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Abstract—We formulate the problem of microcalcification
detection in digital mammograms as a statistical change de-
tection problem in the local properties of the image. First,
we represent mammograms by two-dimensional autoregressive
moving-average (2D ARMA) fields; thus uniquely characterizing
the images by their reduced dimensionality 2D ARMA feature
vectors. Texture changes in mammograms are then modeled as
an additive change in the mean parameter of the PDF associated
with the 2D ARMA feature vector sequence that describes the
image. A generalized likelihood ratio test is used to detect theses
changes and estimate the exact time (or space) where they occur.
Our simulation results on the Digital Database for Screening
Mammography hosted by the University of South Florida show
that the decision functions of cancerous images present high
peaks at the microcalcification locations, whereas they exhibit
a uniform behavior for healthy mammograms. The proposed
algorithm achieves a sensitivity and specificity of 96.9% and
97.8%, respectively.

Index Terms—Breast microcalcification, mammogram, 2D-
ARMA model, change detection algorithm.

I. INTRODUCTION

The rapid expansion in number and volume of digital mam-
mograms, the increasing demand for fast access to relevant
medical data, the need for interpretation, and retrieval of
medical information has become of paramount importance
[1]. Mammography is the current standard for breast cancer
diagnosis. Women 40 years of age or older are recommended
to undergo a screening mammogram to check for breast
malignancies every 6 months. Screening mammograms usually
involve two x-rays of each breast. This process generates a
huge amount of data that needs to be processed, interpreted
and saved.

The presence of microcalcifications (tiny deposits of cal-
cium) in the breast is an important sign for the detection of
early breast carcinoma. Accurate and uniform evaluation of the
enormous number of mammograms generated in widespread
screening is a difficult task. 10-30% of breast carcinomas
are missed by trained radiologists [2]. Mammograms are low
contrast images, and the breast malignancies present a great
diversity in shape, size and location, and low distinguishability
from the surrounding healthy tissue.

In the last two decades, various computer-aided (CAD)
systems have been proposed to help bring suspicious areas
on the mammogram to the radiologist’s attention. Many ap-
proaches were considered including denoising [3], segmenta-

tion [4], filtering [5], machine learning [6], [7] and artificial
intelligence [5], mathematical morphology [8], time-frequency
analysis and multiresolution techniques, and neural networks
[2]. Despite their technical differences, these approaches share
a common outline: they are all deterministic. They usually
assume a small region of interest as a subject of recognition.
Hence, their performance is contingent upon the natural vari-
ability of healthy and cancerous mammography images.

In contrast to deterministic methods, statistical methods
take into account the noise in the digitized mammogram
and the heterogeneity of its characteristics by considering
an underlying probability distribution of the image features.
It is, therefore, surprising that very few researchers have
pursued this direction. Statistical analysis of mammograms
was mainly considered in the context of textural information
[9], [10]. In [9], the third and fourth order statistical moments,
skewness and kurtosis, were estimated from the bandpass
filtered mammogram. A region with high positive skewness
and kurtosis is marked as a region of interest. In [10], a
statistical model of the mammographic image, termed the “log-
likelihood image”, is generated from the original mammogram
image. However, the method does not include any decision
making, and the log-likelihood image has the same resolution
of the original mammogram.

The challenge in breast carcinoma localization is that the de-
tection algorithm must be able to handle all types of microcal-
cifications. Therefore, it is necessary to formulate the detection
problem beyond the use of empirical observations about the
type, shape, size or location of microcalcifications, which may
or may not hold in all cases. In order to address these chal-
lenges, we pose the microcalcification detection problem in
the context of statistical sequential representation and analysis
of mammograms. A mammogram image is considered to be a
realization of a stochastic process. We use statistical analysis to
detect parameter changes of the stochastic process, which will
indicate the presence of suspicious areas in the breast. In our
approach, we achieve a decision-making CAD system through
use of dimensionality reduction and sufficient statistics. We
first show that mammograms can be accurately modeled as 2D
autoregressive moving-average (ARMA) fields, and thus each
image can be solely represented by its 2D ARMA coefficients.

In this paper, we consider a change detection framework
based on additive modeling. Specifically, we detect changes
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Fig. 1. 2D ARMA Modeling: (a) Original (healthy) mammogram; (b) 2D ARMA[2,2,2,2] model of (a); (c) 2D ARMA[3,3,3,3] model of (a); (d) 2D
ARMA[4,4,4,4] model of (a); (e) 2D ARMA[6,6,6,6] model of (a).
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Fig. 2. Change detection algorithm (a) A normal (healthy) mammogram; (b) 2D ARMA[2,2,2,2] model of (a); (c) Plot of the average gray level of the
16×16 subimages in (a); (d) Plot of the decision function gk for the image in (a); (e) Original cancerous mammogram; (f) 2D ARMA[2,2,2,2] representation
of (e); (g) Plot of the average gray level of the 16× 16 subimages in (a); (h) Plot of the decision function gk for the image in (e). Observe that the plot of
the gray-level values of the subimages does not discriminate between healthy and cancerous mammograms, whereas the proposed detection algorithm clearly
pinpoints the location of microcalcifications in cancerous mammograms.

of the mean parameter of the PDF associated with the 2D
ARMA feature vector sequence. The sufficient statistic used
is based on the generalized likelihood ratio. Thus, the main
steps used for detecting microcalcifications in mammograms
are the 2D ARMA dimensionality reduction of the original
image followed by change detection on the resulting feature
vectors. In particular, no a priori assumptions are made about
the specific nature of the microcalcifications (e.g., circular,
smooth, etc.).

This paper is organized as follows. Section II presents
the 2D ARMA field model. We show that the estimated
2D ARMA coefficients provide an accurate representation
of the original image while reducing its dimensionality. The
statistical carcinoma detection approach is discussed in Section
III. Section IV shows the simulation results on mammograms
from the digital database for screening mammography (DDSM
at the University of South Florida). Concluding remarks and
future work are presented in Section V.

II. 2D-ARMA REPRESENTATION

We represent the breast image as a 2D random field
{x[n,m], (n,m) ∈ Z2} [11]. We define a total order on the
discrete lattice as follows: (i, j) ≤ (s, t)⇐⇒ i ≤ s and j ≤ t

[11]. The 2D ARMA[p1, p2, q1, q2] model is defined for the
N1 × N2 image I = {x[n,m] : 0 ≤ n ≤ N1 − 1, 0 ≤ m ≤
N2 − 1} by the following difference equation

x[n,m] +

p1∑
i=0

p2∑
j=0

(i,j) 6=(0,0)

aijx[n− i,m− j] =

q1∑
i=0

q2∑
j=0

bijw[n− i,m− j], (1)

where {w[n,m]} is a stationary white noise field with variance
σ2, and the coefficients {aij}, {bij} are the parameters of the
model.

A Two-stage Yule-Walker Least Squares parameter estima-
tion method was proposed in [11]. First, the noise sequence
{w[n,m]} is assumed to be known. The ARMA parameter
estimation problem is then reduced to a simple input-output
system identification problem, which is solved by a least-
squares (LS) method. The final estimate is then obtained by
estimating the noise, using a truncated autoregressive (AR)
model, and plugging it back in the Least Squares solution
[11].



Fig. 3. The decision function gk for four mammograms: cancerous in red/magenta and normal in blue/green. The value of the treshold is determined as the
mean of the highest normal peak and the highest cancerous peak.
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Fig. 4. Change detection algorithm: (a) Radiologist marked area of interest of the cancerous region; (b) Plot of the decision function of the mammogram.
The arrows indicate the peaks above the threshold; (c) Marked 16× 16 clusters that correspond to the detected peaks.

In practice the ARMA parameters are estimated using a
window of size N × N . The choice of the window size
presents an inherent trade-off between the accuracy of the
ARMA representation and the reliability of the classifica-
tion. An image of size L × C is therefore represented by
s = LC

N2 (p1p2 + q1q2 + 4) ARMA feature vectors. Let
Yk = [aij , bkl]; 0 ≤ i ≤ p1, 0 ≤ j ≤ p2, 0 ≤ k ≤ q1,
0 ≤ l ≤ q2 be the ARMA feature vector of the k-th block. The
mammogram image is then compared to the (LC)2 raw pixels
of the unprocessed image. The 2D ARMA model presents a
compressed representation of the image, which will lead to an
efficient implementation of the CAD system. For instance, for
L = C = 256, N = 16, p1 = p2 = q1 = q2 = 1, the 2D
ARMA model represents a dimensionality reduction of more
than 97% compared to the original image. Figures 2b and 2f
show the 2D ARMA[2, 2, 2, 2] models of a healthy and can-
ceros mammograms respectively Section IV subsection IV-A
discuss in detail the choice of the model degree parameters
p1, p2, q1, q2.

The problem of tumor detection becomes one of detecting
changes in the parameters of the probability density function
(PDF) associated with the ARMA vector random process.

III. CHANGE DETECTION ALGORITHM

The 2D ARMA feature vectors are assumed to form an
i.i.d. (independent and identically distributed) sequence of r-
dimensional random vectors {Yk}k≥1, with Gaussian distribu-
tion N(µ, σ) having PDF:

pµ,σ(Yk) =
1√

(2π)r(det(Σ))
e−(1/2)(Yk−µ)T Σ−1(Yk−µ), (2)

Observe that the ARMA feature vectors are assumed to be
independent. However the components of each ARMA feature
vector are correlated with covariance matrix Σ. The indepen-
dence of the ARMA feature vectors reflects an independence
assumption between pixels in different NxN sub-blocks of
an image. The tumor detection is modeled as a change in
the vector parameter θ = µ of the PDF characterizing the
feature vector random process. Let the parameter θ = θ0 be
the value before the change, and θ = θ1 the value after the
change. In general, we have minimal or no information about
the parameter θ1 after change. Let us begin by discussing the
scenario where there is a known upper bound for θ0 and a
known lower bound for θ1. In this case, the change detection
problem is equivalent to the following:

H0 = {θ : ||θ − θ0||2Σ ≤ a2, k < t0}
H1 = {θ : ||θ − θ0||2Σ ≥ b2, k ≥ t0}

(3)

where ||θ−θ0||2Σ = (θ−θ0)TΣ−1(θ−θ0), t0 is the true change
time and a < b. The case of interest where θ0 is assumed to
be known, and θ1 unknown can be obtained as a limit case
of the solution to the above problem, as we shall see in the
sequel of the paper.

The solution to the detection problem formulated in 3 can
be obtained by deriving the generalized likelihood ratio (GLR)
test [12], where the unknown parameters are replaced by
their maximum likelihood estimates. Thus, the generalized
likelihood ratio for the sequence {Y1, · · · , Yk} is

Skj = ln
sup||θ−θ0||Σ≥b pθ(Yj , · · · , Yk)

sup||θ−θ0||Σ≤a pθ(Yj , · · · , Yk)
(4)



where pθ is the corresponding parameterized probability den-
sity function. The sequential GLR algorithm is then given by

ta = min{k ≥ 1 : gk ≥ h}
gk = max1≤j≤k S

k
j

(5)

where k is the discrete time index, ta is the alarm (detection)
event, gk is the test statistic, and h is a threshold.

Given the i.i.d. Gaussian assumption, Skj can be written as

Skj = ln
sup||θ−θ0||Σ≥b e

−(1/2)
∑k

i=j(Yi−θ)T Σ−1(Yi−θ)

sup||θ−θ0||Σ≥a e
−(1/2)

∑k
i=j(Yi−θ)T Σ−1(Yi−θ)

(6)

It can be shown that Skj can be rewritten as [12]

2

k − j + 1
Skj =


−(χkj − b)2, χkj < a;
−(χkj − b)2 + (χkj − a)2, a ≤ χkj ≤ b;
+(χkj − a)2, χkj > b.

(7)
where

χkj = [(Ȳ kj − θ0)TΣ−1(Ȳ kj − θ0)]1/2

Ȳ kj = 1
k−j+1

∑k
i=j Yi

(8)

Observe that, for the current problem formulation, the data that
are needed in Eq. (7) are the feature vectors Yi, the covariance
Σ, and the mean before the change θ0.

In the more realistic case where the parameter before the
change θ0 is assumed to be known but the parameter after
the change is assumed to be completely unknown, the change
detection problem statement is as follows

H0 = {θ : θ = θ0, k < t0}
H1 = {θ : θ 6= θ0, k ≥ t0}.

(9)

Hence, the case where nothing is known about θ1 can be
considered the limit of the previous case when a = b = 0.
Therefore, the GLR algorithm in (5) becomes:

ta = min{k ≥ 1 : gk ≥ h}
gk = max1≤j≤k{k−j+1

2 (χkj )2} (10)

where (χkj ) is defined in (8).
In the above study, θ0 is assumed to be known. In practice,

θ0 can be estimated using a number M of feature vectors
at the beginning of each mammogram. The covariance Σ is
estimated using the same feature vectors.

IV. SIMULATION RESULTS

A. 2D ARMA Model

We test the proposed algorithm using the University of
South Florida digital mammography library available on-
line at: http://marathon.csee.usf.edu. The Digital Database
for Screening Mammography (DDSM) is a resource for use
by the mammographic image analysis research community.
Each mammogram image is 256 × 256 pixels. The ARMA
parameters were estimated using a window of size 16 × 16.
Hence, each image is represented by 256 ARMA feature
vectors {Yk}. We find the optimal ARMA degree model (p1,
p2, q1, q2) as the degree that minimizes the average square

error between the original image and the predicted ARMA
model. An exhaustive off-line search between the degrees
[1, 1, 1, 1] and [6, 6, 6, 6] reveals that ARMA[2, 2, 2, 2] leads
to the smallest average square error for most mammogram
images in the DDSM library. Figure 1 shows 2D ARMA
models of an original healthy mammogram.

B. Change Detection Algorithm

We can estimate the value of θ0 (parameter before the
change) as the sample mean of the first 10 feature vectors
{Yk}. An other approach is to estimate the value of θ0 from the
entire mammogram image. This method yields an estimation
error not higher than the relative size of the microcalcifications
in the image, i.e. about 1%. For both methods, estimation
of the parameter θ0 yielded similar values. The detection
algorithm is based on the value of the threshold h, that was
chosen experimentally. Figure 3 displays the decision function
gk of four sample mammograms including two cancerous and
two normal. The cancerous images exhibit peaks that are
twice as high, on average, than healthy images. Therefore,
we found that a value of h equal to the mean of the highest
cancerous peak and the highest normal peak achieves an
optimal balance between false and missed alarms. Figure 2
shows a plot of the average grey level of the 16x16 sub-images
of healthy and cancerous mammograms. It is seen that a simple
plot of the grey level values of the mammograms does not
discriminate between healthy and cancerous mammograms.
However the proposed change detection algorithm leads to a
decision function that is uniform for healthy mammograms and
spiky for cancerous mammograms, where the spikes indicate
the position of microcalcifications.

By lexicographical ordering of the image and its feature
vectors, we are able to not only discriminate between nor-
mal and cancerous mammograms but also pinpoint the exact
location of microcalcifications in the cancerous image. The
peaks of the decision function can be easily traced back to the
suspicious areas. Figure 4 shows a radiologist’s marked area of
suspicion, which is successfully detected as cancerous by our
algorithm. Table I displays the performance of our algorithm
based on 524 normal and cancerous digital mammograms
from the DDSM library. Based on these statistically significant
analysis, the results of the sensitivity and specificity of the
proposed algorithm are 96.9% and 97.8%, respectively

V. CONCLUSION

In this paper, we introduced a new approach to the prob-
lem of malignancy detection in digital mammograms using
statistical sequential analysis theory. The statistical approach
inherently takes into account the noise in the image (from
the imaging device and the digitization) and the great variety
of healthy and cancerous mammograms by considering an
underlying probability distribution of the image characteristics.
For increased efficiency, the dimensionality of the original
images is reduced using 2D-ARMA modeling, which is shown
to accurately represent mammograms. The change detection
algorithm is applied to the low-dimensional 2D ARMA feature



TABLE I
PERFORMANCE OF THE CHANGE DETECTION ALGORITHM IN 524 NORMAL AND CANCEROUS MAMMOGRAMS

True False
Positive 96% 4%
Negative 97% 3%

vectors compared to the pixels of the raw image. Tumor
detection is defined as changes in the mean parameter of the
random process describing the 2D ARMA feature vectors. No
a priori assumptions were made about the nature, shape, size,
or location of the microcalcifications. Such assumptions would
limit the scope of a detection algorithm given the variability
of microcalcifications and healthy tissues in mammograms.

In our ongoing and future work, we will investigate the
effect of non-additive changes in the ARMA feature vectors
on the performance of the proposed CAD system for mam-
mograms and ultrasound breast images.
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