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T
he cell maintains its function 
via an elaborate network of 
interconnecting positive and 
negative feedback loops of 
genes and proteins that send 

different signals to a large number of 
pathways and molecules. These struc-
tures are referred to as gene regulatory 
networks, and their dynamics are used to 
understand the mechanisms and charac-
teristics of biological cells as well as to 
search for possible remedies for various 
diseases such as cancer. Current research 
in cancer biology indicates that global, 
systemic molecular interactions are pivot-
al in understanding cellular dynamics and 
designing intervention strategies to com-
bat genetic disease. In particular, most 
genetic diseases, such as cancer, are not 
caused by a single gene but rather by the 
interaction of multiple genes. Global, 
holistic approaches to the study of biolog-
ical systems reveal the dynamic nature of 
cellular networks, which provide an 
important framework for drug discovery 
and design. The massive amounts of 
information that “omics” (e.g., genomics, 
proteomics, metabolomics) high-
throughput sequencing technology gen-
erate mark a great leap forward in 
computational methods for analyzing and 
interpreting biological data. Currently, 
the major challenges are shifting toward 
optimal intervention strategies designed 
to affect the time evolution of gene activi-
ty in a desirable manner. One of the main 
aims of modern biological research is 
focused on intervening in biological cell 
dynamics to alter the gene regulatory net-
work and avoid undesirable cellular 
states, e.g., metastasis. 

In this column, we review recent 
results in gene regulatory network mod-
eling and discuss various control mecha-
nisms used to modify their cellular 
dynamics. We subsequently describe a 
new intervention strategy based on opti-
mal perturbations, which force the net-
work to converge to a desired steady-state 
distribution of gene regulation. The bio-
logical argument in support of the pro-
posed framework is that steady-state 
distributions of gene regulatory networks 
determine the phenotype or the state 
of the cell development (for example, 
cell proliferation and apoptosis) [1]. 

Specifically, we investigate the existence, 
optimality, and robustness of perturba-
tions that alter the dynamics of the net-
work, leading to a desirable steady-state 
distribution. We subsequently present 
simulation results on the human mela-
noma gene regulatory network. Finally, 
we present a discussion of future trends 
and directions in control of gene regula-
tory networks. The ultimate goal is to 
develop engineering methods designed to 
intervene in the development of living 
organisms and transition cells from 
malignant states into benign forms. 

GENE REGULATORY 
NETWORK MODELS
Network models of gene interactions 
serve the dual purpose of identifying 

organizational and dynamic principles as 
well as providing an exploratory frame-
work for the development of computa-
tional tools to study biological systems. In 
particular, understanding the dynamic 
behavior of gene regulatory networks is 
essential to advance our knowledge of dis-
ease, develop modern therapeutic meth-
ods, and identify targets in the cell needed 
to reach a desired goal. Therefore, major 
work has focused on building models of 
gene regulatory networks by inferring 
functional relationships among genes 
from gene expression profiles. 

Computational models and methods 
for genetic network inference should 
account for uncertainties inherent to 
biological systems: stochastic fluctua-
tions of molecular processes, incomplete 
knowledge, and the noisy nature of mea-
surements. Subsequently, probabilistic 
models have been the most successful in 
elucidating the nature of gene interac-
tions within the cell [2]. In particular, 
Markov chain models have been shown 
to accurately mimic the dynamic behav-
ior of gene networks [2]. The Markov 
chain model encompasses several net-
work class models, including the most 
widely adopted probabilistic Boolean 
networks (PBNs) and dynamic Bayesian 
networks (DBNs) [3]. The PBN is a sto-
chastic extension of the standard 
Boolean network that incorporates prob-
abilistic rule-based dependencies 
between its nodes, the genes. Bayesian 
networks (BNs) are directed acyclic 
graphs that represent dependencies 
between variables in a probabilistic 
model. DBNs relax the acyclicity con-
straint by taking into account the evolu-
tion of expression data over time. DBNs 
are able to capture several other often-
used modeling frameworks, such as 
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 hidden Markov models (and its variants) 
and Kalman filter models, as its special 
cases. The two models are related, as 
Lähdesmäkia et al. [3] showed, PBNs and 
a certain subclass of DBNs can represent 
the same joint probability distribution 
over their common variables. Therefore, 
an advantage of the proposed framework 
for intervention within Markovian gene 
regulatory networks is that it can be 
applied to a large class of network mod-
els, including PBNs and DBNs. 

INTERVENTION STRATEGIES
The ultimate objective of gene regulatory 
network modeling and analysis is to use 
the network to design effective interven-
tion strategies for affecting its dynamics 
in such a way as to avoid undesirable cel-
lular states or phenotypes. As futuristic 
gene therapeutic interventions, various 
control strategies have been proposed to 
alter gene interactions in a desirable way. 
Even though the developed interventions 
remain, so far, as sheer theoretical investi-
gations, such alterations may be biologi-
cally possible by the introduction of a 
drug or exposure to certain radiations 
that alter the extant behavior of the cell. 
In this context, the synergy between theo-
retical investigation and experimental val-
idation is essential to establish an effective 
plan that will ultimately lead to the devel-
opment of novel treatment and clinical 
decision making in genetic research. 

Current interventions within gene 
regulatory networks can be grouped into 
three main approaches: 1) introduce 
external controls, which specify the inter-
ventions on control genes by optimizing a 
specific cost function [4]; 2) develop heu-
ristic control policies based on certain 
dynamic properties of the network 
[5], [6]; and 3) alter the state transition 
structure of the network and, conse-
quently, its long-run behavior. This last 
type of intervention is also referred to as 
structural intervention [1], [7], [5]. 

The first strategy determines a policy, 
i.e., a rule at each decision time point, 
which controls certain genes in the net-
work by minimizing a given cost func-
tion. Two frameworks are considered: 
finite and infinite horizon controls [4]. 
Both control policies can be found as the 

solutions to the optimal stochastic con-
trol problems associated with their corre-
sponding Bellman optimality equations. 
The external control requires knowledge 
of the target genes to be used as control 
variables as well as the cost function to be 
minimized. Moreover, the optimal policy 
is obtained through an iterative proce-
dure that is computationally expensive 
even for small-size networks. In addition 
to these drawbacks, the finite-horizon 
control may not change the long-run 
behavior of the network as it is applied 
over a finite-time window. 

To alleviate the computational burden 
of the optimal external control, reduction 
techniques have been proposed that 
delete either genes or states [6]. However, 
deletion of network components reduces 
its size at the expense of information loss. 
Alternative solutions were found in vari-
ous heuristic interventions, which also 
use external variables to specify interven-
tions on control genes [5], [6]. In [6], a 
greedy stationary control policy using 
mean first passage times (MFPTs) of the 
Markov chain was proposed. The MFPT 
control policy is based on the intuition 
that the time to reach desirable states or 
leave undesirable states should be 
increased. Although the MFPT is closely 
related to the steady-state distribution, 
the MFPT control policy does not directly 
rely on the shift of the steady-state distri-
bution. Heuristic control policies, which 
use the shift of stationary mass as crite-
rion, have been proposed in [5]. 

Whereas the optimal external control 
and its approximations (heuristics) con-
sist of policies that (recursively) alter con-
trol genes to optimize certain objective 
functions, structural intervention pro-
poses to alter the dynamics governing the 
network to shift its steady-state mass to 
favorable cellular states. The motivation 
is that these states may represent differ-
ent phenotypes, or cellular functional 
states, such as quiescence, and one would 
want to decrease the probability that the 
network will end up in an undesirable set 
of states [1]. Shmulevich et al. [1] used 
genetic algorithms to alter the steady-
state probabilities of certain states. An 
analytical study of steady-state distribu-
tions for structurally perturbed PBNs was 

presented in [7]. The analysis, however, 
focuses on rank-one perturbations, and 
the extension of the method to higher-
rank perturbations is iterative and com-
putationally very expensive. 

A general solution to the problem of 
shifting the steady-state mass of gene reg-
ulatory networks, modeled as Markov 
chains, has been recently advanced in [8]. 
The proposed framework, which can be 
viewed as a generalization of the work in 
[7], formulates optimal intervention in 
gene regulation as a solution to an inverse 
perturbation problem and demonstrates 
that the solution, if it exists, is unique, 
globally optimum, and can be computed 
efficiently using standard convex optimi-
zation methods. The inverse perturbation 
problem addresses the following problem: 
“Given a Markov chain characterized by 
its probability transition matrix P0 and 
given a desired steady-state distribution 
pd, find a (optimal) perturbation matrix C 
that forces the chain P01 C to converge 
to the desired distribution pd  as its 
unique steady-state distribution.” Observe 
that, in contrast to perturbation theory, 
which finds the new steady-state distribu-
tion given a known perturbation, the 
inverse perturbation framework aims at 
finding a perturbation that forces the net-
work to transition to a known desired 
steady-state mass. The analytical solution 
to the optimal inverse problem provides a 
minimally perturbed Markov chain char-
acterized by a steady-state distribution 
corresponding to the desired probability 
mass. The perturbation can be thought of 
as reshaping the attractor landscape to 
have a unique desired stationary distribu-
tion, with the entire state-space as its 
basin of attraction. An illustration is pre-
sented in Figure 1. 

OPTIMAL PERTURBATION
We consider a gene regulatory network 
with m genes, where the expression level 
of each gene is quantized to l values. The 
dynamic behavior of this network can be 
represented as a finite-state Markov chain 
described by a probability transition 
matrix P0 of size n5 lm. A row probabili-
ty vector mt5 1m1, c, mn 2  is called a 
stationary distribution, or a steady-state 
distribution, for P0 if m

tP05m
t. Because 
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P0 is stochastic (i.e., its rows sum up to 
one), the existence of stationary distribu-
tions is guaranteed. 

Let p0 denote the undesirable steady-
state distribution of P0. We wish to alter 
this distribution by linearly perturbing 
the probability transition matrix P0. 
Specifically, we consider the perturbed 
stochastic matrix P5 P01 C, where C is 
a zero row-sum perturbation matrix (the 
zero row-sum condition is necessary to 
ensure that the perturbed matrix P is a 
proper probability matrix). Let us denote 
by pd the desired stationary distribution. 
We seek to find a zero row-sum perturba-
tion matrix C such that the perturbed 
matrix P admits pd  as a steady-state 
 distribution. 

FEASIBILITY PROBLEM
The set of perturbation matrices C, which 
force the network to converge towards pd 
as its unique stationary distribution, satis-
fy the following constraints: 

 1 i 2  pd
t 5pd

t 1P01 C 2 ,
 1 ii 2  C15 0, 

 1 iii 2  P01 C $ 0,

 1 iv 2  SLEM 1P01 C 2 , 1,  (1)

where constraint (iii) denotes an element-
wise inequality. SLEM stands for second 
largest eigenvalue modulus, where the 
eigenvalues are counted taking into 
account their multiplicity. In particular, 
(iv) implies that eigenvalue 1 is simple. 
Along with the positivity of the desired 
distribution, constraint (iv) is equivalent 
to ergodicity. Constraints (ii) and (iii) 

ensure that the perturbed matrix P is a 
proper probability transition matrix. Let 
f denote the feasible set of perturbation 
matrices, i.e., 

 f5 5C [ R n3n : pd
t

 5pd
t 1P01 C 2 , C15 0,

  P01 C $ 0, SLEM 1P01 C 2 , 16.
 (2)

The feasible set  f 2 0  because 
11pd

t 2 P0 2 [ f. In fact, the second 
largest eigenvalue modulus (SLEM)  
11pd

t 2 5 0 , 1, and it is easy to check 
that 11pd

t 2 P0 2  satisfies conditions (i)–
(iii). Therefore, the feasible set is not 
empty, and we can find at least one feasi-
ble perturbation matrix, which forces the 
network to converge toward a desired 
steady-state distribution. 

OPTIMAL PERTURBATION
To answer the question, “Which 
perturbation(s) in f is optimal?” we need 
to adopt optimality criteria, where an 
objective function is optimized subject to 
the constraints in (1). We propose opti-
mality criteria, which may clinically 
translate into minimizing potential 
adverse effects caused by the intervention 
strategy. Specifically, we focus on minimi-
zation of the change in the structure of 
the network and maximization of the 
convergence rate toward the steady-state 
distribution. We will therefore investigate 
the following criteria for optimal pertur-
bation control: 

 ■ Reduce the overall level of change 
before and after intervention as mea-
sured by the energy of the network 
dynamics, i.e., minimize the energy of 
change between the original and per-
turbed transition matrices as charac-
terized by the Frobenius-norm of the 
perturbation matrix. 

 ■ Increase the rate of convergence of 
the network to the desired steady-state 
distribution, thus minimizing the 
time needed to reach the desired 
steady-state distribution.

MINIMAL-ENERGY PERTURBATION
The minimal-energy perturbation matrix 
is defined as the feasible perturbation 
with minimum Frobenius-norm. 

Analytically, the minimal-energy pertur-
bation is obtained as the solution of the 
following optimization problem: 

 Minimize ||C ||F subject to C [ f, (3)

where ||.||F denotes the Frobenius-norm 
given by ||C||F

2 5 gn
i51 g

n
j51cij

2. Because 
the Frobenius-norm is strictly convex, the 
optimization problem in (3) has, at most, 
one minimizer. In general, the optimal 
solution belongs to the closure of the set, 
f5 d5 5C [ Rn3n :pd

t 5pd
t 1P01 C 2 , 

C15 0, P01 C $ 06. That is, d is the 
set of perturbation matrices satisfying 
conditions (i)–(iii) only. Denote by C* the 
minimum Frobenius-norm perturbation 
matrix over the closure d. We know that 
C* exists and is unique because the set d 
is convex and closed. Moreover, C* can be 
computed efficiently as the solution of a 
semidefinite programming algorithm [8]. 
It can be shown that C* is the optimum 
solution of the optimization problem in 
(3) if C* [ f [9]. Otherwise, we can find 
a feasible perturbation that is arbitrarily 
close to C* [9], i.e., given d . 0, we can 
find C [ f such that ||C2 C*||F # d. 

The optimization problem formulated 
in (3) using the Frobenius-norm may also 
be casted using a different matrix norm. 
In this case, the problem interpretation 
will also be different. For instance, the 
evaluation of the Frobenius-norm leads to 
an energy interpretation of the network, 
whereas using the L1-norm, for instance, 
would lead to a sparse perturbation 
matrix. The sparsity criterion would 
translate into the minimal number of 
changes introduced to the dynamics of 
the initial network to force it to attain the 
desired steady-state distribution. 
However, because the L1-norm is not 
strictly convex, the optimal L1-norm 
solution is not necessarily unique. 

FASTEST CONVERGENCE 
RATE PERTURBATION
Another clinically viable optimality cri-
terion is to select the perturbation that 
yields the fastest convergence rate to 
the desired steady-state distribution. 
The Markov chain, which models the 
network dynamics, converges to its 
unique steady-state distribution if and 

[FIG1] Inverse perturbation problem of 
dynamic networks characterizes the 
optimal reshaping of the attractor 
landscape of the network such that the 
basin of attraction consists of a unique 
desired distribution for the entire state 
space.
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only if its SLEM is strictly smaller than 
1. In this case, the convergence rate is 
given by the SLEM. The smaller the 
SLEM, the faster the Markov chain con-
verges to its stationary distribution. The 
optimal fastest convergence rate pertur-
bation, CR

*, is therefore obtained as the 
feasible perturbation with the smallest 
SLEM, i.e., CR

*  is the solution to the fol-
lowing optimization problem 

 Minimize SLEM 1P01 C 2  
 subject to C [ f. (4)

For a general (nonsymmetric) matrix, 
about the only characterization of the 
eigenvalues is the fact that they are the 
roots of the characteristic polynomial. In 
particular, the objective function in (4) is 
not necessarily convex, and thus the opti-
mization problem is not convex. 
However, an evident solution to the fast-
est convergence rate perturbation prob-
lem is given by CR

* 5 1pd
t 2 P0. The 

optimal SLEM 1P01 CR
* 2 5 0. That is, 

the perturbation CR
*  seems to force the 

network to reach the desired steady-state 
in a single jump. Observe that the fastest 
convergence rate perturbed network 
matrix is equal to the desired limiting 
matrix 1pd

t . 

MINIMAL-ENERGY AND 
FASTEST CONVERGENCE-RATE 
PERTURBATIONS TRADEOFF 
The fastest convergence rate perturbation 
may result in a large energy deviation 
between the original and perturbed net-
works. Similarly, the minimal-energy per-
turbation may lead to a slow convergence 
(hence slow recovery) to the desired 
steady state. We will, therefore, investigate 
the tradeoffs between minimal-energy and 
fastest convergence rate criteria. For this 
purpose, we consider the family of matri-
ces, parameterized by s, along the line 
between PE

*,  the minimal-energy 
 perturbed matrix, and 1pd

t , the fastest 
convergence rate perturbed matrix, 
P 1s 2 5 112 s 2PE

* 1 s1pd
t ,  where 0 # s

# 1. The parameterized line P 1s 2  can be 
thought of as a continuous transforma-
tion of PE

* into 1pd
t . One can easily check 

that the parameterized perturbations 
C 1s 2 5 P 1s 2 2 P0 are feasible perturba-
tions, i.e., C 1s 2 [ f for all 0 , s # 1. 

When s5 0, we have the minimal-energy 
perturbed matrix, and when s5 1, we 
obtain the fastest convergence rate per-
turbed matrix. When 0 , s , 1, there is 
a tradeoff between the energy value and 
the rate of convergence. Specifically, it is 
shown in [8] that when s increases, the 
SLEM of the perturbed matrix decreases, 
and hence the convergence (toward the 
desired state) is faster. On the other hand, 
the energy deviation between the original 
and perturbed networks increases with s. 
In other words, the faster the network 
converges toward the desired steady state, 
the higher the energy between the initial 
and perturbed networks. 

ROBUSTNESS OF OPTIMAL 
PERTURBATION
The (optimal) inverse perturbation 
framework requires knowledge of the 
probability transition matrix of the net-
work. The probability transition matrix 

can be  estimated from the gene expres-
sion  profiles [2]. However, errors made 
during the measurement, data extraction, 
and model parameter selection will prop-
agate to the inference of the probability 
transition matrix and thus affect the 
actual success of the designed control. An 
efficient intervention strategy must be 
robust to data and estimation errors. The 
minimal-energy inverse perturbation is 
shown to be robust to errors in the origi-
nal probability transition matrix in the 
sense that the estimation error of the 
optimal perturbation is bounded by the 
estimation error of the probability transi-
tion matrix [10]. Analytically, let the esti-
mated probability transition matrix P̂0 be 
given by P̂05 P01dP0, where dP0 is a 
zero-row sum matrix representing noisy 
and missed data and estimation errors in 
P0. Then the estimated optimal perturba-
tion matrix, Ĉ*, satisfies Ĉ*5 C*1dC*, 

where C* is the optimal perturbation 
matrix and dC* is a zero-row sum error 
matrix satisfying ||dC*||F #  ||dP0||F. 

GENE REGULATION 
IN MELANOMA CELLS
We apply the inverse perturbation control 
to the melanoma gene regulatory net-
work, which is one of the most studied 
gene regulatory networks in the literature 
[2]. The abundance of mRNA for the gene 
WNT5A was found to be highly discrimi-
nating between cells with properties typi-
cally associated with high versus low 
metastatic competence. Furthermore, it 
was found that an intervention that 
blocked the Wnt-5a protein from activat-
ing its receptor, the use of an antibody 
that binds the Wnt-5a protein could sub-
stantially reduce Wnt-5A’s ability to induce 
a metastatic phenotype [4]. This suggests 
a control strategy that reduces WNT5A’s 
action in affecting biological regulation. A 
seven-gene probabilistic Boolean network 
model of the melanoma network contain-
ing the genes WNT5A, pirin, S100P, RET1, 
MART1, HADHB, and STC2 was derived in 
[2]. Note that the human melanoma 
Boolean network consists of 275 128 
states ranging from 00 c 0 to 11 c 1, 
where the states are ordered as WNT5A, 
pirin, S100P, RET1, MART1, HADHB, and 
STC2, with WNT5A and STC2 denoted by 
the most significant bit (MSB) and least 
significant bit (LSB), respectively. 

We consider the (fictitious) desired 
steady-state distribution where the proba-
bility of the states having WNT5A upregu-
lated is 1024 and the probability of the 
other states, which correspond to WNT5A 
downregulated is chosen randomly such 
that the total probability mass is equal to 
one [see Figure 2(c)]. Observe that the 
states 0–63 have WNT5A downregulated 
and hence are desirable states, as com-
pared to states 64–127, which have 
WNT5A upregulated and hence are unde-
sirable. The probability transition matri-
ces of the human melanoma networks 
 corresponding to the original and per-
turbed networks are portrayed in 
Figure 2(a) and (b), respectively. The 
matrix plots are obtained using the func-
tion MatrixPlot in MATHEMATICA. 
The color of entries varies from white to 

THE FASTEST 
CONVERGENCE RATE 
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IN A LARGE ENERGY 

DEVIATION BETWEEN THE 
ORIGINAL AND 

PERTURBED NETWORKS.
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red, corresponding to the values of the 
entries in the range of zero to one Note 
that the controlled and desired steady-
state distributions are identical. Moreover, 
we have SLEM 1P 2 , 1. Therefore, the 
minimal Frobenius-norm perturbation is 
the optimal perturbation, which forces 
the network to converge toward the 
desired stationary  distribution, indepen-
dently of the initial state of the network. 

FUTURE TRENDS AND DIRECTIONS
The solution to the inverse perturbation 
problem characterizes the optimal state 
probability transition matrix that yields 
the optimal perturbation of the regula-
tory network and transitions to the 

desired steady-state. To reach the full 
impact of the optimal intervention on 
gene regulation in biological systems, 
we must introduce changes in the cell 
that induce the optimal transition 
matrix. The state probability transition 

matrix is derived from gene expression 
profiles [2]. The probability transition 
matrix is related to the actual gene net-
work by observing that the probability 
law describing the genes’ dynamics can 
be obtained as the marginal distribution 
of the state transition probabilities 

Pr 1 gi5 xi|g1 c, gm 2
5a

|xi

  Pr 1g15x1,c, gm5xm| g1c, gm 2 ,  
 (5)

where x|i denotes the set of all xj’s except 
xi; i.e., x|i5 5x1,c, xi21, xi11,c, xm6. 
In particular, one can show that small 
perturbations of the probability transition 
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[FIG2] Optimal perturbation of the human melanoma gene regulatory network: (a) the probability transition matrix of the 
original melanoma network P0, (b) the minimal-energy perturbed probability transition matrix PE

*, (c) the fastest convergence 
rate perturbed matrix, and (d) the steady-state distributions corresponding to the original (red line), desired (blue line), and 
minimal-perturbation energy controlled (green line) human melanoma gene regulatory network. 
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matrix lead to small perturbations of the 
genes’ dynamics, thus validating the min-
imal-perturbation criterion. 

Future work will investigate changes 
in the cell that induce the optimal per-
turbed transition matrix. In particular, we 
will focus on determining the optimal 
biological design rules needed to induce 
the optimal intervention strategy while 
limiting ourselves to biologically viable 
design rules that rely on modern methods 
for molecular control in cellular systems. 
The biological rules should identify 
whether a specific gene will excite (upreg-
ulate) or inhibit (downregulate) a target 
gene. Implementation of such rules and 
associated probabilities can be achieved 
using modern biological methods for 
molecular control in cellular systems. 
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I
n the article “IP-Based Mobile and Fixed Network 
Audiovisual Media Services” that appeared in the 
November 2011 issue of IEEE Signal Processing 
Magazine [1], a production error occurred in (1). The 
equation should appear as follows:

 Q5maxaQmin , cQ02a
n

i51
Ii d b. (1)

We apologize for the error.
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