)

= argmin

∫
qθ(Ω) log

qθ(Ω)

p(Ω)p(D|Ω)
dΩ

= argminKL [qθ(Ω)‖p(Ω]− Eqθ(Ω) {log p(D|Ω)} . (2)

Thus, the optimal posterior approximation is obtained by
maximizing the following objective function, also known as
evidence lower bound (ELBO):

L(θ;y|X) = Eqθ(Ω)(log p(y|X,Ω))−KL(qθ(Ω‖p(Ω)). (3)

In the proposed framework, all convolutional kernels are
assumed to be independent of each other and of the weights
in the fully connected layers. This assumption is not only
reasonable but also desirable as it ensures that the convolutional
kernels extract “independent features” and also helps avoid
redundancy in the unknown parameters. The ELBO objective
function in Eq. (3) consists of the expected log-likelihood of
the training data given the weights and the regularization on
the weights of the convolutional and fully connected layers. We
define the expected log-likelihood as a multivariate Gaussian
distribution with the mean vector and variance-covariance
matrix estimated by propagating the mean and covariance
of the approximating distribution qθ(Ω) through the layers of
the CNN.

C. Propagating Moments

Figure 1 shows the architecture of Bayes-SAR Net. The
ultimate goal would be to propagate the probability distributions
defined over the unknown parameters through the CNN layers
and subsequently find the predictive distribution of the output,
i.e., classification decision. However, propagating distributions
through non-linearities is mathematically intractable. Therefore,
we propose to propagate only the first two moments, i.e., means
and covariances using first-order Taylor series approximations.
By doing so, we are actually propagating approximate Gaussian
distributions across the network layers. A detailed derivation
of the moments propagation across the different layers (con-
volution, non-linearity, max pooling and fully connected) is
provided below.

1) Convolution: Convolution is a linear operation between
the convolutional kernels W(k) ∈ Rr1×r2×K and the input
multi-channel image, such that z(k) = X vec(W(k)), where
vec is the vectorization operation. The matrix X represents
the input image with every row representing a vectorized sub-
tensor, Xi:i+r1−1,j:j+r2−1, selected from the input image X

and having the same size as that of the kernels. We define
multivariate Gaussian distributions over the convolutional
kernels, i.e., vec(W(k)) ∼ N

(
m(k),Σ(k)

)
. It follows that,

z(k) ∼ N
(
Xm(k), XΣ(k)XT

)
.

2) Non-linear Activation Function: The convolution results
are fed to an element-wise, nonlinear activation function ϕ,
such that: g

(k)
i = ϕ

(
z
(k)
i

)
(Fig. 1). We use a Taylor series
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By computing the expected value and the variance of both
sides of Eq. (4), we can approximate the mean and covariance



Fig. 1. The architecture of Bayes-SAR Net depicting convolution kernels, activation function, max-pooling operation, and fully connected layers. We define
probability distributions over all unknown parameters and propagate the first two moments through these layers. The inputs of the network are patches from a
SAR image and the output encompasses: i) the classification decision and ii) the associated uncertainty map generated using the predictive covariance matrix.

of the features after the activation function, µg(k) and Σg(k) ,
as follows:
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where i 6= j.
3) Max-Pooling: We approximate the mean and covariance

at the output of the max-pooling layer by applying the max-
pooling operation on µg(k) , i.e., µp(k) = pool

(
µg(k)

)
, and

downsampling the covariance Σg(k) by keeping only the rows
and columns that correspond to the pooled means.

4) Fully-Connected Layer: The vectorized feature map at
the output of the max-pooling layer forms an input vector b to
the fully-connected layer, such that b =

[
p(1)T , · · · ,p(K)T

]T
.

Hence, b has the mean and covariance matrix,

µb =

µp(1)

...
µp(K)

 ,Σb =

Σp(1) · · · 0
...

. . .
...

0 · · · Σp(K)

 . (8)

We define multivariate Gaussian distributions over the weight
vectors of the fully-connected layer, i.e., wh ∼ N (mh,Σh),
where h = 1, · · · , H , and H is the number of output neurons.
The output of the fully connected layer, i.e., f , is the result of
multiplying two independent random vectors b and wh. Thus,
the elements of µf and Σf are derived as:

E(fh) = mT
hµb, (9)

Var(fh) = tr
(
ΣhΣb

)
+ mT

hΣbmh + µTbΣhµb, (10)

Cov(fhi , fhj ) = mT
hiΣbmhj , i 6= j. (11)

5) Soft-max Classifier: Similar to the activation function,
we use first-order Taylor series to approximate the mean and
covariance matrix passing through the soft-max non-linearity.

D. Uncertainty Maps of Bayes-SAR Net

After each forward pass, we find the mean vector and
covariance matrix of the output layer, which are used to
compute the objective (loss) function defined in Eq. (3).
During back-propagation, we compute the gradient of the
objective function w.r.t the variational parameters θ ={{

m(k),Σ(k)
}K
k=1

,
{

mh,Σh

}H
h=1

}
and update θ using gra-

dient descent. Once training is complete, we use the covariance
matrix of the classification decision to generate the associated
uncertainty map, which corresponds to the output variance of
every classified pixel in the input image.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Implementation

We assess the performance of the proposed Bayes-SAR Net
on two PolSAR datasets, i.e., Airborne SAR (AIRSAR) data of
agricultural area over Flevoland in The Netherlands [22] and
the electronically steered array radar (ESAR) data collected
over Oberpfaffenhofen, Germany [22]. Following the work in
[9], we adopt a region-based classification approach, where
we randomly select patches of size m×m from SAR images
and use these patches as inputs to Bayes-SAR Net. We start by
randomly selecting 3×3 sub-patches from the SAR image that
share the same ground truth label. Then, we use these 3× 3
sub-patches as the center of the m ×m input patches. The
label of every input patch is manually set as the label of the
center sub-patch [9]. The sampled patches are balanced over all
classes by using the ground truth information during sampling.
We conducted a sensitivity analysis to establish the optimal size
of the input patches for Flevoland dataset. For both PolSAR
datasets, we use the following Bayes-SAR Net architecture for
training and testing: two convolutional layers each followed by
a ReLU activation function and a max-pooling layer, and one
fully connected layer. The pooling has a size of 2× 2 and a
stride of 2 pixels. The first convolutional layer has 64 kernels
(filters) with size 3×3×6, and the second layer has 128 kernels
with size 2× 2× 64. The soft-max non-linearity is used as the



final output layer. Our metric for comparing the performance
of Bayes-SAR Net to the deterministic CNN, referred to as SAR
Net, is the overall classification accuracy which is the accuracy
on the entire SAR image [9]. We compared the performance
of both networks at various levels of additive Gaussian noise
and adversarial attacks. The adversarial attacks were generated
using the fast gradient sign method (FGSM) [23], and the level
of noise was measured by the highest conceivable value (HCV),
which is equal to 3 standard deviation [24].

B. Experiment on Flevoland Dataset

Flevoland dataset is a subset of an L-band, full PolSAR
image, acquired by the NASA/Jet Propulsion Laboratory
AIRSAR platform in 1989 during MAESTRO-1 Campaign [22].
The image size is 750 × 1024 pixels with 6 channels
(T11, T12, T13, T22, T23, T33) [9]. There are in total 15 identified
classes including stembeans, peas, forest, lucerne, three types
wheat, beet, potatoes, bare soil, grass, rapeseed, barley, water,
and a small number of buildings. The ground truth class color
codes are presented in Fig. 2(f). The sampling rate is set to
22% which provides 30, 000 samples, 90% for training and
10% validation, while the test accuracy is computed for the
entire SAR image (i.e., 156, 741 patches). Figure 2 shows (a)
the Flevoland SAR image, (b) the ground truth, (c) and (d)
the classification results of the deterministic SAR Net and the
proposed Bayes-SAR Net, respectively and (e) the uncertainty
map produced by Bayes-SAR Net.

Table I presents the overall accuracy of Bayes-SAR Net and
its deterministic homologue SAR Net on Flevoland SAR dataset
before and after adding three levels of adversarial noise. The
adversarial attacks target the class label “lucerne”; thus trying
to fool the network into classifying all patches as “lucerne”.
The table shows the results for three different patch sizes,
8 × 8, 16 × 16 and 32 × 32. We note that the two networks
perform well on noise-free SAR data; however, Bayes-SAR
Net maintains significantly higher accuracy under adversarial
attacks compared to SAR Net. Note that the network produces
similar accuracy values for the three different patch sizes.

Figure 3 shows the classification results and uncertainty
maps of Bayes-SAR Net for three levels of adversarial noise,
where Fig. 3(a) is the ground truth and Fig. 3(b-d) are the
classification results and uncertainty maps for HCV = 0.1, 0.2
and 0.3, respectively (patch size = 8 × 8). Observe that the
uncertainty in the classification results increases as the level
of noise increases. The class label “lucerne”, which is the
target of the attack, is represented in cyan color in the ground
truth image. The arrows, in Fig. 3, refer to the pixels that are
misclassified as “lucerne” and to the uncertainty associated
with those pixels in the uncertainty map.

Figure 4 shows the output variance, averaged over all pixels
of the SAR image, versus the noise level measured by the HCV.
The three curves represent the output variance (representing
the uncertainty in the classification decision) for three different
patch sizes. The output variance increases when the noise level
increases, indicating that the network is less and less confident
in its decision. This monotonic behavior is observed for all

TABLE I
THE OVERALL ACCURACY OF THE PROPOSED Bayes-SAR Net AND

DETERMINISTIC SAR Net ON THE FLEVOLAND SAR DATASET WITH AND
WITHOUT ADDING THREE LEVELS OF ADVERSARIAL NOISE.

Adversarial
Noise Bayes-SAR Net SAR Net

Patch Size Patch Size
8×8 16×16 32×32 8×8 16×16 32×32

0.1 83.6% 83.0% 83.3% 73.6% 73.6% 73.9%
0.2 68.8% 67.8% 67.7% 56.8% 58.2% 57.8%
0.3 56.1% 55.1% 56.7% 47.4% 48.7% 46.9%
Zero noise 96.5% 98.5% 97.6% 96.2% 98.9% 98.8%

TABLE II
CLASSIFICATION ACCURACY OF THE PROPOSED Bayes-SAR Net AND SAR
Net FOR FOUR DIFFERENT LEVELS OF GAUSSIAN NOISE ADDED TO THE

FLEVOLAND SAR IMAGE.

Gaussian Noise 0.01 0.1 0.2 0.3
Bayes-SAR Net 98.1% 90.8% 83.9% 77.8%
SAR Net 95.3% 88.1% 77.9% 69.9%

patch sizes. Interestingly, the output variance corresponding to
a patch size of 16× 16 has higher values than the other two.
For small level attacks, all 3 patch sizes correspond to similar
uncertainty behavior. For high level attacks, a patch size of
16×16 seems to be quite sensitive to attacks; and thus may be
desirable at deployment. More simulations on additional SAR
images need to be performed to understand the exact effect of
the patch size on the output variance.

Table II displays the classification accuracy of Bayes-SAR
Net and SAR Net for four different levels (variance values) of
Gaussian noise added to the SAR image. Bayes-SAR Net is
clearly more robust to additive Gaussian noise. This robustness
to both Gaussian noise and adversarial attacks can be intuitively
linked to the uncertainty information estimated by Bayes-
SAR Net. In particular, the variance associated with every
convolutional kernel may quantify the confidence in the features
learned by that kernel. Since these confidence values are
propagated across the network layers, Bayes-SAR Net could be
weighing the features according to their confidence, and thus
able to better resist noise and attacks.
C. Experiment on Oberpfaffenhofen Dataset

Figure 5(a) shows the ESAR L-band, multi-look data over
Oberpfaffenhofen, Germany [22]. The size of the image is
1300× 1200 pixels with 6 channels. The ground truth in Fig.
5(b) shows three distinct classes: built-up areas (red), wood
land (green), and open areas (yellow). Figs. 5(c) and 5(d)
show classification results of SAR NeT and Bayes-SAR Net,
respectively. The uncertainty map of Bayes-SAR Net is shown in
Fig. 5(e). The sampling rate is set to 10% for Oberpfaffenhofen
dataset which provides 100, 000 samples, 95% for training and
5% for validation. The test accuracy is computed for the entire
SAR image (i.e., 1, 303, 960 patches).

Similar to the Flevoland dataset, we evaluate the performance
of the proposed method on Oberpfaffenhofen dataset for three
levels of adversarial noise, i.e., HCV = 0.01, 0.05 and 0.1,
targeting the class label “open areas”. Table III illustrates
the overall accuracy of Bayes-SAR Net and SAR Net on the



Fig. 2. Flevoland dataset. (a) The original RGB pseudo-color PolSAR image of Flevoland. (b) The ground truth map of the target scene. (c) and (d) The
classification results of deterministic SAR Net and the proposed Bayes-SAR Net, respectively. (e) The uncertainty map produced by Bayes-SAR Net. (f) The
legend for the ground truth.

Fig. 3. The classification results and uncertainty maps of Bayes-SAR Net for three levels of adversarial noise corrupting the Flevoland SAR dataset. (a) The
ground truth image, (b-d) the classification results and uncertainty maps for attack level = 0.1, 0.2, and 0.3, respectively. The patch size is set to 8× 8.

Fig. 4. The output variance averaged over all Flevoland SAR image plotted
against the noise level measured by the HCV for three different patch sizes,
8× 8, 16× 16 and 32× 32.

Oberpfaffenhofen dataset before and after adding the three
levels of adversarial noise. The patch size is set to 8× 8. For
higher levels of attacks, i.e., HCV = 0.05 and 0.1, Bayes-SAR
Net achieves higher accuracy compared to its deterministic
homologue. When the attack level is very low, both networks
enjoy similar high accuracy.

TABLE III
THE OVERALL ACCURACY OF THE PROPOSED Bayes-SAR Net AND SAR Net

ON THE OBERPFAFFENHOFEN DATASET BEFORE AND AFTER ADDING
FGSM ADVERSARIAL NOISE, AT LEVELS 0.01, 0.05 AND 0.1. THE PATCH

SIZE IS SET TO 8× 8.

Adversarial Noise Zero noise 0.01 0.05 0.1
Bayes-SAR Net 94.2% 89.7% 74.1% 67.7%
SAR Net 94.5% 89.5% 64.2% 59.3%



Fig. 5. Oberpfaffenhofen dataset. (a) The original RGB PolSAR image. (b) The ground truth with three distinct classes: built-up areas (red), wood land (green),
and open areas (yellow). (c and d) The classification results of the deterministic SAR Net and Bayes-SAR Net, respectively. (e) Bayes-SAR Net’s uncertainty map.

IV. CONCLUSION

We introduced Bayes-SAR Net, a novel Bayesian convolu-
tional neural network for synthetic aperture radar (SAR) image
classification with uncertainty estimation. The proposed Bayes-
SAR Net estimates the uncertainty in the classification decisions
by propagating the first two moments of the approximating
posterior distribution of the parameters given the training
data. Bayes-SAR Net outputs: 1) the classification decision,
2) an uncertainty (or confidence) map associated with the
classification. In addition, we showed that Bayes-SAR Net is
robust to additive Gaussian noise as well as FGSM adversarial
attacks as compared to its deterministic homologue, SAR Net,
on two benchmark PolSAR datasets.
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