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Abstract—We develop a general theory of spatially-variant (SV) mathematical morphology for binary images in the Euclidean space.

The basic SV morphological operators (that is, SV erosion, SV dilation, SV opening, and SV closing) are defined. We demonstrate the

ubiquity of SV morphological operators by providing an SV kernel representation of increasing operators. The latter representation is a

generalization of Matheron’s representation theorem of increasing and translation-invariant operators. The SV kernel representation is

redundant, in the sense that a smaller subset of the SV kernel is sufficient for the representation of increasing operators. We provide

sufficient conditions for the existence of the basis representation in terms of upper-semicontinuity in the hit-or-miss topology. The latter

basis representation is a generalization of Maragos’ basis representation for increasing and translation-invariant operators. Moreover,

we investigate the upper-semicontinuity property of the basic SV morphological operators. Several examples are used to demonstrate

that the theory of spatially-variant mathematical morphology provides a general framework for the unification of various morphological

schemes based on spatially-variant geometrical structuring elements (for example, circular, affine, and motion morphology). Simulation

results illustrate the theory of the proposed spatially-variant morphological framework and show its potential power in various image

processing applications.

Index Terms—Mathematical morphology, spatially-variant morphology, adaptive morphology, circular morphology, affine morphology,

median filter, kernel representation, basis representation, upper-semicontinuity, hit-or-miss transform.
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1 INTRODUCTION

SINCE it was first developed in the 1970s by Matheron [46]
and Serra [53], mathematical morphology emerged as a

powerful tool in signal and image processing applications
[25], [41], [43], [44]. Mathematical morphology uses concepts
from set theory, geometry, and topology to analyze
geometrical structures in signals and images. It introduces
the concept of structuring element (SE), which is a geometrical
pattern used to probe the input image. The theory has been
used in a wide range of applications including biomedical
image processing [21], [1], shape analysis [31], coding and
compression [34], [42], automated industrial inspection [19],
texture analysis [22], [60], radar imagery [30], and multi-
resolution techniques and scale-spaces [26], [27], [49].
Morphological operators have been efficiently implemented
in numerous commercial software products and computer
architectures for digital signal and image processing
applications [23]. The ubiquity of morphological operators
has been captured by Matheron’s kernel representation

theorem, which asserts that any increasing and translation-
invariant operator can be exactly represented in terms of
elementary morphological operators (that is, morphological
erosions and dilations) using a collection of structuring
elements in their kernel (that is, a set of structuring elements
that characterizes the operator) [46]. Maragos, in his doctoral
thesis [37], [39], has provided sufficient conditions under
which the increasing and translation-invariant operators
have basis representations.

Initially, the focus of mathematical morphology was
devoted to translation-invariant operators (that is, the
structuring element remains fixed in the entire space).
However, the translation-invariance assumption is not
appropriate in many applications. One of the earliest exam-
ples of adaptive (or spatially-variant) structuring elements is
given by Beucher et al. [5] in the analysis of images from traffic
control cameras. Because of the perspective effect, vehicles at
thebottomof the imagearecloserandappear larger thanthose
higher in the image. Hence, the structuring element (SE)
should follow a law of perspective, for example, vary linearly
with its vertical position in the image. In range imagery
techniques, the gray-scale value of each pixel is proportional
to its distance to the imaging device. Hence, the apparent
length of a feature in such images is a function of its gray-value
range. One can therefore process (for example, extract or
eliminate) all the differently scaled instances of the object of
interest by adapting the structuring element to the local range.
Verly and Delanoy [58] developed an algorithm to design and
apply adaptive structuring elements for object extraction in
range images. The need for spatially-variant morphological
image processing arises even in the most basic applications in
image processing, namely, image smoothing and denoising.
In morphological image denoising, there is a trade-off
between noise removal and detail preservation in the image.
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Télécommunications, 2, av Allal El Fasse-Madinat AL Irfane, Rabat,
Morocco. E-mail: charifm@inpt.ac.ma.

. D. Schonfeld is with the Department of Electrical and Computer
Engineering, University of Illinois at Chicago, Room 1020 SEO (M/C
154), 851 South Morgan Street, Chicago, IL 60607-7053.
E-mail: dans@uic.edu.

Manuscript received 15 July 2005; revised 20 July 2006; accepted 10 July
2007; published online 6 Aug. 2007.
Recommended for acceptance by D. Fleet.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0371-0705.
Digital Object Identifier no. 10.1109/TPAMI.2007.70754.

0162-8828/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society



Moreover, translation-invariant morphological filters are
inherently incapable of restoring image structures that are
smaller than the structuring element used [18], [43], [44], [52].
Thus, some geometric information of the image may be lost
while reducing the noise. Many researchers proposed
different adaptive smoothing algorithms, which consist of
removing noise while preserving image features by adapting
the structuring elements to local features of the image. We cite,
in chronological order, some application-oriented algorithms
for adaptive morphological denoising and smoothing. Mor-
ales [47] used an SE that changes adaptively according to the
variance of the input signal in order to remove artifacts and
noise from images. In [12], a family of SEs, which is closed
under translation, is used to efficiently implement the
maximum opening filter. The size of the SE is determined by
the image characteristics and the noise patterns. This method
allows for the elimination of more impulsive noise without
blurring the edges compared to the conventional translation-
invariant maximum opening filter. In [10], the SE changes
with respect to the edge strength of the signal. That is, the line
SEisshorter forastrongedgeandlongerforaweakone.So, the
edges are not blurred by this method much as they are blurred
by a conventional fixed SE. Chen et al. [11] developed the
progressive umbra-filling(PUF)algorithmforadaptivesignal
smoothing. Their algorithm gradually fills the umbra of a
signal with a set of overlapping SEs that vary from larger to
smaller in scale. The PUF algorithm is shown to successfully
reduce the bumping noise without oversmoothing the signal.
In [45], a locally adaptive structuring element is used for
contour extraction in ultrasound images corrupted by speckle
noise. In [56], adaptive elliptical structuring elements were
used in a morphological edge linking algorithm, where the
size and orientation of the structuring element is adjusted
accordingtothe localpropertiesof the imagesuchasslopeand
curvature. Based on distance transformation, Cuisenaire [14]
developed efficient algorithms for the implementation of the
adaptive erosion, dilation, opening, and closing using ball
structuring elements of varying sizes. Debayle and Pinoli [15],
[16] used the concept of Adaptive Neighborhood (AN) that
was proposed by Gordon and Rangayyan [20] to define
AN-based structuring elements. The latter SEs depend on a
morphological or geometrical criterion with a homogeneity
tolerance so as to take into account the local features of the
image. Lerallut et al. [36] proposed amoeba structuring
elements, which adapt their size and shape to the content of
the image.

Adaptive mathematical morphology for shape represen-
tation and image decomposition has been scarcely investi-
gated. In [57], an adaptive decomposition of binary images
into a number of simple shapes based on homothetics of a
set of structuring elements was proposed in order to
minimize the number of points in the representation of
the image. In [61], eight structuring elements were used to
generalize the morphological skeleton representation. In
this representation, the number of points needed to
represent a given shape is significantly lower than that in
the standard morphological skeleton transform. In [7], we
extended the morphological skeleton representation frame-
work presented in [51] to the spatially-variant case. We also
provided a practical algorithm to construct the optimal
structuring elements, which minimize the cardinality of the
spatially-variant morphological skeleton representation.

The examples cited above clearly illustrate the need to
develop a unified spatially-variant mathematical morphol-
ogy theory. The objective of this paper is, thus, to present a
general theory of spatially-variant (SV) mathematical mor-
phology in the Euclidean space, which will unify all the
techniques proposed thus far into a comprehensive mathe-
matical framework. The proposed theory preserves the
concept of structuring element, which is crucial in the design
of geometrical signal and image processing applications. This
paper is the first in a sequence of two papers (Parts I and II). In
this part, we will investigate the foundations of the theory of
spatially-variant mathematical morphology in the Euclidean
space for binary signals and images. The treatment of the
gray-level case will be explored in Part II.

This paper is organized as follows: In Section 2, we review
the previous work related to the extension of mathematical
morphology to transformations that do not commute with
the translation operator. In Section 3, we define the basic SV
morphological operators (that is, SV erosion, SV dilation, SV
opening, and SV closing). The properties of the basic SV
morphological operators are enumerated in Appendix A.
Subsequently, we provide several examples of nontransla-
tion-invariant morphology such as affine morphology and
adaptive neighborhood morphology, which establish our
representation as a unified theory of spatially-variant
mathematical morphology. Matheron’s representation theo-
rem is extended to the spatially-variant case in Section 4. The
spatially-variant kernel representation is a powerful theore-
tical result since it demonstrates the ubiquity of the SV
morphological operators by representing every increasing
operator in terms of SV erosions or dilations. However, as
was the case in translation-invariant mathematical morphol-
ogy [37], the practical importance of the SV kernel represen-
tation is limited since it requires an infinite number of SV
erosions or SV dilations to implement the operator. Following
the development of Maragos’ basis representation for
translation-invariant operators presented in [2], [17], and
[37], we provide, in Section 5, sufficient conditions under
which the SV basis representation exists. These sufficient
conditions are expressed in terms of upper-semicontinuity in
the hit-or-miss topology. We subsequently investigate some
topological properties of the SV erosion and SV dilation and
provide, as an example, a basis representation of the adaptive
median filter. In Section 6, we provide simulation results to
show the power of the SV mathematical morphology theory
in image reconstruction, pattern segmentation, and shape
representation. A summary of the paper and concluding
remarks are provided in Section 7.

2 RELATED WORK

An extension of the theory of mathematical morphology from
the Euclidean space to complete lattices was initiated by
Matheron [46] and Serra [54]. Heijmans and Ronse further
pursued their work on lattice morphology in [28] and [29].
Lattice morphology is a powerful tool that provides an
abstraction of mathematical morphology based on lattice
theory, a topic devoted to the investigation of the algebraic
properties of partially ordered sets [6], [25]. The general
properties of lattice morphological operators depend only on
the characteristics of the order relation and the supremum
and infimum of the complete lattice. Although lattice
morphology is an extremely powerful theory, it relies on
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abstract mathematical concepts for the representation of the
morphological operators and is, therefore, not accessible to
engineers in the development of signal and image processing
systems. In particular, the general theory of lattice morphol-
ogy cannot be used to convey the notion of a structuring
element, which is critical in the development of morpholo-
gical image analysis applications. Thus, it is interesting to
focus on special cases of the general lattice morphology
theory, which convey the intuition provided by the transla-
tion-invariant theory of mathematical morphology in the
Euclidean space.

Earlier efforts to extend mathematical morphology theory
to nontranslation-invariant operators while preserving the
notion of the structuring element have been presented in
special cases. A generalization of Euclidean morphology to
arbitrary abelian symmetry groups was investigated in [24]
and [50]. This concept provides, for example, for the
representation of morphological operators in terms of a
family of circular structuring elements (that is, rotation and
scaling of an elementary SE). Maragos, in [40], extended the
notion of circular morphology by introducing the affine
morphology framework. Heijmans and Ronse [28], [29]
characterized morphological operators in complete lattices
having a certain type of abelian group of automorphisms
generalizing translations. Subsequently, they extended
Matheron’s theorem to increasing operators that are invariant
under the group operator. Roedrink [48] extended Euclidean
morphology by including invariance under more general
groups of transformations (not necessarily abelian) such as
the Euclidean motion group, the similarity group, the affine
group, and the projective group. The most general represen-
tation, in the Euclidean space, was introduced by Serra in [54,
Chapters 2, 3, and 4]. He defined the concept of a structuring
function that associates to each point in space a local
structuring element. This representation generalizes all prior
efforts in the Euclidean space while preserving the concept of
the structuring element. In his work, Serra uses the basic
spatially-variant morphological operators to analyze the
notion of connectivity and induced metrics. Chefchaouni
and Schonfeld [8], [9] extended Serra’s work on spatially-
variant mathematical morphology and illustrated the con-
cept of a spatially-variant kernel representation for binary
increasing systems.

In this paper, we elaborate on Serra’s and Chefchaouni and
Schonfeld’s work on spatially-variant mathematical mor-
phology, in the Euclidean space, to provide a comprehensive
theory of spatially-variant mathematical morphology, which
captures the geometrical interpretation of the structuring
element. The proposed theory is the most general framework
of spatially-variant mathematical morphology that preserves
the notion of the structuring element. For example, our
approach unifies the work by Heijmans and Ronse on
T -invariant operators, where T is an abelian group of
automorphisms of a complete lattice [28] and the work of
Maragos on affine morphology [40]. Through our work, we
hope to provide a sound mathematical foundation to past and
future research in spatially-variant morphological signal and
image processing, which captures the geometrical intuition of
practitioners in the engineering community.

Throughout the paper, we provide reference to known
results and limit the presentation of proofs to new
contributions.

3 SPATIALLY-VARIANT MATHEMATICAL

MORPHOLOGY

3.1 Preliminaries

In this paper, we consider the continuous or discrete
Euclidean space E ¼ IRn or ZZn for some n > 0.1 The set
PðEÞ denotes the set of all subsets of E. Elements of the set
E will be denoted by lower case letters, for example, a, b,
and c. Elements of the set PðEÞ will be denoted by upper
case letters, for example, A, B, and C. An order on PðEÞ is
imposed by the inclusion � . We use [ and \ to denote the
union and intersection in PðEÞ, respectively. “) , , , 8,
and 9” denote, respectively, “implies,” “if and only if (iff),”
“for all,” and “there exist(s).” Xc denotes the complement of
X. The translate of the set X by the element a 2 E is defined
by X þ a ¼ fxþ a : x 2 Xg. The cardinality, jXj, of a set X
is the total number of elements contained in the set. X �B
and X �B denote the translation-invariant erosion and
dilation, respectively, of the set X by the structuring
element B. We use O ¼ PðEÞPðEÞ to denote the set of all
operators mapping PðEÞ into itself. The elements of the set
O will be denoted by lower case Greek letters, for example,
�, �, and �. An order on O is imposed by the inclusion � ,
that is, � � � if and only if �ðXÞ � �ðXÞ for every
X 2 PðEÞ. We shall restrict our attention to nondegenerate
operators, that is,  ðEÞ ¼ E and  ð;Þ ¼ ; for every  2 O
(the set ; 2 PðEÞ is used to denote the empty set).

An operator  2 O is

. increasing if X � Y ¼)  ðXÞ �  ðY Þ ðX;Y 2 PðEÞÞ;

. translation-invariant if

 ðX þ aÞ ¼  ðXÞ þ a ðX 2 PðEÞ; a 2 EÞ;
. idempotent if  ð ðXÞÞ ¼  ðXÞ ðX 2 PðEÞÞ;
. extensive (respectively, anti-extensive) if X �  ðXÞ

(respectively,  ðXÞ � X) ðX 2 PðEÞÞ.
The mapping  � in O is the dual of the mapping  in O iff

 �ðXÞ ¼ ð ðXcÞÞc ðX 2 PðEÞÞ.

3.2 Erosions and Dilations

Consider the spatially-variant structuring element � given
by a mapping from E into PðEÞ. The class of all such
mappings inherits the complete lattice structure of PðEÞ by
setting �1 � �2()�1ðzÞ � �2ðzÞ for every z 2 E. The trans-
posed spatially-variant structuring element �0 is given by a
mapping from E into PðEÞ such that

�0ðyÞ ¼ fz 2 E : y 2 �ðzÞg ðy 2 EÞ: ð1Þ

In the translation-invariant case, the mapping � is the
translation operator by a fixed set B, that is, �ðyÞ ¼ Bþ y,
for every y 2 E. Therefore, z 2 �0ðyÞ , y 2 �ðzÞ , y 2 ðBþ
zÞ , z 2 ð �Bþ yÞ, where �B ¼ �B is the reflected set of B.
Hence, the transposed mapping reduces, in the translation-
invariant case, to the translation by the reflected set �B. As in
the translation-invariant mathematical morphology, the
choice of the structuring element mapping is application
oriented.
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Definition 1. The spatially-variant erosion E� 2 O is defined as

E�ðXÞ ¼ fz 2 E : �ðzÞ � Xg ¼
\
x2Xc

�0cðxÞ ðX 2 PðEÞÞ:

ð2Þ

Definition 2. The spatially-variant dilation D� 2 O is defined as

D�ðXÞ ¼ fz 2 E : �0ðzÞ \X 6¼ ;g ¼
[
x2X

�ðxÞ ðX 2 PðEÞÞ:

ð3Þ

The right-hand side equalities in definitions 2 and 3 can be
easily verified, and thus, their proof will be omitted. The SV
erosion and SV dilation are increasing and form an adjunc-
tion. Hence, the basic properties of translation-invariant
erosion and dilation can be transposed to the SV erosion and
dilation. These properties are enumerated in Appendix A.

As in the translation-invariant mathematical morphology,
a large class of SV binary operators can be built from the two
basic SV operators. We give here only the spatially-variant
version of the morphological opening and closing operators.
The spatially-variant opening �� is given by

��ðXÞ ¼ D�ðE�ðXÞÞ ¼
[
f�ðyÞ : �ðyÞ � X; y 2 Eg; ð4Þ

and the spatially-variant closing �� is given by

��ðXÞ ¼E�ðD�ðXÞÞ
¼ fz 2 E : �ðyÞ \X 6¼ ;; 8 �ðyÞ : z 2 �ðyÞg;

ð5Þ

for every X 2 PðEÞ.
The spatially-variant opening and closing are morpho-

logical filters, that is, they are increasing and idempotent.
Moreover, it follows from (4) and (5) and the properties in
Appendix A that the spatially-variant opening is anti-
extensive and the spatially-variant closing is extensive.

Fig. 1 illustrates a synthetic example of SV closing. Fig. 1a
shows a binary image containing four circular objects
corrupted by white pores. We want to process this image in
order to fill in the pores without altering the topology of the
image. Fig. 1b shows the output image of the translation-
invariant closing using a circular structuring element of
radius 3. Only the pores of dimension smaller than 3 were
filled. The larger pores remain. Fig. 1c shows the output
image of the translation-invariant closing using a circular
structuring element of radius 6. All the pores were filled.
However, the closing operation altered the topology of the
original image by connecting originally disconnected objects
in the image. The SV closing, shown in Fig. 1d, fills in all the

pores while preserving the connectivity properties of the

original image.
Next, we present some examples of nontranslation-

invariant mathematical morphology, which are special

cases of the proposed framework of spatially-variant

mathematical morphology.

3.3 Examples

3.3.1 Circular Morphology [28]

Consider E ¼ IR2 � 0. Let ðra; ’aÞ be the polar coordinates

of a given a 2 E. We define the operation � by

a� b ¼ ðrarb; ’a þ ’bÞ; ða; b 2 EÞ: ð6Þ

Observe that the operation � on E corresponds to the

multiplication in the complex plane if we associate the

complex number r expj’ to each ðr; ’Þ 2 E. Consider a non

empty set A 2 PðEÞ. Define the mapping � as follows:

�ðzÞ ¼ A� z ¼ fa� z : a 2 Ag ðz 2 EÞ: ð7Þ

That is, to each point z 2 E, the mapping � associates the

scaled and rotated version of the set A by the magnitude of

the point z, rz, and its angle ’z. Then, �0ðzÞ ¼ A�1 � z, where

A�1 ¼ f1
a : a 2 Ag. The SV erosion and dilation defined in

(2) and (3), respectively, become

X �c A ¼ fz 2 E : ðA� zÞ � Xg ðX 2 PðEÞÞ; ð8Þ

and

X �c A ¼ fz 2 E : ðA�1 � zÞ \X 6¼ ;g ðX 2 PðEÞÞ: ð9Þ

Equations (8) and (9) are the circular erosion and dilation,

respectively, defined in [28]. Therefore, circular morphol-

ogy is a special case of the proposed spatially-variant

mathematical morphology.

3.3.2 Affine Morphology [40]

Let E ¼ IR2, and let G be the set defined by

G ¼ fðM; tÞ : M 2 IR2	2; detðMÞ 6¼ 0; t 2 IR2g: ð10Þ

Consider a subset S � G. Define the structuring element

mapping � : E! PðEÞ as

�ðzÞ ¼ fMzþ t : ðM; tÞ 2 Sg: ð11Þ

The transposed structuring element is then given by

�0ðzÞ ¼ fM�1ðz� tÞ : ðM; tÞ 2 Sg. Hence, one can easily

show that the spatially-variant erosion and dilation defined

in (2) and (3), respectively, reduce to
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Fig. 1. Translation-invariant and spatially-variant closing of a binary image: (a) Original image, (b) translation-invariant closing with a circular SE of

radius 3, (c) translation-invariant closing with a circular structuring element of radius 6, and (d) spatially-variant closing.



X �a S ¼
\

ðM;tÞ2S
fM�1ðx� tÞ : x 2 Xg; ð12Þ

and

X �a S ¼
[

ðM;tÞ2S
fMxþ t : x 2 Xg: ð13Þ

Equations (12) and (13) are the affine erosion and dilation,
respectively, defined in [40]. This establishes the affine
morphology framework as a special case of the spatially-
variant morphology theory. Observe that the affine group is
not an abelian group, and therefore, the theory of Heijmans
and Ronse on T -invariant operators presented in [28] does
not apply.

3.3.3 Amoeba Morphology [36]

Consider E ¼ ZZ2. Denote by IðxÞ the value of the image at
position x. Let d be a distance defined between the values of
the image. Let � ¼ ðx ¼ x0; x1; 
 
 
 ; xn ¼ yÞ be a path between
the pointsxandy. Let� > 0 and r > 0. The length of the path�
is defined as

Lð�Þ ¼
Xn
i¼1

½1þ �dðIðxiÞ; Iðxiþ1ÞÞ�: ð14Þ

The amoeba distance with parameter � is defined by
d�ðx; yÞ ¼ min� Lð�Þ: Define the structuring element map-
ping � as

�ðxÞ ¼ B�;rðxÞ ¼ fy : d�ðx; yÞ � rg: ð15Þ

Then, the SV erosion and dilation defined in (2) and (3),
respectively, reduce to

E�ðXÞ¼fz 2 E : B�;rðzÞ � Xg; and D�ðXÞ¼
[
x2X

B�;rðxÞ: ð16Þ

Equation (16) coincides with the definitions of the amoeba
erosion and dilation introduced in [36]. Thus, amoeba
morphology is another special case of the proposed
spatially-variant mathematical morphology framework.

3.3.4 Adaptive Neighborhood Morphology [15], [16]

Consider E ¼ IR2. Let h : IR2 ! IR be a criterion mapping
such as luminance or contrast. Let m > 0. For each x 2 E,
define the connected set V h

mðxÞ by V h
mðxÞ ¼ fy : jhðyÞ �

hðxÞj � mg. Choose the SE mapping � as follows:

�ðxÞ ¼
[
z2E

fV h
mðzÞ : x 2 V h

mðzÞg: ð17Þ

The SV erosion and dilation defined in (2) and (3), respec-
tively, reduce to

E�ðXÞ¼fz 2 E : 9y 2 E such that z 2 V h
mðyÞ and V h

mðyÞ�Xg;
ð18Þ

and

D�ðXÞ ¼
[
x2X

[
z2E

fV h
mðzÞ : x 2 V h

mðzÞg: ð19Þ

Equations (18) and (19) are, respectively, the adaptive
neighborhood erosion and dilation presented in [15]. Thus,
adaptive neighborhood morphology is yet another special

case of the spatially-variant structuring element mathema-
tical morphology theory.

The above examples are practical special cases of the
proposed theory of spatially-variant mathematical mor-
phology. Each example corresponds to a special choice of
the structuring element mapping � that is application
oriented. For example, affine signal transformations are
useful for modeling self-similarities in fractal images and
shape deformations in visual motion [40]. Circular mor-
phology is useful for circular-invariant material structure
such as radar displays and echographic images [28].
Amoeba morphology is effective for denoising [36], and
adaptive neighborhood morphology was illustrated for
multiscale representation and segmentation [15].

In the next section, we demonstrate the ubiquity of the
basic SV operators, that is, SV erosion and SV dilation, by
proving that every increasing operator can be exactly
represented in terms of SV erosions or SV dilations.

4 SPATIALLY-VARIANT KERNEL REPRESENTATION

4.1 Theoretical Analysis

We extend the concept of the kernel introduced by Matheron,
for translation-invariant operators [46], to the spatially-
variant case as follows:

Definition 3. The kernel, Kerð Þ, of an spatially-variant
operator  2 O is given by

Kerð Þ ¼ f� : z 2  ð�ðzÞÞ; for every z 2 Eg: ð20Þ

The SV kernel of a nondegenerate operator is nontrivial as
the following proposition shows:

Proposition 1. Kerð Þ 6¼ ;; 8 2 O.

An important property of the SV kernel of an increasing
operator is that it is unique. Furthermore, the mapping that
associates eachoperator 2 O to its kernel is an isomorphism.

Proposition 2. Given two operators  1 and  2 2 O, we have
 1 �  2 if and only if kerð 1Þ � kerð 2Þ.

We now provide the kernel representation of increasing
operators based on SV erosions and SV dilations.

Theorem 1. An operator  2 O is increasing if and only if  can
be exactly represented as union of spatially-variant erosions by
mappings in its kernel or equivalently as intersection of
spatially-variant dilations by the transposed mappings in the
kernel of its dual  �, that is,

 ðXÞ¼
[

�2Kerð Þ
E�ðXÞ¼

\
�2Kerð �Þ

D�0 ðXÞ; ðX 2 PðEÞÞ: ð21Þ

4.2 Examples

4.2.1 Circular Morphology [28]

We say that a mapping  2 O is circular invariant if for
every X 2 PðEÞ and for every z 2 E,  ðX � zÞ ¼  ðXÞ � z.
It is straightforward to verify that the union and intersec-
tion of circular invariant operators are circular invariant.
The following proposition shows that the circular erosion
and dilation, defined in (8) and (9), are circular invariant.

Proposition 3. Given a set A 2 PðEÞ, the circular erosion and
the circular dilation, defined in (8) and (9), respectively, are
circular invariant, that is, for every z 2 E, we have
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ðX � zÞ �c A ¼ ðX �c AÞ � z; ðX 2 PðEÞÞ; ð22Þ

and

ðX � zÞ �c A ¼ ðX �c AÞ � z; ðX 2 PðEÞÞ: ð23Þ

Therefore, from Theorem 1 and the kernel representation of
group operators in [25, Theorem 5.35], every increasing and
circular-invariant operator can be exactly represented as
union of circular erosions or, equivalently, as intersection of
circular dilations [28].

4.2.2 Affine Morphology [40]

Let E ¼ IR2. Consider the set G, defined in (10), and S � G.
Define the affine transformation of a setX 2 PðEÞ by the pair
ðA; bÞ 2 G as the point by point affine transformation, that is,
AX þ b ¼ fAxþ b : x 2 Xg. We say that an operator  2 O is
affine invariant if and only if for every ðA; bÞ 2 G,
 ðAX þ bÞ ¼ A ðXÞ þ b. We show, using a counter example,
that the affine erosion and dilation defined in (12) and (13),
respectively, are not affine-invariant operators. Consider the
setS ¼ fðI; tÞg, where I is the identity matrix and t 6¼ 0. Then,
from (12), we observe that, for everyA 6¼ I, ðAX þ bÞ �a S ¼
fy� t : y 2 ðAX þ bÞg ¼ AX þ b� t, whereas AðX �a SÞ þ
b ¼ AðX � tÞ þ b ¼ AX þ b�At. Hence, the affine erosion
and affine dilation are not affine invariant. Nevertheless,
Theorem 1 provides a sufficient condition for an operator to
be represented as union of affine erosions, namely, if all the
mappings in the kernel of an increasing operator  are of the
form given by (11), then can be exactly represented as union
of affine erosions or, equivalently, as intersection of affine
dilations.

5 BASIS REPRESENTATION

5.1 Motivation

The SV kernel representation, given in (20), is redundant, in
the sense that a smaller subset of the kernel is sufficient for
the representation of increasing operators. This can be seen,
in the case of the representation by SV erosions, as follows:
if �1 and �2 2 Kerð Þ are such that �1 � �2, then E�2

� E�1
.

Therefore, if the above �1 and �2 are contained in the kernel
of an increasing operator  , its corresponding kernel
representation will be redundant.

In the following proposition, we demonstrate that the
kernel of an increasing operator is actually infinite.

Proposition 4. Let  2 O be an increasing operator. Then, the
kernel of  is infinite.

In order to derive minimal representations for increasing
operators, we need the notion of a basis of the kernel, which
was first introduced by Maragos [37], [39] for translation-
invariant operators.

Definition 4. Let  2 O be an increasing operator. The basis B 
of Kerð ) is the collection of minimal kernel mappings,
formally defined as

B ¼ f�M 2 Kerð Þ : � 2 Kerð Þ and � � �M¼)� ¼ �Mg:

Observe that Definition 4 corresponds to the definition of a
minimal basis. A more general definition of the basis as a
subcollection of the kernel that is sufficient for representa-
tion can be found in [2]. If the basis of an increasing

operator exists, then the kernel representation of the
operator reduces to a representation by the elements of
the basis, which will allow in some cases a drastic reduction
in the number of elements in the representation of the
operator, as we will show in the examples.

Before proving that increasing and upper-semicontin-
uous operators have a basis representation, we briefly recall
the definition of upper-semicontinuity in the hit-or-miss
topology and study the topological properties of the SV
basic morphological operators. For a comprehensive alge-
braic and topological background, we refer the reader to [4],
[6], [37], [46], [53].

5.2 Upper-Semicontinuity in the Hit-or-Miss
Topology

From now on, E is assumed to be a locally compact,
Hausdorff and second countable topological space. We
denote by F the set of all closed subsets of E, by G the set of
all open subsets of E, and by K the set of all compact
subsets of E. Matheron defined a topology on F called the
hit-or-miss topology [46]. We denote by O0 the set of all
operators mapping F into itself. From now on, we consider
only mappings in O0. In particular, the SV structuring
element is now a mapping from E to F .

A mapping  in O0 is upper-semicontinuous if and only if
for any K 2 K, the set  �1ðFKÞ is open in F [46], where FK

is the class of the closed sets disjoint of K, that is,
FK ¼ fF : F 2 F ; F \K ¼ ;g. A useful characterization of
increasing upper-semicontinuous mappings in F is given
by the following proposition due to Matheron:

Proposition 5 [46]. Let  be an increasing mapping in O0.  is

upper-semicontinuous if and only if for every sequence fXngn2IN

of elements of F such that Xn # X in F (that is, X1 
 X2 


 
 
 
 Xn 
 
 
 
 and X ¼

T
n�1 Xn), we have  ðXnÞ #  ðXÞ

in F .

Observe that continuity implies upper-semicontinuity but

the converse is not true in general [46]. It is well known that

the translation-invariant erosion of a closed set by a compact

structuring element is upper-semicontinuous, and the trans-

lation-invariant dilation of a closed set by a compact

structuring element is continuous [46], [54]. We generalize

this result to the spatially-variant case. We say that the

mapping � is closed (respectively, compact) if �ðzÞ is a closed

(respectively, compact) set, for every z 2 E. � : E�!F
(respectively, K) is continuous if and only if for every

sequence fzngn2IN � E converging toward z 2 E, the se-

quence of sets f�ðznÞgn2IN in F (respectively, K) converges

towards the set �ðzÞ in F (resp., K) in the sense of that in [46,

Theorem 1-2-2] (respectively, [46, Theorem1-4-1]), and we

write �ðxnÞ �!
F

�ðxÞ (respectively, �ðxnÞ �!
K

�ðxÞ).
First, we prove that, under specific conditions on the SE

mapping, the SV erosion and SV dilation are mappings
from F into itself.

Proposition 6. Consider the SE mapping �.

1. If � is continuous from E to F , then
F 2 F ) E�ðF Þ 2 F .

2. If �0 is continuous from E to K, then
F 2 F ) D�ðF Þ 2 F .
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Proposition 7.

1. If the mapping � is continuous from E to F , then the
spatially-variant erosion E� is upper-semicontinuous
from F to F .

2. If the mappings �0 is continuous from E to K, then the
spatially-variant dilation is upper-semicontinuous
from F to F .

For a general set mapping  , the property of upper-

semicontinuity is not easily tractable. We provide the

following easy test for upper-semicontinuity:

Proposition 8. Let  1 and  2 be two increasing and upper-

semicontinuous operators from F to F . Then, their union  ¼
 1 [  2 and their intersection  0 ¼  1 \  2 are also increas-

ing and upper-semicontinuous operators from F to F .

An obvious conclusion from Proposition 8 is that any
finite union or intersection of increasing and upper-

semicontinuous operators is also increasing and upper-

semicontinuous. In particular, if a family of mappings
f�igi¼1;


;N and its transpose f�0igi¼1;


;N are continuous from

E to K,2 any finite union or intersection of SV erosions and

SV dilations by mappings in f�igi¼1;


;N is an upper-
semicontinuous increasing operator from F to F .

5.3 Spatially-Variant Basis Representation

In order to prove that the SV kernel of an upper-semicontin-

uous increasing operator has a minimal element, we need the
following lemma:

Lemma 1. If L is a linearly ordered subset of F , then there exists

a sequence fXngn2IN of elements of L such that Xn #
T
L for

the hit-or-miss topology defined on F .

Theorem 2. Let  2 O0 be an increasing operator. If  is upper-

semicontinuous, then the kernel of  has a minimal element.

We now show that the minimal elements of the kernel
are sufficient to represent the increasing and upper-

semicontinuous operator  .

Theorem 3. Let  2 O0 be an upper-semicontinuous increasing

operator. For every � 2 Kerð Þ, there exists a minimal

element �M 2 B such that �M � �.
Finally, we provide the representation of an increasing

upper-semicontinuous operator by its minimal elements.

Theorem 4. Let  2 O0 be an increasing upper-semicontinuous

operator. Then,  is exactly represented as a union of spatially-

variant erosions by mappings in its basis B , that is,

 ðXÞ ¼
[
�2B 
E�ðXÞ ðX 2 FÞ: ð24Þ

A minimal representation of an increasing upper-semi-
continuous operator as an intersection of SV dilations is

obtained by duality as follows:

Corollary 1. If  is increasing from G to G and has an upper-

semicontinuous dual  � from F to F , then  can be exactly

represented as an intersection of spatially-variant dilations by

the transposed mappings in the basis of its dual, that is,

 ðXÞ ¼
\
�2B �

D�0 ðXÞ ðX 2 GÞ: ð25Þ

In the discrete Euclidean space ZZn, the set of open sets and

closed sets are equivalent to the power set PðZZnÞ. Therefore,

every mapping  from F to F has a dual mapping  � from

F to F . Hence, if  (respectively,  �) is increasing and

upper-semicontinuous, then the basis representation as

union of spatially-variant erosions (respectively, intersec-

tion of spatially-variant dilations) exists.

5.4 Examples

SV erosion. Consider the SV erosion by the continuous SE

mapping � : E! F . Then the smallest mapping in the

kernel of the SV erosion is �, that is, BE� ¼ f�g.
SV dilation. Consider the SV dilation by the continuous

SE mapping � : E! K. Then, the smallest mappings in the

kernel of the SV dilation are the mappings that associate to

each point z 2 E a singleton ftzg, where tz 2 �ðzÞ, that is,

BD� ¼ f� : �ðzÞ ¼ ftzg; for some tz 2 �ðzÞ; 8 z 2 Eg: ð26Þ

Thus, the SV erosion has only one basis set. If the cardinality

of the mapping � is finite, that is, j�ðzÞj � _z2Ej�ðzÞj ¼ n,

then, for each z 2 E, there are at most n mappings �

satisfying �ðzÞ ¼ ftzg, for some tz 2 �ðzÞ. Define the support

of the mapping � as Sptð�Þ ¼ fz 2 E : �ðzÞ 6¼ ;g. If Sptð�Þ is

infinite, then there are an infinite number of mappings in

the basis of the SV dilation even though � has a finite

cardinality. If, however, Sptð�Þ is finite, then the basis of the

SV dilation by the mapping � is finite. In this case, let

N ¼ jSptð�Þj, then Nn is an upper bound for the number of

elements in the basis of the SV dilation D�.
Adaptive median filter. Consider E � ZZ2. Let B be a

mapping from E into PðEÞ such that y 2 BðyÞ and

jBðyÞj ¼ n ¼ is odd, 8y 2 E. Let r ¼ nþ1
2 . The adaptive (or

spatially-variant) median, medðX;BÞ, of X with respect to

the spatially-variant window B is given by

medðX;BÞ ¼ fy 2 E : jX \BðyÞj � rg: ð27Þ

One can easily verify that the adaptive median is increasing

and self dual. Therefore, from Theorem 1, the adaptive

median has a kernel representation as union of spatially-

variant erosions by mappings in its kernel or equivalently

as intersection of spatially-variant dilations by the trans-

posed mappings of its kernel. The kernel of the adaptive

median filter is given by

Kerðmedð:; BÞÞ ¼ f� : j�ðzÞ \BðzÞj � r; 8z 2 Eg: ð28Þ

Obviously, there are infinite number of mappings � satisfying

j�ðzÞ \BðzÞj � r, for all z 2 E. The following proposition

shows that the adaptive median has a basis representation.

Proposition 9. The adaptive median filter has n
r

� �
mappings in

its basis. They are given by

Bmedð:; BÞ ¼ f� : � � B and j�j ¼ rg: ð29Þ

Thus, from Theorem 4, the adaptive median filter has a basis

representation given by
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medðX;BÞ ¼
[

��B; j�j¼r

\
x2Xc

�0cðxÞ

¼
\

��B; j�j¼r

[
x2X

�ðxÞ:
ð30Þ

We have thus a representation of the nonlinear adaptive

median filter in terms of union and intersection of specified

sets. In particular, no sorting is required. Observe that we

did not prove the upper-semicontinuity of the adaptive

median filter in order to find its basis. Instead, we found a

finite basis that is not redundant. The upper-semicontinuity

is only a sufficient condition for the existence of the basis.

The question whether it is also a necessary condition or not

remains still an open problem.
Spatially-variant hit-or-miss transform. The spatially-

variant hit-or-miss transform. �ð�1; �2Þ is given by

X � ð�1; �2Þ¼fz 2 	 : �1ðzÞ�X � �2ðzÞg ðX 2 Pð	ÞÞ: ð31Þ

Consider mappings �1 and �2 from E into PðEÞ. Let us use

½�1; �2� to denote the mapping segment given by ½�1; �2� ¼
f� : �1 � � � �2g. In the following theorem, we provide the

spatially-variant kernel representation of operators inO (not

necessarily increasing) based on spatially-variant hit-or-miss

transforms.

Theorem 5. Given a mapping  2 O, we have

 ðXÞ ¼
[

½�1;�2��Kerð Þ
ðX � ð�1; �2ÞÞ ðX 2 Pð	ÞÞ: ð32Þ

The representation in Theorem 5 is redundant. To see this,

let ½�1; �2� and ½�3; �4� be two segments such that ½�1; �2� �
½�3; �4�, that is, �3 � �1 � �2 � �4. Then, X � ½�1; �2� �
X � ½�3; �4�, for everyX 2 PðEÞ. Therefore, in the representa-

tion of an operator by SV hit-or-miss transforms, if the above

segments ½�1; �2� and ½�3; �4� are contained in Kerð Þ, the

mapping �ð�1; �2Þwill be redundant.
The basis of  , in this representation, is defined as the set

of all the maximal intervals contained in Kerð Þ. An

interval is maximal if no other interval contained in

Kerð Þ properly contains it. Bannon and Barrera [2] have

a similar definition of the basis in the special case of

translation-invariant operators. The extension of the deriva-

tion of the existence of the minimal basis to the SV case can

be carried out based on the development in [2] and is out of

the scope of this paper. One can verify that under the same

sufficient condition of upper-semicontinuity, an operator,

the domain of which is the collection of closed subsets of an

Euclidean space, has a minimal kernel representation in

terms of SV hit-or-miss transforms.

6 SIMULATIONS

The simulation results presented in this section are intended

to illustrate the general theory of SV mathematical morphol-

ogy and show its power in image analysis applications. For

more practical examples of specific application-oriented

spatially-variant structuring elements, we refer the reader

to the references cited in Section 1.

6.1 Spatially-Variant Opening by Reconstruction
and Segmentation

Morphological filters by reconstruction [13], [55], [59] use an
image, called a “marker” (usually a filtered version of the
original image) to reconstruct objects or features of interest in
the original image called the “mask.” Thus, filters by
reconstruction can be used for segmentation. However, a
deceptive problem arises when dealing with noisy images:
The reconstruction process reconnects portions of the noise
along with the useful information in the image. This problem
is intolerable in some applications such as contour extraction
from noisy 2D and 3D medical images. We illustrate the
morphological opening by a reconstruction scheme in noisy
environments using the binary image of blobs in Fig. 2a and
its corrupted version by a germ-grain noise model [53] in
Fig. 2b. In morphological opening by reconstruction, the
eroded image is used as the marker image. Then, the
reconstruction process restores, through iterative dilations,
the blobs that have not been totally removed by the erosion.
Fig. 2c shows the output of the translation-invariant opening
by reconstruction using the rhombus SE. Since the erosion by
the rhombus SE is unable to eliminate the structures of noise
bigger than the rhombus, most of the noise is reconstructed
along with the original blobs. So, in a second experiment, we
eroded the noisy image by the rhombus SE dilated three times
to eliminate all the noise in the marker image. Nevertheless,
the reconstructed image is still noisy, as shown in Fig. 2d. The
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Fig. 2. Translation-invariant and spatially-variant opening by reconstruc-
tion and segmentation. (a) Original image. (b) Corrupted image by a
germ grain noise model. (c) Opening by reconstruction using the
rhombus SE (four connectivity) for the erosion and the reconstruction.
(d) Opening by reconstruction using the rhombus SE dilated three times
for the erosion and the rhombus SE for the reconstruction. (e) Spatially-
variant opening by reconstruction. (f), (g), and (h) Segmentation of the
reconstructed images (c), (d), and (e), respectively.



noise persists in the reconstructed image because it is
connected to the original blobs and, hence, is viewed by the
reconstruction algorithm as part of the blobs. A simple
solution to avoid the noise reconstruction problem is to
spatially vary the structuring element while eroding to form
the marker image. The strategy adopted here is quite intuitive
and can be summarized as follows:

1. At each pixel z of the image, decide by exploring its
neighborhood whether it belongs to a noise grain or
not (the germ-grain noise model is assumed to be
known, a priori). The detection of the presence of a
noise grain CðzÞ centered at the pixel z is determined
by selecting the largest possible grain C, which is
present or absent in the degraded image Y (that is,
C þ fzg � Y or C þ fzg � Y c). The SE mapping of
the SV erosion is then selected as follows:

�ðzÞ ¼ CðzÞ � S; if z is detected as a noisy pixel;
S; otherwise;

�

ð33Þ

where S denotes the rhombus structuring element.
This choice of the SE mapping ensures that all noise
grains are removed completely (since the local SE is
larger than the size of the noise grain) while preserving
the small main blobs in the image (which have sizes
bigger than the rhombus). The marker image is then
obtained by SV erosion of the noisy image or the mask.

2. Label the pixels in the mask image as follows: If a pixel
was detected as noisy in Step 1), label it differently
from the main blobs (even if it is connected to a main
blob). Each main blob is assigned a unique number.

3. Determine the labels that contain at least a pixel of
the marker image.

4. The reconstructed image is obtained by removing all
the pixels whose label is not one of the previous ones.

The result of SV opening by reconstruction is displayed in
Fig. 2e. The noise is not reconstructed with the original blobs.
This is important not only for denoising but also for

segmentation. A persisting noise in the reconstructed image
has deleterious consequences for segmentation as it is either
classified as main blobs (see Fig. 2f) or merges originally
disconnected blobs (see Fig. 2g) and, in both cases, results in
erroneous segmentation and blob detection. The third row in
Fig. 2 displays the segmentation results. For visual display,
we labeled each segmented blob by a number. The opening by
reconstruction using the rhombus SE (respectively, the
rhombus SE dilated three times) detected 104 different blobs
(respectively, 15 blobs), whereas the SV opening by recon-
struction resulted in the correct segmentation of the original
18 blobs.

6.2 Spatially-Variant Morphological Skeleton
Representation

The translation-invariant morphological skeleton represen-
tation [35], [53] is known to be redundant, in the sense that a
smaller subset of the morphological skeleton is sufficient for
perfect reconstruction of the original image [7], [33], [38]. It
has been shown that efficient encoding of the skeleton
representation using run-length type codes can be used to
provide an efficient compression routine for binary images
[34], [42]. For practical purposes, we can assume that the
coding efficiency of the skeleton depends only on the number
of its points [42]. Therefore, minimizing the cardinality of the
morphological skeleton representation, under the constraint
of exact reconstruction, is crucial for efficient compression of
binary images. In [7], we extended the morphological
skeleton representation framework presented in [51] to the
spatially-variant case. The theoretical properties of the SV
morphological skeleton representation and the conditions for
its invertibility were investigated in [7]. Fig. 3 shows the
results of SV morphological skeleton representation com-
pared to its translation-invariant counterpart for two binary
images. The SV morphological skeleton representation has a
cardinality that is less than 60 percent of the cardinality of its
translation-invariant counterpart. Given an initial SE, B,
the algorithm iteratively selects the center of the dilated
structuring element, nB ¼ B�B 
 
 
 �B (n times), which
maximally intersects the image, for some integern. The union
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Fig. 3. Translation-invariant and spatially-variant morphological skeleton representation: (a) Original blob image. (b) Translation-invariant

morphological skeleton representation using the rhombus SE. (c) Spatially-variant morphological skeleton representation. (d) Original gear image.

(e) Translation-invariant morphological skeleton representation using the 3	 3 square SE. (f) Spatially-variant morphological skeleton

representation.



of these center points forms the SV morphological skeleton
representation. The exact reconstruction of the original image
is guaranteed given the SEB, the set of center points and their
corresponding integer n.

7 CONCLUSION

In this paper, we presented a general theory of spatially-
variant morphology for binary images in the Euclidean space.
This theory provides a unified mathematical framework of
numerous morphological schemes that have been employed
by researchers in various image processing applications, for
example, circular morphology [28] and affine morphology
[40], as well as basic notions that have been introduced in
several practical applications such as traffic measurements
[5] and adaptive filtering [15], [36]. Our presentation has been
confined to the Euclidean space but can be trivially extended
to complete atomic Boolean lattices in the context of lattice
morphology. A further generalization of the framework
provided in this presentation to general lattices appears in [3].
However, such a generalization is very abstract and fails to
capture the geometrical interpretation conveyed by the
structuring element, which is crucial in signal and image
processing applications.

In particular, in this paper, a kernel representation of
increasing operators has been presented in terms of spatially-
variant erosions and dilations. This result extends the theory
of translation-invariant mathematical morphology intro-
duced by Matheron. We have also extended our approach
to the kernel representation of arbitrary (not necessarily
increasing) SV operators based on a decomposition into SV
hit-or-miss transforms. The SV kernel representation, like its
translation-invariant counterpart, is redundant and conse-
quently has limited practical importance. Following Mar-
agos’ development of the basis representation for increasing
and translation-invariant operators, we proved that every
increasing and upper-semicontinuous operator admits a
basis representation. The domain of such an operator is
restricted to a collection of closed subsets of the space. The
basis representation allows, in some cases, a drastic reduction
of the number of elements in the kernel as was shown in the
adaptive median filter example. Finally, simulation results
show the potential power of the general theory of spatially-
variant mathematical morphology in several image proces-
sing and computer vision applications.

APPENDIX A

PROPERTIES OF SV EROSION AND SV DILATION

Adjunction. For every structuring element mapping �, the

pair ðE�;D�Þ forms an adjunction, that is,

D�ðXÞ � Y()X � E�ðY Þ ðX;Y 2 PðEÞÞ:

Duality. The SV erosion E� and SV dilation D� are dual

operators, that is,

E��ðXÞ ¼ D�0 ðXÞ ðX 2 PðEÞÞ:

Increasingness. For every structuring element mapping �,

the SV erosion E� and SV dilation D� are increasing

operators from PðEÞ to PðEÞ.

Extensivity and anti-extensivity. If z 2 �ðzÞ, for all z 2 E,

then the SV erosion E� is anti-extensive, and the SV dilation

D� is extensive, that is,

E�ðXÞ � X; and X � D�ðXÞ ðX 2 PðEÞÞ:

Observe that in the translation-invariant case with fixed SE

B, that is, �ðzÞ ¼ Bþ z, the condition z 2 �ðzÞ reduces to

0 2 B.
Scaling with respect to the SE mapping. If �1 � �2, then

E�2
ðXÞ � E�1

ðXÞ; and D�1
ðXÞ � D�2

ðXÞ ðX 2 PðEÞÞ:

Serial composition. Consider the mappings �1 and �2 from

E into PðEÞ. Let us use E�1
ð�2Þ and D�1

ð�2Þ to denote the

mappings from E into PðEÞ given by ðE�1
ð�2ÞÞðzÞ ¼

E�1
ð�2ðzÞÞ and ðD�1

ð�2ÞÞðzÞ ¼ D�1
ð�2ðzÞÞ, for every z 2 E.

Then, we have

E�2
ðE�1
Þ ¼ ED�1 ð�2Þ; and D�2

ðD�1
Þ ¼ DD�2 ð�01Þ;

for every X 2 PðEÞ.

APPENDIX B

PROOF OF LEMMAS AND COROLLARIES

Proof of Lemma 1. Let L be a linearly ordered subset of F .

From [2, Lemma 4.1],
T
L is adherent to L. Since F is

second countable, there exists a sequence fXngn2IN of the

elements ofL converging to
T
L. The sequence fXngn2IN is

itself a linearly ordered subset of L. Therefore, in [2,

Lemma 4.1],
T
n2IN Xn is adherent to the sequence

fXngn2IN. The converging sequence fXngn2IN has a unique

adherent point and, therefore,
T
L ¼

T
n2IN Xn. From the

fact that the sequence fXngn2IN is itself a linearly ordered

subset of L, we conclude that Xn #
T
L. tu

Proof of Corollary 1. Consider an increasing operator  

from G to G. Then, the dual mapping  � is also increasing

and maps F to F . Since  � is upper-semicontinuous, it

admits a basis representation as union of SV erosions

(Theorem 4). The result follows then easily by duality.tu

APPENDIX C

PROOF OF PROPOSITIONS

Proof of Proposition 1. Consider the mapping �X from E

into PðEÞ given by

�XðzÞ ¼
X; z 2  ðXÞ;
E; z 62  ðXÞ;

�
ð34Þ

for some X 2 PðEÞ. Then, we have for any nondegene-

rate  2 O

 ð�XðzÞÞ ¼
 ðXÞ; z 2  ðXÞ;
E; z 62  ðXÞ:

�
ð35Þ

Therefore, we observe that z 2  ð�XðzÞÞ, for every z 2 E.

Therefore, from Definition 3, �X 2 Kerð Þ. tu
Proof of Proposition 2. Assume that  1ðXÞ �  2ðXÞ
ðX 2 PðEÞÞ. From Definition 3, we observe that
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� 2 ker ð 1Þ¼) z 2  1ð�ðzÞÞ; 8 z 2 E

¼) z 2  2ð�ðzÞÞ; 8 z 2 E

¼) � 2 ker ð 2Þ:

Therefore, we notice that kerð 1Þ � kerð 2Þ.
Assume now that kerð 1Þ � kerð 2Þ. Let us consider the
mapping �X from E into PðEÞ given by (34) (with
 �! 1). From (35), we observe that z 2  1ð�XðzÞÞ, for
every z 2 E. From Definition 3, we have

z 2  1ð�XðzÞÞ; 8 z 2 E¼) �X 2 ker ð 1Þ
¼) �X 2 ker ð 2Þ
¼) z 2  2ð�XðzÞÞ; 8 z 2 E:

Let us consider z 2  1ðXÞ. From (34), we observe that
�XðzÞ ¼ X. Therefore, z 2  2ð�XðzÞÞ ¼  2ðXÞ. Therefore,
 1ðXÞ �  2ðXÞ, for every X 2 E. This completes the
proof. tu

Proof of Proposition 3.

ðX �c AÞ � z ¼fy : ðA� yÞ � Xg � z
¼fy� z : ðA� yÞ � Xg

¼
n
y :
h
A�

�
y� 1

z

�i
� X

o

¼
n
y :
h
ðA� yÞ � 1

z

i
� X

o

¼fy : ðA� yÞ � ðX � zÞg
¼ ðX � zÞ �c A:

Therefore, we proved (22). A similar argument can be
used to prove (23). tu

Proof of Proposition 4. Let  2 O be an increasing operator.

Consider the mapping �X defined in (34). �X 2 Kerð Þ.
Since  is increasing, we observe that every mapping �

from E into PðEÞ such that �X � � is also in the kernel of

 . This proves that Kerð Þ is infinite. tu
Proof of Proposition 6.

1. Consider F 2 F and let fxngn2IN � E�ðF Þ be a

sequence converging toward x 2 E. By definition

of the SV erosion, we have �ðxnÞ � F , 8n 2 IN.

Since the mapping � is continuous, �ðxnÞ �!
F

�ðxÞ.
In [46, Corollary 3(e)], we obtain �ðxÞ � F , which

is equivalent to x 2 E�ðF Þ. Therefore, every
convergent sequence in E�ðF Þ has its limit point

in E�ðF Þ. Hence, E�ðF Þ is closed.
2. Consider F 2 F and let fxngn2IN � D�ðF Þ be a

sequence converging toward x 2 E. By definition

of the SV dilation, we have �0ðxnÞ \ F 6¼ ;, 8n 2 IN.

So, for each n, there exists fn 2 F such that

fn 2 �0ðxnÞ. Since �0 is continuous and compact,

we have �0ðxnÞ �!
K

�0ðxÞ. In [46, Theorem1-4-1],

there exists K0 2 K such that �0ðxnÞ � K0, 8n, and
thus, fn 2 K0. By compactness of K0, there exists a

convergent subsequence fnk ! f 2 F (since F is

closed). By Condition 2 in [46, Theorem1-2-2],

fnk 2 F . Also, since fnk is a convergent subsequence

in �0ðxnkÞ, f 2 �0ðxÞ. Hence, f 2 �0ðxÞ \ F , which is

equivalent to x 2 D�ðF Þ. Therefore, every conver-
gent sequence inD�ðF Þ has its limit point inD�ðF Þ.
Hence, D�ðF Þ is closed. tu

Proof of Proposition 7.

1. Let fFngn2IN be a sequence inF converging toward

F 2 F . Let x 2 limE�ðFnÞ. Then, by that in [46,

Proposition 1-2-3 (b)], there exists a subsequence

xnp 2 E�ðFnpÞ converging toward x. By definition of

the SV erosion, �ðxnpÞ � Fnp . By continuity of the

mapping �, we have �ðxnpÞ �!
F

�ðxÞ. Using that in

[46, Corollary 3(e)], we have �ðxÞ � F , which is
equivalent to x 2 E�ðF Þ. Therefore, every point x 2
limE�ðFnÞ belongs also to E�ðF Þ. Hence, limðE�ðFnÞÞ
� E�ðF Þ. By that in [46, Proposition 1-2-4 (a)], we

conclude that E� is upper-semicontinuous.
2. Let fFngn2IN be a sequence inF converging toward

F 2 F . Let x 2 limD�ðFnÞ. Then, by that in [46,
Proposition 1-2-3(b)], there exists a subsequence
xnp 2 D�ðFnpÞ converging toward x. Therefore,
there exists fnp 2 Fnp such that fnp 2 �0ðxnpÞ. Since
�0 is continuous and compact, we have �0ðxnpÞ �!

K

�0ðxÞ and by that in [46, Theorem 1-4-1], there exists
K0 2 K such that K0 � �0ðxnpÞ, 8np. In particular,
fnp 2 K0. By the compactness of K0, the sequence
ffnpg admits a convergent subsequence toward a
point f 2 F . Without loss of generality, we can
assume that the latter subsequence is fnp . By
Criterion 2 in [46, Theorem1-2-2], f 2 �0ðxÞ. Hence,
we have f 2 �0ðxÞ \ F , which is equivalent to
x 2 D�ðF Þ. Therefore, every point x 2 limD�ðFnÞ
belongs also to D�ðF Þ. Hence, limðD�ðFnÞÞ �
D�ðF Þ. By that in [46, Proposition 1-2-4(a)], we
conclude that D� is upper-semicontinuous. tu

Proof of Proposition 8.

1. Consider first the union of two increasing and
upper-semicontinuous operators,  ¼  1 [  2. We
have, for X, Y 2 F such that X � Y ,  ðXÞ ¼
 1ðXÞ [  2ðXÞ �  1ðY Þ [  2ðY Þ ¼  ðY Þ. Thus,  
is increasing. To prove the upper-semicontinuity of
 , we use Proposition 5. Consider, then, a sequence
fXngn2IN 2 F such thatXn # X. We have, for every
n,Xn 
 Xnþ1 
 X. Therefore, since is increasing,
 ðXnÞ 
  ðXnþ1Þ 
  ðXÞ. Thus, the sequence
f ðXnÞg is decreasing. In particular, we have
 ðXnÞ 
  ðXÞ, for every n 2 IN. Thus,

\
n2IN

 ðXnÞ 
  ðXÞ: ð36Þ

Consider now x 2
T
n  ðXnÞ. That is, x 2

T
n

ð 1ðXnÞ [  2ðXnÞÞ. Therefore, x 2  1ðXnÞ [  2

ðXnÞ, for every n. We distinguish two cases:
Case 1. x 2  1ðXnÞ (or  2ðXnÞ) only for a finite

number of integers n. Since the problem is
symmetric in  1 and  2, we can assume, without
loss of generality, that x 2  1ðXnÞ only for a finite
number of integers n. That is, there exists an
integer N0 such that for every n � N0, x 62  1ðXnÞ.
Thus, we have for every n � N0, x 2  2ðXnÞ.
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Therefore, x 2
T
n�N0

 2ðXnÞ ¼
T
n2IN  2ðXnÞ ¼  2

ðXÞ, where the first equality follows from the fact
that  2 is increasing and the second equality
follows from the upper-semicontinuity of  2.
Thus, x 2  2ðXÞ [  1ðXÞ ¼  ðXÞ.

Case 2. x 2  1ðXnÞ and  2ðXnÞ for an infinite
(and countable) number of integers n. That is, for
every N0, we have x 2  1ðXnÞ \  2ðXnÞ, for some
n � N0. Due to the monotonicity property of 1 and
 2, we also have that x 2  1ðXnÞ \  2ðXnÞ, for
every n � N0. Hence, x 2  1ðXnÞ \  2ðXnÞ, for
every n 2 IN. Thus, x 2

T
nð 1ðXnÞ \  2ðXnÞÞ ¼

ð
T
n  1ðXnÞÞ

T
ð
T
n  2ðXnÞÞ ¼  1ðXÞ \  2ðXÞ. I n

particular, x 2  1ðXÞ [  2ðXÞ ¼  ðXÞ. Finally, we
have

 ðXÞ 

\
n2IN

 ðXnÞ: ð37Þ

Equations (36) and (37) and the increasing
property of  are equivalent to  ðXnÞ #  ðXÞ.
Therefore,  is upper-semicontinuous.

2. Consider now the intersection of two increasing
and upper-semicontinuous operators,  0 ¼  1

\ 2. We have, for X, Y 2 F such that X � Y ,
 0ðXÞ ¼  1ðXÞ \  2ðXÞ �  1ðY Þ \  2ðY Þ ¼  0ðY Þ.
Thus,  0 is increasing. Consider now a sequence
fXngn2IN 2 F such thatXn # X. Since  0 is increas-
ing, the sequence f 0ðXnÞgn2IN is decreasing. We
have

x 2
\
n

 0ðXnÞ()x 2
\
n

ð 1ðXnÞ \  2ðXnÞÞ

()x 2
�\

n

 1ðXnÞ
�
\
�\

n

 2ðXnÞ
�

()x 2  1ðXÞ \  2ðXÞ()x 2  0ðXÞ:

Therefore,  0ðXnÞ #  0ðXÞ. Therefore,  0 is
upper-semicontinuous tu

Proof of Proposition 9. Let A be the set of the n
r

� �
subsets of

B containing exactly r points. We denote by ker the
kernel of the adaptive median filter. For every � 2 Ker,
there exists � 2 A such that � � �. Therefore, by property
kÞ in Appendix A, E� � E�. Thus,

S
�2Ker E� �

S
�2A E�.

Conversely, we have A � Ker. Therefore,
S
�2A E� �S

�2Ker E�. Therefore,
S
�2A E� ¼

S
�2Ker E�. We claim that

the basis of the kernel of the adaptive median filter is A.
Otherwise, there exists � 2 Ker such that � < �, for every
� 2 A. In particular, j�j < r. This contradicts the fact that
� 2 ker and establishes A as the basis of the adaptive
median operator. tu

APPENDIX D

PROOF OF THEOREMS

Proof of Theorem 1. Assume that  ðXÞ ¼
S
�2Kerð Þ E�ðXÞ,

for every X 2 PðEÞ.  is then increasing as union of
increasing operators. Assume now that  is increasing
and consider X 2 PðEÞ. Let z 2  ðXÞ. Let us also
consider the mapping �X from E into PðEÞ given by
(34). �X 2 kerð Þ. Therefore, �XðzÞ ¼ X. Hence, by

definition of the SV erosion, z 2 E�X ðXÞ �
S
�2Kerð Þ

E�ðXÞ. Therefore,

 ðXÞ �
[

�2Kerð Þ
E�ðXÞ: ð38Þ

Let us now consider z 2
S
�2Kerð Þ E�ðXÞ. Therefore, there

exists � 2 Kerð Þ such that z 2 E�ðXÞ. From the defini-
tion of the SV erosion, this is equivalent to the existence
of � 2 Kerð Þ such that �ðzÞ � X. Since, � 2 Kerð Þ and
 is increasing, we observe that z 2  ð�ðzÞÞ �  ðXÞ.
Finally, we have shown that

[
�2Kerð Þ

E�ðXÞ �  ðXÞ: ð39Þ

From (38) and (39), we obtain the desired kernel
representation of the increasing operator  . Since the
class of increasing operators is closed under duality, the
representation of an increasing operator as an intersec-
tion of SV dilations by the transposed mappings in the
kernel of its dual is easily obtained by duality from its
representation as a union of SV erosions by mappings in
the kernel. tu

Proof of Theorem 2. Let  2 O0 be an increasing and upper-
semicontinuous operator. From Proposition 4, the kernel
of  is a nonempty partially ordered set. Consider a
linearly ordered subset L of Kerð Þ. For every z 2 E,
Lz ¼ f�ðzÞ : � 2 Lg is a linearly ordered subset of F .
From Lemma 1, there exists a sequence f�nðzÞ : n 2
IN; �n 2 Lg such that �nðzÞ #

T
n2IN �nðzÞ ¼

T
Lz. From the

fact that  is an increasing upper-semicontinuous
operator, we have

 ð�nðzÞÞ #  ð
\
LzÞ ðz 2 EÞ: ð40Þ

By the uniqueness of limit points in Hausdorff spaces,
we obtain

 ð
\
LzÞ ¼

\
n2IN

 ð�nðzÞÞ ðz 2 EÞ: ð41Þ

From the above equation and using the fact that �n 2
Kerð Þ, 8n 2 IN, we observe that the operator from E
into F defined by

ð^LÞðzÞ ¼
\
Lz ðz 2 EÞ ð42Þ

is an element of Kerð Þ, where ^L is the infimum of the
linearly ordered subset L. Finally, we have showed that
every linearly ordered subset of Kerð Þ has an infimum
in Kerð Þ. Using Zorn’s Lemma [32], we conclude that
the kernel of  has a minimal element. tu

Proof of Theorem 3. Let  2 O0 be an increasing upper-
semicontinuous operator, and let �A 2 Kerð Þ. Then, there
exists �B 2 Kerð Þ such that �B � �A; otherwise, �A is a
minimal element. Therefore, for every �A 2 Kerð Þ, we
can construct a decreasing family L of Kerð Þ containing
�A. From the fact that L is a linearly ordered subset of
Kerð Þ and from Hausdorff’s Maximality Principle [37],
there exists a maximal linearly ordered subset M of
Kerð Þ containing L. Let �MðzÞ ¼ ð^MÞðzÞ ¼

T
�2M �ðzÞ,

for every z 2 E. From the proof of Theorem 2,
�M 2 Kerð Þ. We have �M �

T
L � �A. Therefore, �M is a
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minimal element of Kerð Þ; otherwise, there exists �Y 2
Kerð Þ such that �Y � �M ; the subsetM[ f�Y g is then a

linearly ordered subset of Kerð Þ containing M; this

contradicts the maximality ofM. Finally, we have shown

that �M is a minimal element and �M � �A. This completes

the proof. tu
Proof of Theorem 4. Let  2 O0 be an increasing and upper-

semicontinuous operator. From the fact that B � Kerð Þ,
we have

S
�M2B E�M ðXÞ �

S
�2Kerð Þ E�ðXÞ, for every

X 2 F . From Theorem 3, every � 2 Kerð Þ contains

a minimal element �M 2 B . Therefore, E� � E�M . So,S
�2Kerð Þ E�ðXÞ �

S
�M2B E�M ðXÞ, for every X 2 F . The

result then follows by antisymmetry of the partial

order � . tu
Proof of Theorem 5. Let  2 O. We know that any subset S

of a partially ordered set P can be properly covered by

the union of the closed intervals of P contained in S (see

[2, Lemma 2.1] for a proof). Since Kerð Þ is a partially

ordered set, and the mapping segment ½�1; �2� is a closed

interval, we have

Kerð Þ ¼
[
f½�1; �2� : ½�1; �2� � Kerð Þg: ð43Þ

On the other hand, we observe that

Kerð:� ð�1; �2ÞÞ ¼ ½�1; �2�: ð44Þ

Combining (43) and (44), we obtain

Kerð Þ ¼
[
fKerð:� ð�1; �2ÞÞ : ½�1; �2� � Kerð Þg: ð45Þ

From Proposition 2, the mapping  7!Kerð Þ is an
isomorphism. So, by applying the corresponding inverse
mapping to both sides of (45), we obtain the desired
result. tu
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