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Abstract—We propose a new non-parametric level set model However, “edge-based” segmentation is very sensitive tseno
for automatic image clustering and segmentation based on me and other artifacts in the image, such as blurring. In order
negative matrix factorization (NMF). We show that NMF: (i) {5 gptain more robust segmentation, gradient-free funef®

clusters the image into distinct homogeneous regions andi)(i d. which tially defi lusteri f th
provides the local spatial distribution of each region withn Were proposed, which essentially define a clustering ot the

the image. Furthermore, NMF has a controllable resolution !Mmage [4], e.g.k-means clustering [5]. Most LSM approaches
and can discover homogeneous regions as small as one pixelproposed parametric clustering approaches, where thenzgi
Coupled with the level-set approach, NMF is an efficient metbd  are clustered based on (global or local) intensity fittingren
for image segmentation. The proposed model is unsupervised giag 1], [4], [6], [7]. The parameters of the fits are simatta
and relies on local histogram modeling to_define an energy ously estimated with the level set functions. The introghrct
functional, whose optimization leads to the final segmentain. y X :

A unique and desirable feature of the proposed method is that Of these “nuisance parameters” decreases the accuracg of th
it does not incorporate any spurious model parameters; heres  segmentation, especially when using ad-hoc or sequsntiall

the optimization is performed only w.rt level set functiors. We  galternating optimization techniques, which optimize ovee
apply the proposed Non-parametric Unsupervised SegmentaiN parameter at a time.

approach (geNIUS) to synthetic and real images and compare . .
it to three state-of-the-art parametric and non-parametric level Li et al. [5] proposed a clustering approach that locally

set approaches: the localized Gaussian distribution fittig model Modeled pixel intensities in each region using a Gaussisn di
(LGDF) [1], the local histogram fitting (LHF) model [2], and tribution with the same variance but different local meadriss
our recent work: NMF-LSM in [3]. The proposed geNIUS model work was extended in [1] by considering different variances
results in a superior accuracy and more efficient implementéion, 5, the regions. In both [1] and [5], the parameters of the
which is a result of its free-model parameter feature. . S . .
Gaussian distribution (means and variances of the regions)
were estimated iteratively along with the main parameter of
interest, namely, the level set functions. In [8], i al.
Image clustering and segmentation is a vital problem roposed a non-parametric level set model that computed
many applications, including biomedical imaging, biotech a local histogram of pixel intensities in a patch, and then
ogy, visualization and computer vision. The aim is to dediee decided whether the pixel belongs to the inside region or
and separate the homogeneous regions (or objects) in theside region by computing the Wasserstein distance of the
image for the purpose of extracting or further studying thHecal histogram and the histogram inside and outside the
objects of interest. The level set method (LSM), based @hosed curve. Liet al. [2] re-examined Ni's work in a local
partial differential equations, is considered statekaf-art in  framework by considering a small neighborhood around each
image segmentation. LSM evolves a contour like a rubbpixel. Both [2] and [8] assumed that the image consists of
band until the contour stops at the desired object bourslarienly two regions (object and background). Such an assumptio
This contour is defined as the zero-level set of a highds not practical in many applications, such as MRI brain
dimensional function, théevel set function, that can be easily segmentation. Moreover, the model histograms inside and
computed and evolved in the image domain. Specifically, LSbutside the evolving curve are estimated iteratively alaith
constructs a function of the contour, callehctional, whose the level set functions. In our recent work [3], we proposed
optimization leads to the final segmentation of the image.parametric level set approach based on non-negativexmatri
Coming up with an appropriate functional, and deriving afactorization (NMF). NMF factors the image into non-negati
optimization approach to find a minimizer of that functignaimatricesv = WH. We showed that th&/ factor provides
is a challenging problem. the mean and variance intensity levels of the distinct megjio
Traditionally, functionals were defined based on the gradiein the image. We subsequently proposed an external energy
of the image, so that the contour stops at the image edgksctional that relies only on the factor mati% . However,

I. INTRODUCTION



this work did not consider the information provided by the
other factor matrixH. Taking into account the information
encoded by both factor matric#¢ andH would lead to more
accurate segmentation.

In this paper, we describe a novel non-parametric level set
segmentation approach that uses non-negative matrixrfacto
ization (NMF) for clustering and region discovery. We show
that the factor matrices encode the regions’ charactesisti
mean intensity, variance, and spatial distribution witktie
image. The NMF parameters are then used to define the local
histogram inside a window centered at each pixel. In padgicu
no nuisance parameters are introduced. This non-parametri
model is integrated within the level set framework to form an :
energy functional in terms of level set functions (LSFs)eTh c3 e3
segmentation is achieved by minimizing the energy funetion '
w.r.t. the LSFs. The proposed Non-parametrlc Unsupervis
Segmentation, termed geNIUS, is applied to synthetic imag
as well as multiple sclerosis MRI scans. We compare geNIUS

with two state-of-the-art level set approaches: a pardmetfniia| variation of the intensity values across the image.
approach: the localized Gaussian distribution fitting (LEGD 11, segmentation is achieved by maximizing the posterior

model [1], and a non-parametric approach: the local histogr ., apility of the regions given the image. The image model
fitting (LHF) model [2]. ThIS paper is d|fferent_ from [3] in g given byl =b J+n wherel is the given image} is the

at least three aspects: First, this paper takes into acebant ;- field,J is the true (hidden) image am is an additive
clustering information provided by the two factor matriceg,ise

W and H. Second: the proposed model is non-parametric| o piy(1) = p( n Oy|l) be the posterior probability

and does not assume any specific model or Gaussianiyiye subregior; n O, given the observed imade Using

Third, whereas the model in [3] encompasses one nuisargélyes, rule, we have((; n Oy (1) o p(1]<% n O,) p(i n
. . . . . ’ [ y 7 y 7
parameter, the bias term due to intensity inhomogenei§y, 1) \  assuming that the prior probabiliies of all partitions

proposed geNIUS approach has no additional model paramejgy equal, and the pixels within each region are independent
as it relies on non-parametric histograms. In particulae, tine maximum a posteriori (MAP) estimate can be achieved
optimization of the contour evolution is performed solely.v by finding the maximum of [, TT,.q . Piy(1(z)). It can

i Lleein0oy, P, :

the level set functions. be shown that the MAP formulation can be converted to the

Thg main contribution; of this paper are as f_OHOWS: _(%inimization of the following energy functional in the ldve
describes the NMF algorithm as a clustering technique fer ifg¢ framework [1]:

ages with a controllable resolution; (ii) proposes the ¢é8l

method, which is a non-parametric unsupervised segmentati F (9, b, c, o’) =
approach of the image based on NMF and the LSM. A unique , N
and attractive feature of geNIUS is that no nuisance paenset /Z / —K(y —x)logp; y(J(z) b(y))M,(¢)dxdy,
are introduced and the optimization is fully achieved wigh r i=1

spect to the level set functions, which define the segmemntati 1)

contours. As we WiI_I see in the simulati(_)ns, this uniquedeat wherep; ,(J (z) b(y)) is a Gaussian distribution with mean
explains the superior accuracy and higher speed of geNId&q variances;, K (y — ) is a Gaussian kernel function, and
compared to other parametric and non-parametric level $@t(g) is the membership function of regidn In the LGDF
approaches. model, the intensity means= {c;}*_, and variance? =

Il. RELATED WORK {o?}F_, of the k regions are simultaneously and iteratively

A. Local Gaussian Distribution Fitting (LGDF) Model [1] estimated with the level set functign and the bias field.

In the LGDF model [1], Cheet al. consider a neighborhoodB- Local Histogram Fitting (LHF) Model [2]

O, of every pixely and characterize the local distribution In [2], Liu et al. rely on histograms rather than parametric
of the intensities in this neighborhood using a GaussidGaussian) densities to characterize the distributionixélp
distribution. Specifically, the intensity of regidp; inside the intensities. They similarly consider a local analysis ae€iree
neighborhoo®, is assumed to follow a Gaussian distributior neighborhood®,, around each pixely. The intersection of
with mean intensity(y)c; and variance; (see Fig. 1), where this neighborhood with the object or foreground has histogr
b(y) is the bias field at pixey, assumed to be constant withinP ¥ and its intersection with the background has histogPgn
the neighborhood,,. The bias field accounts for intensityConsider now a pixele, inside neighborhoo®,,, and define
inhomogeneity within the image, which manifests as smoothwindow, also called a patcl®,”, centered atc. Based on

L]

Fig. 1: lllustration of the local Gaussian distribution ifity
DF) model [1].



the distances betweeR® and the histogram®¥ and P},
it is decided whether pixek belongs to the foreground or "
background. This idea is illustrated in Fig 2.

The local histogram fitting energy is defined as a weightt.
distance of the local histograRy* to the fitting histogram® ¥
andPY. The weight assigned to each local histografh at
pixel z inside neighborhoo®, is given by the kerneK (y— "= ™ =
x). The local histogram fitting energy can be formulated i
terms of the level set functions as follows [2]: o

F(¢,PY,PY) // — 2)D(PY, P)dady
- _ v PTdady, (2 e
+ [ [a-He)KE-=DEsPr)dady, (@

where H (@) is the heaviside function. In this model, the
histograms of the object and backgroumf/ and P¥, re- Fig. 3: Building the histogram data matrix using a moving
spectively, are simultaneously and iteratively estimatgth \vindow:.

the level set functiony.

which characterize the regions. On the other hand, the row-
normalized entries of the matrild represent the percentage
or fraction of the area of the region that is included in each
moving window. In other wordsiH renders the local spatial
distribution of the regions.

IV. NON-PARAMETRIC ENERGY FUNCTIONAL
A. Building the Energy Functional

We consider both matriceg/ and H in the NMF fac-
torization V. = WH to build an energy functional whose
minimization leads to the optimal segmentation. Recali tia
matrix W provides the histogram of each region in the image,
Fig. 2: lllustration of the local histogram fitting (LHF) metl and the row-normalized entries of the mattik provide the
[2]. fraction of the area of each regidp; that is included inside
block S;, i.e., the normalized entry@h— represents the
fraction of regioni inside blocks;. For mstance in Fig. 4,
the yellow and blue windows do not intersect the black region

We first divide the image into (potentially overlappingjn the image; hence, the entrieskdfin the row corresponding
blocks or moving windows, and compute the histogram of ete the black region1(** row) and columns corresponding to
ery block. These histograms are then arranged as the colurtiresse two windows are zero. In other words, the black region
of the data matrix/ . Figure 3 shows the local histograms ofs not locally present in these two windows. On the other hand
three selected windows at different positions for a symthethe green window is entirely included in the black region. We
gray-scale image. Ifn is the number of blocks in the imagecan manually check th&.000515% of the area of the black
andn is the number of intensity bins considered, thems of region is included inside the green window. This value masch
sizen=m. Specifically, the(i, j )" entry,v;;, is the number of the row-normalized entry oH in the row corresponding
pixels in blockj having intensity range in bin Applying the to the black region and column corresponding to the green
NMF decomposition to the non-negative data ma¥fixusing window. Furthermore, we can show (not provided here for
the “multiplicative update rules” in [9], we obtain two non-space constraints) that the smallest region that can betddte
negative matrice®V,, ., andHgx.,,, wherek < min(n, m) is by NMF clustering has the same size as the windows used to
the number of regions to be detected in the image. form the data matri®y . In particular, the resolution of NMF-

In order to understand the interpretation of the NMF factdrased clustering can be tuned by the window size parameter,
matrices, consider the synthetic image shown in Fig. 4. Véad can be as small as one pixel.
used a7 x 7 moving window. We chos&k = 3, corre- We propose to model the (local) histogram of regian
sponding to the three regions in the image with intensiipside a windowS; by the weighted histogram of2; as
values0, 178,299. As we can see in Fig. 4a, the matN¥ provided in the matrixVV. The weight is given by the fraction
induces a clustering of the image inko“basic histograms”, of the area oK2; inside windowsS;, i.e., the row-normalized

IIl. NMF-BASED CLUSTERING
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Fig. 4: NMF clusteringV = WH for a synthetic image using > 7 window size.

entry of the matrixH for the corresponding region andis the fraction of the area df}; that is included insideS;.

window. Analytically, we have Summing over all regions and all blocks, we obtain:
o dy = i _pv 3
s, U= =S PE(), @k ow o N 2
iM5; g ij w
>0 / [ V=) 0~ 5 Pl dz )
where |y is the indicator function ofJ, i.e., i=1j=1 \"0 [/SNS; J=17n (s
5
I _ [ 1, Uistrue; @) The energy functiorE is combined in the level set for-
U= 0, Uis false. mulation by representing the disjoint regions with a number

of LSFs @. We first start with the two-phase formulation.
andP/V denotes the histogram of regién extracted from the The regiong); and(2, can be represented, respectively, with
matrix W. The left hand-side of Eq. (4) provides the numbeheir membership functions defined i, (¢) = H(g) and
of pixels inside regiorf2; and windowS; having intensity My(¢) = 1 — H(@), where H is the Heaviside function.
value z, which is the histogram of2; n S; evaluated at bin For more than two regions, two or more level set functions
z. The right-hand side of Eq. (4) is the weighted histogramre defined. The energy in Eqg. (5) can then be equivalently
of region(; as provided by the matriyV, where the weight expressed as the following level set energy functional:



R(9), defined byR(@) = % [, (I @l —1)?dz, is a distance

regularization term that is minimized when 9| = 1, a
E(p) = property of the signed distance function. The second energy
m L h..pW 2 term, L(9) = [,| H(o(x)|dx, computes the arc length of
ZZ / / ei; (¥, 2)M;(@)dy — —m—-—| dz |, the zero level set contour and therefore serves to smooth the
i=1j=1 \70 |/ ijl hij contour by penalizing its arc length during propagation.

) B. Energy Minimization and Segmentation

wheree;;(y,z) = K;(y)l{1(y)=z}, K;(y) is the kernel func-  gegmentation is achieved by minimizing the total energy
tion indicating blockS;, and 2 denotes the entire imagefynctional F in Eq. (7) w.r.t. the LSFsp. The minimization
domain. We add the geometric constraints to form the tot@l achieved by solving the gradient flow equation:

energy functional of the LSF,

%_ 9% ®)
F(p) =aE(9) + BR(®) + yL(9), @) at 09"
whereR(¢) andL (@) are regularization terms (to be defined)BY calculus  of v;l;iations, we com-
anda, B andy are weighting parameters. The energy terfute ~ the  derivative 77 as  follows:
99 £ ([ hi,PW , 0 0
L = —qa ei;(y,z)M/ /ei- L Z2)M;(@)dy — =2 — | dz + —div(—=)) + yd(o) div(—=).
ot ;;/0 iy, 2) ((P)< ; (Y, 2)M;(@)dy Zj_lh”) B( o (l <P|)) yd(®) (l <P|)
(9)

columns, the images are corrupted with Gaussian noise with
In the implementation, the Heaviside function is approxstandard deviations equdl and 4.5, respectively, and salt
mated byH.(z) = 0.5sin(arctan(2)) + 0.5, and the dirac and pepper25% and 35%, respectively. The first row in
delta functiond.(x), the derivative of the Heaviside function these figures shows the original image with the different
is estimated by (x) = 0.5 cos(arctan(Z)) levels of noise. The second, third, fourth and fifth row show,
respectively, the segmentation results of geNIUS, NMF-L.SM
V. SIMULATION RESULTS AND DISCUSSION LHF and LGDF. Notice that geNIUS is more robust to noise,

We evaluate the performance of the proposed noW—h'Ch may be attributed to two main factors: First, we solely

parametric histogram-based NMF model by segmenting sgﬁ_ly on histograms rather than intensity values, and sea@d

thetic images and real brain MRI images for diagnosing muf?—nly optimize over the level set functions as all other @usig

tiple sclerosis (MS) disease. Specifically, we are intexkat Information is provided by the NMF. In LHF and LGDF, the

delineating the gray matter, white matter, deep gray matter contour locks onto the noise in the imag_e. Mqreover_, in Figs
cerebrospinal fluid (CSF) regions in the brain. The obj«ea(:ti\?and 6! the L,HF quel gegments all ot_)jects n th? Image as
of the segmentation of the MS brain is to demonstrate thae ObJeCt_’ since itis built for segmenting one .Ob@a in the
existence of loss of brain volumes in patients diagnoset wifnage. Wh'Ch_'S not very suitable for_ many_apph_catlon_s. The
MS. LGDF model is able to segment multiple objects in the image.
We compare the proposed geNIUS method to NMF-LSMOWG\Ier’ becguse the contour is very .sensit.ive to noise, we
[3], localized Gaussian distribution fitting (LGDF) moday[ cannot tell which contour segments which object.
and local histogram fitting (LHF) model [2]. We also study the
robustness of the algorithm to different levels of noisehia t
image. The segmentation accuracy is quantitatively asdess Figure 7 shows the root mean square error of the four
using the root mean square error (RMSE). We set all weightsodels: geNIUS, NMF-LSM, LHF and LGDF applied to
in Eq. (7) to be equal, ieq=B =y =1. 10 synthetic images. Moreover, the CPU times in seconds
Figures 5 and 6 show the segmentation results of geNIUS) were recorded for Matlab programs on a Asus K53E
NMF-LSM, LGDF and LHF models on the same synthetitaptop with Intel(R) Core(TM)i5-2450M CPU, 2.50 GHz, 8
images of multiple objects and single object corrupted witBB RAM, with Matlab R2013a on Windows 7. geNIUS:
different levels of noise. We applied Gaussian and salt a@f.0162 s; NMF-LSM: 48.2418 s; LHF: 104.3604 s; and
pepper noise. In the first column of Figs 5 and 6, the image&DF: 224.9146 s. In particular, geNIUS appears to have the
are corrupted with Gaussian noise with standard deviatifastest running time, which can be explained by the fact that
equals9 and salt and pepper0%. In the second and third it does not optimize over additional model parameters.
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Fig. 7: Comparison based on RMSE values between the threleod®tthe proposed geNIUS, the LHF [2] and the LGDF
methods [1], of 10 synthetic images corrupted by Gaussiansait and pepper noise.

A. Application to Real Brain MRI Images (MS) demonstrated that MS causes loss of brain volumes

The proposed geNIUS method is applied to real brain MgUPerficial gray matter, deep gray matter, white matted, an
images of a 45 year old female with relapsing remittingSF)- This application looks promising to the developmént o
multiple sclerosis (MS), obtained in 2004 and 2014. The MFgfficient and successful monitoring, treatment, and préven
is obtained from the University of Alabama at Birminghan$trategies in the clinical setting.

School of Medicine. Brain atrophy is a sensitive measure
of the neurodegenerative component of MS. Furthermore,
brain volume measurements appear to be useful in clinicalThis project is partially supported by Award Numbers
trials evaluating potential anti-inflammatory, remyeting or NSF#1429467 and NSE£1310496 from the National Science
neuroprotective therapies. Figure 8 shows the segmentati@undation. Any opinions, findings and conclusions or recom
result on a T1-Weighted MRI scan of a normal patient in th@endations expressed in this material are those of the mutho
first row and a patient diagnosed with MS in the second ro@nd do not necessarily reflect those of the National Science
The blue contour in Figs. 8b, 8g indicates the white mattdroundation.
the red contour in Figs. 8c, 8h indicates the gray matter, the

cyan contour in Figs. 8d, 8i indicates the deep gray matter

and the yellow contour in Figs. 8e, 8j indicates the CSF. TH# Y. Chen, J. Zhang, A. Mishra, and J. Yang, “Image segntimtaand bias

; ; ; orrection via an improved level set methodlleurocomputing, vol. 74,
segmentation measurements reveal a sizable decrease in th%O. 17, pp. 3520 — 3530, 2011,

mass of gray matt_er’ White_ matter, and deep matter a_SSdCiGIE? W. Liu, Y. Shang, and X. in Yang, “Active contour model ¢&n by local
with an increase in the size of CSF for the MS brain. The histogram fitting energ,Pattern Recognition Letters, vol. 34, pp. 655 —

; ; ; A 662, 2013.
percent changes in braln volume of the patient brain in 20% D. Dera, N. Bouaynaya, and H. M. Fathallah-Shaykh, “lleset seg-
versus 2014 are shown in Table I. mentation using non-negative matrix factorization of brairi images,”
in |EEE International Conference on Bioinformatics and Biomedicine
VI. CONCLUSION (BIBM), Washington D.C., November 2015.
; ; _ ; T. Chan and L. Vese, “Active contours without edgd&EE Transactions
In thIS paper, we descrlbgd thg use of non negat|v_e matH on Image Processing, vol. 10, pp. 266-277, 2001.
factorization (NMF) for region discovery and clusteringW(s) c. Li, R. Huang, Z. Ding, J. C. Gatenby, D. N. Metaxas, an@JGore,

showed that NMF provides a global and local characterinatio “A level set method for image segmentation in the presencatehsity

; ; ; inhomogeneities with application to mriEEE Transactionson on Image
of the regions in the image. We subsequently proposed @ Processing, vol. 20, no. 7. pp. 20072016, 2011.

new local histogram model for image segmentation. The c. L, c. Y. Kao, J. C. Gore, and Z. Ding, “Minimization ofegion-
segmentation is achieved by minimizing an energy functiona scalable fitting energy for image segmentatiotEEE Transactions on

satrib b ; ; ; Image Processing, vol. 17, no. 10, pp. 1940-1949, 2008.
that models the local d|st_r|but|on of the regions in the imag [7] L. Wang, L. He, A. Mishra, and C. Li, “Active contours dem by local
discovered by NMF. Unlike other non-parametric approaches gaussian distribution fitting energySignal Processing, vol. 89, no. 12,

in the level set framework, no additional spurious paransete  pp. 2435-2447, 2009.

; ; ; K. Ni, X. Bresson, T. Chan, and S. Esedoglu, “Local histog based
such as the histograms of the regions, need to be eStIma‘{é]d'segmentation using the wasserstein distanbetgrnational Journal of

Moreover, the proposed approach is robust to noise becausecomputer Vision, vol. 84, pp. 97 — 111, 2009.
it models the local histograms around each pixel in the imafg B. Bayar, N. Bouaynaya, and R. Shterenberg, “Probaiailison-negative

; ; ; e it matrix factorization: Theory and application to microgrdata analysis,”
rather than rEIymg 0.” the plxel mtens_ltles_. Appll(?atldrﬂt!e Journal of Bioinformatics and Computational Biology, vol. 12, p. 25,
proposed segmentation to an MRI brain with multiple sclsrosg14.
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Fig. 5: Performance evaluation of the proposed geNIUSg. 6: Performance evaluation of the proposed geNIUS
method, NMF-LSM [3], the LGDF model in [1], and the LHFmethod, NMF-LSM [3], the LGDF model in [1], and the LHF
model in [2] on the same synthetic image of multiple objectsodel in [2] on the same synthetic image of multiple objects
corrupted with various levels of noise. The first row showsorrupted with various levels of noise. The first row shows
the original image with the levels of noise. The second rothe original image with the levels of noise. The second row
displays the segmentation of geNIUS, and the third, founth adisplays the segmentation of geNIUS, and the third, founth a
fifth rows show, respectively, the output of NMF-LSM, LHFfifth rows show, respectively, the output of NMF-LSM, LHF
and LGDF. and LGDF.



Gray Matter | White Matter | Deep Gray Matter] CSF
2014 v.s. 2004 —23% —18% —-30% +38%

TABLE I: Percent changes in gray matter, white matter, deey gnatter, and CSF in a patient with relapsing-remitting MS
over a period of 10 years. The segmentation is shown in Fig. 8.

MRI Gray White Deep CSF
* Matter Matter Gray
* * Matter *

MS Patient 2014
b e d

Fig. 8: Segmentation of a T1-Weighted MRI Segmentation oM@ patient, obtained in 2014 (a)-(e) and 2004 (f )-(j). (&)-(
and (g)-(j) are the binary representations of the segmentafb) and (g) show the gray matter. (c) and (h) show the avhit
matter. (d) and (i) show the deep gray matter. (e) and (j) stm@nCSF.



