
Journal of Bioinformatics and Computational Biology
c© Imperial College Press

Probabilistic Non-negative Matrix Factorization: Theory and

Application to Microarray Data Analysis

Belhassen Bayar and Nidhal Bouaynaya

Department of Electrical and Computer Engineering, Rowan University,

201 Mullica Hill Road, Glassboro, New Jersey 08028

bayarb3@students.rowan.edu, bouaynaya@rowan.edu

Roman Shterenberg

Department of Mathematics, University of Alabama at Birmingham,

1300 University Blvd., Birmingham, AL 35294

shterenb@math.uab.edu

Non-negative matrix factorization (NMF) has proven to be a useful decomposition for
multivariate data, where the non-negativity constraint is necessary to have a meaningful
physical interpretation. NMF reduces the dimensionality of non-negative data by de-
composing it into two smaller non-negative factors with physical interpretation for class
discovery. The NMF algorithm, however, assumes a deterministic framework. In particu-
lar, the effect of the data noise on the stability of the factorization and the convergence of
the algorithm are unknown. Collected data, on the other hand, is stochastic in nature due
to measurement noise and sometimes inherent variability in the physical process. This
paper presents new theoretical and applied developments to the problem of non-negative
matrix factorization. First, we generalize the deterministic NMF algorithm to include a
general class of update rules that converges towards an optimal non-negative factoriza-
tion. Second, we extend the NMF framework to the probabilistic case (PNMF). We show
that the Maximum A Posteriori estimate of the non-negative factors is the solution to a
weighted regularized non-negative matrix factorization problem. We subsequently derive
update rules that converge towards an optimal solution. Third, we apply the PNMF to
cluster and classify DNA microarrays data. The proposed PNMF is shown to outper-
form the deterministic NMF and the sparse NMF algorithms in clustering stability and
classification accuracy.

Keywords: Matrix Decomposition; Clustering Gene Expression Data; Tumors Classifica-
tion.

1. Introduction

Extracting knowledge from experimental raw data and measurements is an im-

portant objective and challenge in signal processing. Often data collected is high

dimensional and incorporates several inter-related variables, which are combinations

of underlying latent components or factors. Approximate low-rank matrix factor-

izations play a fundamental role in extracting these latent components 9. In many

applications, signals to be analyzed are non-negative, e.g., pixel values in image
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processing, price variables in economics and gene expression levels in computa-

tional biology. For such data, it is imperative to take the non-negativity constraint

into account in order to obtain a meaningful physical interpretation. Classical de-

composition tools, such as Principal Component Analysis (PCA), Singular Value

Decomposition (SVD), Blind Source Separation (BSS) and related methods do not

guarantee to maintain the non-negativity constraint. Non-negative matrix factor-

ization (NMF) represents non-negative data in terms of lower-rank non-negative

factors. NMF proved to be a powerful tool in many applications in biomedical data

processing and analysis, such as muscle identification in the nervous system 31,

classification of images 1, gene expression classification 7, biological process identifi-

cation 20 and transcriptional regulatory network inference 24. The appeal of NMF,

compared to other clustering and classification methods, stems from the fact that

it does not impose any prior structure or knowledge on the data. Brunet et al. suc-

cessfully applied NMF to the classification of gene expression datasets 7 and showed

that it leads to more accurate and more robust clustering than the Self-Organizing

Maps (SOMs) and Hierarchical Clustering (HC). Analytically, the NMF method

factors the original non-negative matrix V into two lower rank non-negative matri-

ces, W and H such that V = WH+E, where E is the residual error. Lee and Seung
21 derived algorithms for estimating the optimal non-negative factors that minimize

the Euclidean distance and the Kullback-Leibler divergence cost functions. Their

algorithms, guaranteed to converge, are based on multiplicative update rules, and

are a good compromise between speed and ease of implementation. In particular,

the Euclidean distance NMF algorithm can be shown to reduce to the gradient

descent algorithm for a specific choice of the step size 21. Lee and Seung’s NMF

factorization algorithms have been widely adopted by the community 7,4,14,35.

The NMF method is, however, deterministic. That is, the algorithm does not

take into account the measurement or observation noise in the data. On the other

hand, data collected using electronic or biomedical devices, such as gene expression

profiles, are known to be inherently noisy and therefore, must be processed and

analyzed by systems that take into account the stochastic nature of the data. Fur-

thermore, the effect of the data noise on the NMF method in terms of convergence

and robustness has not been previously investigated. Thus, questions about the ef-

ficiency and robustness of the method in dealing with imperfect or noisy data are

still unanswered.

In this paper, we extend the NMF framework and algorithms to the stochastic

case, where the data is assumed to be drawn from a multinomial probability den-

sity function. We call the new framework Probabilistic NMF or PNMF. We show

that the PNMF formulation reduces to a weighted regularized matrix factorization

problem. We generalize and extend Lee and Seung’s algorithm to the stochastic

case; thus providing PNMF updates rules, which are guaranteed to converge to the

optimal solution. The proposed PNMF algorithm is applied to cluster and classify

gene expression datasets, and is compared to other NMF and non-NMF approaches

including sparse NMF (SNMF) and SVM.
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The paper is organized as follows: In Section 1.1, we discuss related work and

clarify the similarities and differences between the proposed PNMF algorithm and

other approaches to NMF present in the literature. In Section 2, we review the

(deterministic) NMF formulation and extend Lee and Seung’s NMF algorithm to

include a general class of convergent update rules. In Section 3, we introduce the

probabilistic NMF (PNMF) framework and derive its corresponding update rules.

In Section 4, we present a data classification method based on the PNMF algo-

rithm. Section 5 applies the proposed PNMF algorithm to cluster and classify gene

expression profiles. The results are compared with the deterministic NMF, sparse

NMF and SVM. Finally, a summary of the main contributions of the paper and

concluding remarks are outlined in Section 6.

In this paper, scalars are denoted by lower case letters, e.g., n,m; vectors are

denoted by bold lower case letters, e.g., x,y; and matrices are referred to by upper

case letters, e.g., A, V . xi denotes the ith element of vector x and Aij is the (i, j)th

entry of matrix A. Throughout the paper, we provide references to known results

and limit the presentation of proofs to new contributions. All proofs are presented

in the Appendix section.

1.1. Related work

Several variants of the NMF algorithm have been proposed in the literature. An

early form of NMF, called Probabilistic Latent Semantic Analysis (PLSA) 16, 17,
23, was used to cluster textual documents. The key idea is to map high-dimensional

count vectors, such as the ones arising in text documents, to a lower dimensional

representation in a so-called latent semantic space. PLSA has been shown to be

equivalent to NMF factorization with Kullback-Leibler (KL) divergence, in the sense

that they have the same objective function and any solution of PLSA is a solution

of NMF with KL minimization 12.

Many variants of the NMF framework introduce additional constraints on the

non-negative factor matrices W and H , such as sparsity and smoothness. Combin-

ing sparsity with non-negative matrix factorization is partly motivated by modeling

neural information processing, where the goal is to find a decomposition in which the

hidden components are sparse. Hoyer 18 combined sparse coding and non-negative

matrix factorization into non-negative sparse coding (NNSC) to control the trade-

off between sparseness and accuracy of the factorization. The sparsity constraint

is imposed by constraining the l1-norm. The NNSC algorithm resorts to setting

the negative values of one of the factor matrices to zero. This procedure is not

always guaranteed to converge to a stationary point. Kim and Park 19 solved the

sparse NMF optimization problem via alternating non-negativity-constrained least

squares. They applied sparse NMF to cancer class discovery and gene expression

data analysis.

NMF has also been extended to consider a class of smoothness constraints on the

optimization problem 25. Enforcing smoothness on the factor matrices is desirable
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in applications such as unmixing spectral reflectance data for space object identi-

fication and classification purposes 25. However, the algorithm in 25 forces positive

entries by setting negative values to zero and hence may suffer from convergence

issues. Similarly, different penalty terms may be used depending upon the desired

effects on the factorization. A unified model of constrained NMF, called versatile

sparse matrix factorization (VSMF), has been proposed in 22. The VSMF frame-

work includes both l1 and l2-norms. The l1-norm is used to induce sparsity and the

l2-norm is used to obtain smooth results. In particular, the standard NMF, sparse

NMF 18, 19 and semi-NMF 11, where the non-negativity constraint is imposed on

only one of the factors, can be seen as special cases of VSMF.

Another variant of the NMF framework is obtained by considering different

distances or measures between the original data matrix and its non-negative fac-

tors 28, 33. Sandler and Lindenbaum 28 proposed to factorize the data using the

earth movers distance (EMD). The EMD NMF algorithm finds the local minimum

by solving a sequence of linear programming problems. Though the algorithm has

shown significant improvement in some applications, such as texture classification

and face recognition, it is computationally very costly. To address this concern,

the authors have proposed the wavelet-based approximation to the EMD distance,

WEMD, and used it in place of EMD. They argued that the local minima of EMD

and WEMD are generally collocated when using a gradient-based method. A simi-

larity measure based on the correntropy, termed NMF MCC, has been proposed in
33. The correntropy measure employs the Gaussian kernel to map the linear data

space to a non-linear space. The optimization problem is solved using an expectation

maximization based approach.

A collection of non-negative matrix factorization algorithms implemented for

Matlab is available at http://cogsys.imm.dtu.dk/toolbox/nmf/. Except for

PLSA, which was originally proposed as a statistical technique for text clustering,

the presented NMF approaches do not explicitly assume a stochastic framework for

the data. In other words, the data is assumed to be deterministic. In this work,

we assume that the original data is a sample drawn from a multinomial distribu-

tion and derive the maximum a posteriori (MAP) estimates of the non-negative

factors. The proposed NMF framework, termed Probabilistic NMF or PNMF, does

not impose any additional constraints on the non-negative factors like SNMF or

VSMF. Interestingly, however, the formulation of the MAP estimates reduces to

a weighted regularized matrix factorization problem that resembles the formula-

tions in constrained NMF approaches. The weighting parameters, however, have

a different interpretation: they refer to signal to noise ratios rather than specific

constraints.

2. Non-negative Matrix Factorization

The non-negative matrix factorization (NMF) is a constrained matrix factoriza-

tion problem, where a non-negative matrix V is factorized into two non-negative
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matrices W and H . Here, non-negativity refers to elementwise non-negativity, i.e.,

all elements of the factors W and H must be equal to or greater than zero. The

non-negativity constraint makes NMF more difficult algorithmically than classical

matrix factorization techniques, such as principal component analysis and singular

value decomposition. Mathematically, the problem is formulated as follows: Given

a non-negative matrix V ∈ R
n×m, find non-negative matrices W ∈ R

n×k and

H ∈ R
k×m such that V ≈ WH . The optimal factors minimize the squared error

and are solutions to the following constrained optimization problem,

(W ∗, H∗) = argmin
W,H≥0

f(W,H) = ‖V −WH‖2F , (1)

where ‖.‖F denotes the Frobenius norm and f is the squared Euclidean distance

function between V and WH . The cost function f is convex with respect to either

the elements ofW or H , but not both. Alternating minimization of such a cost leads

to the ALS (Alternating Least squares) algorithm 15, 32, 2, which can be described

as follows:

(1) Initialize W randomly or by using any a priori knowledge.

(2) Estimate H as H = (WTW )−WTV with fixed W .

(3) Set all negative elements of H to zero or some small positive value.

(4) estimate W as W = VHT (HHT )− with fixed H .

(5) Set all negative elements of W to zero or some small positive value.

In this algorithm, A− denotes the Moore-Penrose inverse of A. The ALS algorithm

has been used extensively in the literature 15, 32, 2. However, it is not guaranteed to

converge to a global minimum nor even a stationary point. Moreover, it is often not

sufficiently accurate, and it can be slow when the factor matrices are ill-conditioned

or when the columns of these matrices are co-linear. Furthermore, the complexity

of the ALS algorithm can be high for large-scale problems as it involves inverting

a large matrix. Lee and Seung 21 proposed a multiplicative update rule, which

is proven to converge to a stationary point, and does not suffer from the ALS

drawbacks. In what follows, we present Lee and Seung’s multiplicative update rule

as a special case of a class of update rules, which converge towards a stationary

point of the NMF problem.

Proposition 1. The function f(W,H) = ‖V −WH‖2F is non-increasing under the

update rules







hk+1 = hk −K−1
h (WTWhk −WTv)

w̃k+1 = w̃k −K−1
w (HHT w̃k −Hṽ)

(2)

where w̃ and ṽ are the columns of WT and V T , respectively, and Kh and Kw

satisfy the following conditions
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a. Kh and Kw are diagonal matrices with (strictly) positive elements for all vectors

h and w̃.

b. Khh
k ≥WTWhk and Kww̃

k ≥ HHT w̃k where the inequality is elementwise.

c. The matrices Kh −WTW and Kw −HHT are positive semi-definite (p.s.d) for

all h and w̃.

The function f is invariant under these update rules if and only if W and H are at

a stationary point.

The following corollary presents a special choice of the matrices Kh and Kw,

which leads to Lee and Seung’s multiplicative rule for the NMF problem.

Corollary 1. In Proposition 1, chose Kh and Kw as follows:

(Kh)ij = δij(W
TWhk)i/h

k
i , (3)

(Kw)ij = δij(HHT w̃k)i/w̃
k
i , (4)

Where hk
i , w̃

k
i are the ith entries of the vectors hk and w̃k, respectively, and δij is

the kronecker function, i.e., δij =

{

1, if i = j

0, otherwise.
This choice leads to the following

update rule:














Hij ←− Hij
(WT V )ij

(WTWH)ij

Wij ←− Wij
(V HT )ij

(WHHT )ij

(5)

The function f is invariant under these updates if and only if W and H are at

a stationary point.

Corollary 1 corresponds to the update rules proposed by Lee and Seung 21.

Proposition 1 presents a general class of update rules, which converge to a stationary

point of the NMF problem. From the proof of the Proposition (detailed in the

Appendix), it will be clear that conditions [a], [b] and [c] in Proposition 1 are

only sufficient conditions for the update rules to converge towards a stationary

point. That is, there may exist Kh and Kw that do not satisfy these conditions but

that lead to update rules that converge towards a stationary point. The particular

choice of Kh and Kw in Corollary 1 corresponds to the fastest convergent update

rule among all matrices satisfying conditions [a]-[c] in Proposition 1. Observe also

that since the data matrix V is non-negative, the update rule in (5) leads to non-

negative factors W and H as long as the initial values of the algorithm are chosen

to be non-negative.

3. Probabilistic Non-negative Matrix Factorization

3.1. The PNMF framework

In this section, we assume that the data, represented by the non-negative matrix V ,

is corrupted by additive white Gaussian noise. Then, the data follows the following
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conditional distribution,

p(V | W,H, σ2) =

N
∏

i=1

M
∏

j=1

[N (Vij | u
T
i hj , σ

2)], (6)

where N (.|µ, σ2) is the probability density function of the Gaussian distribution

with mean µ and standard deviation σ, ui and hj denote, respectively, the ith

column of the matrix U = WT (or the ith row of W ) and the jth column of the

matrix H . Zero mean Gaussian priors are imposed on ui and hj to control the

model parameters. Specifically, we have

p(U | σ2
W ) =

N
∏

i=1

N (ui | 0, σ
2
W I) = p(W | σ2

W ). (7)

p(H | σ2
H) =

M
∏

i=1

N (hj | 0, σ
2
HI). (8)

We estimate the factor matrices W and H using the maximum a posteriori (MAP)

criterion. The logarithm of the posterior distribution is given by

ln(p(W,H | V, σ2, σ2
H , σ2

W )) = −
1

2σ2

N
∑

i=1

M
∑

j=1

(Vij − uT
i hj)

2

−
1

2σ2
W

N
∑

i=1

‖ui‖
2 −

1

2σ2
H

M
∑

j=1

‖hj‖
2 + C, (9)

where C is a constant term depending only on the standard deviations σ, σW and

σH . Maximizing (9) is equivalent to minimizing the following function

(W ∗, H∗) = argmin
W,H≥0

‖V −WH‖2F + λW ‖W‖
2
F

+ λH‖H‖
2
F , (10)

where λW = σ2

σ2

W

and λH = σ2

σ2

H

. Observe that the PNMF formulation in (10)

corresponds to a weighted regularized matrix factorization problem. Moreover, the

PNMF reduces to the NMF for σ = 0. The following proposition provides the

update rules for the PNMF constrained optimization problem.

Proposition 2. The function

f(W,H) = ‖V −WH‖2F + α‖W‖2F + β‖H‖2F (11)

is non-increasing under the update rules















Hij ←− Hij
(WTV )ij

(WTWH+βH)ij

Wij ←− Wij
(V HT )ij

(WHHT +αW )ij

(12)
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The function f is invariant under these updates if and only if W and H are at

a stationary point.

Observe that, since the data matrix V is non-negative, the update rules in (12)

lead to non-negative factors W and H as long as the initial values of the algorithm

are chosen to be non-negative.

4. PNMF-based Data Classification

In this section, we show how the PNMF output can be used to extract relevant fea-

tures from the data for classification purposes. The main idea relies on the fact that

metasamples extracted from the PNMF factorization contain the inherent struc-

tural information of the original data in the training set. Thus, each sample in a

test set can be written as a sparse linear combination of the metasamples extracted

from the training set. The classification task then reduces to computing the repre-

sentation coefficients for each test sample based on a chosen discriminating function.

The sparse representation approach has been shown to lead to more accurate and

robust results 36. The sparsity constraint is imposed through an l1-regularization

term 36. Thus, a test sample may be represented in terms of few metasamples.

4.1. Sparse Representation Approach

We divide the data, represented by the n×mmatrix V , into training and testing sets,

where the number of classes k is assumed to be known. In Section 5, we describe a

method to estimate the number of classes based on the PNMF clustering technique.

The training data is ordered into a matrix A with n rows of genes and r columns of

training samples with r < m. Thus, A is a sub-matrix of V used to recognize any

new presented sample from the testing set. We arrange the matrix A in such a way

to group samples which belong to the same class in the same sub-matrix Ai where

(1 ≤ i ≤ k). Then A can be written as A = [A1, A2, ...., Ak] and each matrix Ai is

a concatenation of ri columns of the ith class Ai = [ci,1, ci,2, ...., ci,ri ]

A test sample y ∈ R
n that belongs to the ith class can be written as the following

linear combination of the Ai columns,

y = αi,1ci,1 + αi,2ci,2 + ...+ αi,rici,ri , (13)

for some scalars αi,q ∈ R, 1 ≤ q ≤ ri.

Equation (13) can be re-written as

y = Ax, (14)

where

x = [0, ...0, αi,1, αi,2, ..., αi,ri , 0..., 0]
T ∈ R

r, (15)
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is the coefficient vector of the testing sample y. x is a ri-sparse vector whose nonzero

entries are associated with the columns of the sub-matrix Ai, hence the name sparse

representation. Therefore, predicting the class of test sample y reduces to estimating

the vector x in Eq. (14).

We propose to find the sparsest least-squares estimate of the coefficient x as the

solution to the following regularized least-squares problem 34

x̂ = min
x
{‖Ax− y‖2 + λ‖x‖1}, (16)

where ‖x‖1 denotes the l1-norm of vector x, i.e., ‖x‖1 =
∑

i |xi|, and λ is a positive

scalar used to control the tradeoff between the sparsity of x and the accuracy of

the reconstruction error. Donoho et al. showed that the l1-norm approximates the

l0-norm, which counts the number of non-zero entries in a vector 13. The l0-norm

problem, however, is NP hard, whereas the l1-norm is convex. The optimization

problem in (16) is therefore convex; thus, it admits a global solution, which can be

efficiently computed using convex optimization solvers 10. Actually, one can show

that (16) is a Second-Order Cone Programming (SOCP) problem 6.

4.2. PNMF-based classification

The classifier’s features are given by the metasamples computed by the PNMF

algorithm. We first compute the PNMF factorization of each sub-matrix Ai as

Ai ∼Wi ×Hi, (17)

where Wi and Hi are respectively n × ki and ki × ri non-negative matrices. ki
refers to the number of metasamples needed to describe and summarize the ith

class. The value of ki is experimentally determined and depends on the number of

training samples ri in each class and the total number of classes k. We subsequently

concatenate all the Wi matrices to form the matrix W = [W1,W2, ..,Wk]. Observe

that the matrix W contains the metasamples of the entire training set. Therefore,

a test sample y that belongs to the ith class should approximately lie in the space

spanned by the Wi columns.

The classification problem in (16) can therefore be re-written as

x̂ = min
x
{‖Wx− y‖2 + λ‖x‖1}, (18)

Which can be easily solved using a SOCP solver 6.

PNMF-based classification algorithm The PNMF-based classification algo-

rithm is summarized below.

Input: Gene expression data V ∈ R
n×m. It is assumed that V contains at least r

labeled samples, which can be used in the learning or training process.

Step 1 Select the training samples A ∈ R
n×r and the testing sample y ∈ R

n

from the original data V such that y is not a column of A.
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Step 2 Reorder the training matrix A = [A1, A2, ..., Ak] for k classes.

Step 3 Compute the matrix of features Wi ∈ R
n×ki from each sub matrix Ai ∈

R
n×ri Using the PNMF algorithm, i = 1 : k

Step 4 Solve the optimization problem in (18) for

W = [W1,W2, ...,Wk] using, for instance, the cvx environment in MAT-

LAB. Let the solution x = [xT
1 , · · · ,x

T
k ]

T , where xi ∈ R
ki×1.

Step 5 Compute the residuals ei(y) = ‖y −Wδi(x)‖2, i = 1 : k, where δi(x) =

[0, · · · , 0,xT
i , 0, · · · 0]

T .

Step 6 Associate class(y)=argmini ei(y)

5. Application to Gene Microarrays

We apply and compare the proposed PNMF-based clustering and classification al-

gorithms with its homologue NMF-based clustering 7 and classification as well as

the sparse-NMF classification method presented in 36. We first describe the gene

expression dataset used and present the clustering procedure.

5.1. Data sets description

One of the important challenges in DNA microarrays analysis is to group genes

and experiments/samples according to their similarity in gene expression patterns.

Microarrays simultaneously measure the expression levels of thousands of genes in

a genome. The microarray data can be represented by a gene-expression matrix

V ∈ R
n×m , where n is the number of genes and m is the number of samples that

may represent distinct tissues, experiments, or time points. The mth column of V

represents the expression levels of all the genes in the mth sample.

We consider seven different microarray data sets: leukemia 7, medulloblastoma
7, prostate 29, colon 3, breast-colon 8, lung 5 and brain 27. The leukemia data set

is considered a benchmark in cancer clustering and classification 7. The distinction

between acute myelogenous leukemia (AML) and acute lymphoblastic leukemia

(ALL), as well as the division of ALL into T and B cell subtypes, is well known 7.

We consider an ALL-AML dataset, which contains 5000 genes and 38 bone marrow

samples (tissues from different patients for the considered genes) 7. The considered

leukemia dataset contains 19 ALL-B, 8 ALL-T and 11 AML samples.

The medulloblastoma data set is a collection of 34 childhood brain tumors sam-

ples from different patients. Each patient is represented by 5893 genes. The patho-

genesis of these brain tumors is not well understood. However, two known histo-

logical subclasses can be easily differentiated under the microscope, namely, classic

(C) and desmoplastic (D) medulloblastoma tumors 7. The medulloblastoma dataset

contains 25 C and 9 D childhood brain tumors.

The prostate data 29 contains the gene expression patterns from 52 prostate
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Fig. 1. Clustering results for the Leukemia dataset: (a) Consensus matrices: Top row NMF-Euc,
Second row NMF-Div, bottom row: PNMF; (b) Cophenetic coefficient versus the rank k (NMF-Euc
in green, NMF-Div in red and PNMF in blue).

tumors (PR) and 50 normal prostate specimens (N), which could be used to predict

common clinical and pathological phenotypes relevant to the treatment of men

diagnosed with this disease. The prostate dataset contains 102 samples across 339

genes.

The colondataset 3 is obtained from 40 tumors and 22 normal colon tissue sam-

ples across 2000 genes. The breast and colon data 8 contains tissues from 62 lymph

node-negative breast tumors (B) and 42 Dukes’ B colon tumors (C). The lung tumor

data 5 contains 17 normal lung tissues (NL), 139 adenocarcinoma (AD), 6 small-cell
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Fig. 2. Metagenes expression patterns versus the samples for k = 4 in the Leukemia dataset.

lung cancer (SCLC), 20 pulmonary carcinoids (COID) and 21 squamous cell lung

carcinomas (SQ) samples across 12600 genes. The brain data 27 is the collection of

embryonal tumors of the central nervous system. This data includes 10 medulloblas-

tomas (MD), 10 malignant gliomas (Mglio), 10 atypical teratoid/rhabdoid tumors

(Rhab), 4 normal tissues (Ncer) and 8 primitive neuroectodermal tumors (PNET).

The brain samples are measured across 1379 genes.

5.2. Gene expression data clustering

Applying the NMF framework to data obtained from gene expression profiles allows

the grouping of genes as metagenes that capture latent structures in the observed

data and provide significant insight into underlying biological processes and the

mechanisms of disease. Typically, there are a few metagenes in the observed data

that may monitor several thousands of genes. Thus, the redundancy in this appli-

cation is very high, which is very profitable for NMF 9. Assuming gene profiles can

be grouped into j metagenes, V can be factored with NMF into the product of

two non-negative matrices W ∈ R
n×j and H ∈ R

j×m. Each column vector of W

represents a metagene. In particular, wij denotes the contribution of the ith genes

into the jth metagene, and hjm is the expression level of the jth metagene in the

mth sample.

5.2.1. Clustering performance evaluation

The position of the maximum value in each column vector of H indicates the index

of the cluster to which the sample is assigned. Thus, there are j clusters of the sam-

ples. The stability of the clustering is tested by the so-called connectivity matrix
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Fig. 3. Clustering results for the Medulloblastoma dataset: (a) Consensus matrices: Top row NMF-
Euc, Second row NMF-Div, bottom row: PNMF; (b) Cophenetic coefficient versus the rank k

(NMF-Euc in green, NMF-Div in red and PNMF in blue).

C ∈ R
m×m 7, which is a binary matrix defined as cij = 1 if samples i and j belong

to the same cluster, and cij = 0 otherwise. The connectivity matrix from each run of

NMF is reordered to form a block diagonal matrix. After performing several runs,

a consensus matrix is calculated by averaging all the connectivity matrices. The

entries of the consensus matrix range between 0 and 1, and they can be interpreted

as the probability that samples i and j belong to the same cluster. Moreover, if

the entries of the consensus matrix were arranged so that samples belonging to the

same cluster are adjacent to each other, perfect consensus matrix would translate

into a block-diagonal matrix with non-overlapping blocks of 1’s along the diagonal,
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each block corresponding to a different cluster 7. Thus, using the consensus ma-

trix, we could cluster the samples and also assess the performance of the number

of clusters k. A quantitative measure to evaluate the stability of the clustering as-

sociated with a cluster number k was proposed in 19. The measure is based on the

correlation coefficient of the consensus matrix, ρk, also called the cophenetic cor-

relation coefficient. This coefficient measures how faithfully the consensus matrix

represents the similarities and dissimilarities among observations. Analytically, we

have ρk = 1
m2

∑

ij 4(cij −
1
2 )

2 19. Observe that 0 ≤ ρk ≤ 1, and a perfect consen-

sus matrix (all entries equal to 0 or 1) would have ρk = 1. The optimal value of

k is obtained when the magnitude of the cophenetic correlation coefficient starts

declining.

5.2.2. Clustering results

Brunet et al. 7 showed that the (deterministic) NMF based on the divergence cost

function performs better than the NMF based on the Euclidean cost function. The

divergence cost function is defined as

(W ∗, H∗) = argmin
W,H≥0

g(W,H) =
∑

i,j

(Vij log(
Vij

(WH)ij
)

− Vij + (WH)ij) (19)

The update rules for the divergence function are given by 21











Hij ←− Hij

∑
k(WkiVkj)/(WH)kj∑

r Wri

Wij ←− Wij

∑
k
(HjkVik)/(WH)ik∑

r
Hjr

(20)

In this section, we compare the PNMF algorithm in (12) with both the

Euclidean-based NMF in (5) and the divergence-based NMF in (19). We propose

to cluster the leukemia and the medulloblastoma sample sets because the biological

subclasses of these two datasets are known, and hence we can compare the perfor-

mance of the algorithms with the ground truth. Figure 1(a) shows the consensus

matrices corresponding to k = 2, 3, 4 clusters for the leukemia dataset. In this figure,

the matrices are mapped using the gradient color so that dark blue corresponds to

0 and red to 1. We can observe the consensus matrix property that the samples’

classes are laid in block-diagonal along the matrix. It is clear from this figure that

the PNMF performs better than the NMF algorithm, in terms of samples’ clus-

tering. Specifically, the clusters, as identified by the PNMF algorithm, are better

defined and the consensus matrices’ entries are not overlapping and hence well clus-

tered. In particular, PNMF with rank k = 2 correctly recovered the ALL-AML

biological distinction with higher accuracy than the deterministic NMFs (based on

the Euclidean and divergence costs). Consistent clusters are also observed for rank

k = 3, which reveal further portioning of the samples when the ALL samples are

classified as the B or T subclasses. In particular, the nested structure of the blocks
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k = 2.

for k = 3 corresponds to the known subdivision of the ALL samples into the T

and B classes. Nested and partially overlapped clusters can be interpreted with the

NMF approaches. Nested clusters reflect local properties of expression patterns,

and overlapping is due to global properties of multiple biological processes (selected

genes can participate in many processes) 9. An increase in the number of clusters

beyond 3 (k = 4) results in stronger dispersion in the consensus matrix. However,

Fig. 1(b) shows that the value of the PNMF cophenetic correlation for rank 4 is

equal to 1, whereas it drops sharply for both the Euclidean and divergence-based

NMF algorithms. The Hierarchal Clustering (HC) method is also able to identify

four clusters 7. These clusters can be interpreted as subdividing the samples into

sub-clusters that form separate patterns within the whole set of samples as follows:

{(11 ALL-B), (7 ALL-B and 1 AML), (8 ALL-T and 1 ALL-B), (10 AML)}.

Figure 2 depicts the metagenes expression profiles (rows ofH) versus the samples

for the PNMF algorithm. We can visually recognize the different four patterns that

PNMF and HC are able to identify.

Figure 3 shows the consensus matrices and the cophenetic coefficients of the

medulloblastoma dataset for k = 2, 3, 4, 5. The NMF and PNMF algorithms are

able to identify the two known histological subclasses: classic and desmoplastic.

They also predict the existence of classes for k = 3, 5. This clustering also stands

out because of the high values of the cophenetic coefficient for k = 3, 5 and the

steep drop off for k = 4, 6. The sample assignments for k = 2, 3 and 5 display a

nesting of putative medulloblastoma classes, similar to that seen in the leukemia

dataset. From Fig. 3, we can see that the PNMF clustering is more robust, with

respect to the consensus matrix and the cophenetic coefficient, than the NMF clus-

tering. Furthermore, Brunet et al. 7 stated that the divergence-based NMF is able
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(red), 3 (green) and 4 (blue) in the Leukemia dataset.

to recognize subtypes that the Euclidian version cannot identify. We also reach a

similar conclusion as shown in Fig. 3 for k = 3, 5, where the Euclidian-based NMF

factorization shows scattering from these structures. However, the PNMF clustering

performs even better than the divergence-based NMF as shown in Figs. 3(a) and

3(b).

To confirm our results we compare our proposed PNMF algorithm with the

standard NMF algorithms, distance criterion-based Hierarchical Clustering (HC)

and K-means. We plot in figure 4 the curve Error vs. Number of genes in the

labeled Leukemia data set. We select genes with small profile variance using the

Bioinformatics toolbox in MATLAB from 500 to 5000 genes and the experimental

points are equally spaced. We run 100 Monte Carlo simulation then we take the

average of the error. Our simulation results show that PNMF outperforms other

clustering approaches.

5.2.3. Robustness evaluation

In this subsection, we assess the performance of the PNMF algorithm with respect

to the model parameters, especially the choice of the noise power. Recall that,

in the probabilistic model, σ measures the uncertainty in the data or the noise

power in the gene expression measurements. We set the prior standard deviations

σW = σH = 0.01, and compute the cophenetic coefficient for varying values of σ

between 0.01 and 1.5. Figure 5 shows the cophenetic coefficient versus the standard

deviation σ in the leukemia data set for ranks k = 2, 3, 4. We observe that the

PNMF is stable to a choice of σ between 0.05 and 1.5 for the ranks k = 2 and

3, which correspond to biologically relevant classes. In particular, when σ tends to

zero, the PNMF algorithm reduces to the classic NMF, which explains the drop in
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Fig. 6. Cophenetic versus SNR in dB (NMF-Euc in green, NMF-Div in red and PNMF in blue) in
Leukemia dataset for k = 2 and k = 3.

the cophenetic coefficient for values of σ near zero.

We next study the robustness of the NMF and the proposed PNMF algorithms

to the presence of noise in the data. To this end, we add white Gaussian noise, with

varying power, to the leukemia dataset according to the following formula,

Vnoisy = V + σnR, (21)

where σn is the standard deviation of the noise, and R is a random matrix of

the same size as the data matrix V , and whose entries are normally distributed

with zero mean and unity variance. The signal to noise ratio (SNR) is, therefore,

given by SNR = PV

σ2
n
, where the signal power PV = 1

nm

∑

i

∑

j v
2
ij = 1

nm‖V ‖
2
F .

Since the cophenetic coefficient measures the stability of the clustering, we plot

in Figures 6 and 7 the cophenetic coefficient versus the SNR, measured in dB,

for both the Euclidean-based and divergence-based NMFs and PNMF algorithms

using the leukemia and medulloblastoma data sets. We observe that the PNMF
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Fig. 7. Cophenetic versus SNR in dB (NMF-Euc in green, NMF-Div in red and PNMF in blue) in
Medulloblastoma dataset for k = 2 and k = 3.

algorithm leads to more robust clustering than the deterministic NMF algorithms

for all SNR values. Table 1 shows the minimum SNR values for which the cophe-

netic coefficient takes values higher or equal than 0.9. We say that the algorithm is

”stable” for SNR values higher or equal than the minimum SNR. For the leukemia

data, the Euclidean-based NMF and the divergence-based NMF algorithms stabi-

lize respectively at SNR = −93.5 and SNR = −73.5 dB for k = 2, whereas the

PNMF algorithm is stable at lower SNR values, SNR = −99.5 dB for k = 2. Similar

results are obtained for the medulloblastoma dataset, where the NMF algorithms

stabilize respectively as above at SNR = −84.68 and SNR = −70.68 dB, whereas

the PNMF is stable at SNR = −104.68 dB. Thus, the PNMF algorithm is more sta-

ble than its deterministic homologue. Also, observe that the Euclidian-based NMF

performs better than its divergence homologue for noisy data.
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Table 1. Smallest SNR value for which the cophenetic coefficient is higher or equal than 0.9.

Datasets
k = 2 k = 3

NMF-Euc NMF-Div PNMF NMF-Euc NMF-Div PNMF

Leukemia −93.50 −73.50 -99.50 −87 −71 -88.50

Medulloblastoma −84.68 −70.68 -104.68 −86 −65.50 -86

5.3. NMF-based tumor classification

Given that the proposed PNMF algorithm results in more stable clustering than its

deterministic homologue, we expect that it will also lead to better feature extraction

and classification. We classify the tumors in the seven gene expression datasets

described in Section 5.1.

We assess the performance of the classification algorithm using the 10-fold cross-

validation technique 36. The number of metagenes ki can be determined using the

nested stratified 10-fold cross-validation. However, we follow the work in 36 and

choose ki = 8 if the number of samples in the ith class ri > 8. Otherwise we choose

ki = ri. We selected the parameters α and β of PNMF in order to minimize the clas-

sification error in the training dataset based on a 10-fold cross-validation technique.

The parameters of SNMF were selected using the same criterion and method, i.e.

minimize the classification error in the training dataset. The classification results

for the NMF, PNMF, SVM and SNMF 36 algorithms are summarized in Table 2. In

particular, we compared the PNMF-based MSRC algorithm to the SVM algorithm

which has been shown to outperform K-NN and neural network in tumor classi-

fication 30, 26. In our experiment we use one-versus-rest SVM (OVRSVM) with

Polynomial kernels approach which has been shown to be the best one 30. The re-

sults can be obtained using the Gene Expression Model Selector (GEMS) publicly

available online http://www.gems-system.org/. Observe that the PNMF-based

classifier performs better than the other approaches for the considered data sets ex-

cept for the prostate data where SVM achieves the highest classification accuracy.

Moreover, the PNMF performs better than the SNMF for the prostate, lung and

brain data sets. This is due to the high accuracy of the PNMF in feature extraction

as compared to the SNMF algorithm, which is not guaranteed to converge to the

optimal non-negative factorization 36.

6. Conclusion and Discussion

Studying and analyzing tumor profiles is a very relevant area in computational bi-

ology. Clinical applications include clustering and classification of gene expression

profiles. In this work, we developed a new mathematical framework for cluster-

ing and classification based on the Probabilistic Non-negative Matrix Factorization
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Table 2. Classification accuracy

Data sets Nbr. of classes NMF-Euc NMF-Div SNMF SVM PNMF

Prostate 2 85.29% 86.27% 88.24% 99% 92.16%

Medulloblastoma 2 85.29% 91.18% 94.12% 79.16% 94.12%

Colon 2 85.48% 88.71% 90.32% 89.04% 90.32%

Breast-Colon 2 98.08% 95.19% 98.08% 84.63% 98.08%

Leukemia 3 97.37% 97.37% 97.37% 95.50% 97.37%

Lung 5 92.61% 90.64% 93.60% 85.54% 94.09%

Brain 5 76.19% 78.57% 83.33% 77% 85.71%

(PNMF) method. We presented an extension of the deterministic NMF algorithm

to the probabilistic case. The proposed PNMF algorithm takes into account the

stochastic nature of the data due to the inherent presence of noise in the mea-

surements as well as the internal biological variability. We subsequently casted the

optimal non-negative probabilistic factorization as a weighted regularized matrix

factorization problem. We derived updates rules and showed convergence towards

the optimal non-negative factors. The derived update rules generalize Lee and Se-

ung’s multiplicative update rules for the NMF algorithm. We have also generalized

Lee and Seung’s algorithm to include a general class of update rules, which converge

towards a stationary point of the (deterministic) NMF problem. We next derived a

PNMF-based classifier, which relies on the PNMF factorization to extract features

and classify the samples in the data. The PNMF-based clustering and classification

algorithms were applied to seven microarray gene expression datasets. In particular,

the PNMF-based clustering was able to identify biologically significant classes and

subclasses of tumor samples in the leukemia and medulloblastoma datasets. More-

over, the PNMF clustering results were more stable and robust to data corrupted

by noise than the classic (deterministic) NMF.

Thanks to its high stability, robustness to noise and convergence properties, the

PNMF algorithm yielded better tumor classification results than the NMF and the

Sparse NMF (SNMF) algorithms. The proposed PNMF framework and algorithm

can be further applied to many other relevant applications in biomedical data pro-

cessing and analysis, including muscle identification in the nervous system, image

classification, and protein fold recognition.
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Appendix

To prove the results in this paper, we need to define the notion of an auxiliary

function.

Definition 1. G(h,h′) is an auxiliary function for f(h) if G(h,h′) ≥ f(h) and

G(h,h) = f(h).

The following lemma in 21 shows the usefulness of the auxiliary function.

Lemma 1. 21 if G is an auxiliary function, then f is nonincreasing under the

update

h(k+1) = argmin
h

G(h,h(k)). (A.1)

Proof of Proposition 1. We will prove the update rule for H . A similar reasoning

would provide the update rule for W . Consider the two-variable matrix

G(h,h(k)) = f(h(k)) + (h− h(k))T∇f(h(k)) +

1

2
(h− h

(k))TKh(h
(k))(h − h

(k)), (A.2)

where Kh is any function satisfying conditions [a]-[c] and f(h) = 1/2
∑

i(vi −
∑

j Wijhj)
2. We show that G is an auxiliary function for f . It is straightforward

to verify that G(h,h) = f(h). We only need to show that G(h,hk) ≥ f(h). To do

this, we compare

f(h) = f(h(k)) + (h − h
(k))T∇f(h(k)) +

1

2
(h− h(k))T (WTW )(h− h(k)) (A.3)

With Eq. (A.2) to find that G(h,hk) ≥ f(h) is equivalent to

(h− h
(k))T [Kh(h

(k))−WTW ](h− h
(k)) ≥ 0, (A.4)

From Condition [c], we have that Kh −WTW is positive semi-definite; thus, Eq.

(A.4) is satisfied and G(h,hk) ≥ f(h), proving that G is an auxiliary function of

f . We next show that h is positive elementwise at every iteration k. From lemma

1, and taking the derivative of G with respect to h, we obtain that

h(k+1) = h(k) −K−1
h ∇f(h

(k))

= h(k) −K−1
h (WTWh(k) −WTv)

= [I −K−1
h WTW ]h(k) +K−1

h WTv, (A.5)

Let us assume that hk is positive and show that hk+1 is also positive. From condition

[a], Kh is diagonal and positive (elementwise). Therefore, K−1
h is also diagonal and

positive. Given that W and V are also positive, we have that K−1
h WTv is positive.

From condition [b], we have that [I − K−1
h WTW ]h(k) is positive. Thus, hk+1 is
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positive (elementwise). In particular, by choosing the initial point h0 positive, all

iterations hk are guaranteed to be positive.

This ends the proof of Proposition 1. Next, we show that Lee and Seung’s choice

of (Kh)ij = δij(W
TWh(k))i/h

(k)
i corresponds to the fastest convergent update rule

among the class of matrices Kh that satisfy conditions [a]-[c].

From Eq. (A.5), we have

‖h(k+1) − h
(k)‖ = ‖K−1

h (WTWh
(k) +WTv)‖

≤ ‖K−1
h ‖‖W

TWh(k) +WTv‖. (A.6)

Thus, the smaller the norm of Kh (or the larger the norm of K−1
h ), the faster

the convergence rate. From condition (b), we have that Khh
k ≥ WTWhk. Hence,

the smallest choice of Kh corresponds to (Kh)ij = δij(W
TWh(k))i/h

(k)
i .

Proof of Proposition 2. The following lemma provides an auxiliary function for

the objective function f in (11).

Lemma 2. Consider the diagonal matrix

Φij(h
(k)) = δij(W

TWh(k))i/h
(k)
i + β. (A.7)

We show that

G(h,h(k)) = f(h(k)) + (h− h(k))T∇f(h(k)) +

1

2
(h − h(k))TΦ(h(k))(h− h(k)) (A.8)

is an auxiliary function for f(h) =
∑

i(vi −
∑

j Wijhj)
2 + α‖W‖2F + β

∑

i ‖hi‖2.

The fact that G(h,h) = f(h) is obvious. Therefore, we need only to show that

G(h,h(k)) ≥ f(h). To do this, we compare

f(h) = f(h(k)) + (h− h(k))T∇f(h(k)) +

1

2
(h− h(k))T (WTW + βI)(h − h(k)) (A.9)

with Eq. (A.8) to find that G(h,h(k)) ≥ f(h) is equivalent to

(h− h(k))T [K(h(k))−WTW ](h − h(k)) ≥ 0, (A.10)

The proof of the semi-definiteness of the matrix in (A.10) is provided in 21. Replacing

G in Eq. (A.2) by its expression in Eq. (A.8) results in the update rule

h(k+1) = h(k) − Φ(h(k))−1∇f(h(k)). (A.11)

Since G is an auxiliary function of f , f is non-increasing under this update rule.

Writing the components of Eq. (A.11), we obtain

h
(k+1)
i = h

(k)
i

(WTv)i

(WTWh(k) + βh(k))i
. (A.12)

Similarly, we can obtain the update rule for W .
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Proof of Corollary 1. Consider the diagonal matrices

(Kh)ij = δij(W
TWHk)ij/H

k
ij . (A.13)

(Kw)ij = δij(WkHHT )ij/W
k
ij . (A.14)

It can be easily shown that Kh and Kw in Eqs. (A.13) and (A.14) satisfy con-

ditions [a]-[c]. Corollary 1 follows directly from Proposition 1 by choosing Kh and

Kw in proposition 1 as above.
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