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Abstract—We consider the dynamic EEG source localization
problem with additional constraints on the expected value of the
state. In dynamic EEG source localization, the source brains,
also called dipoles, are not stationary but vary over time.
Moreover, given our specific EEG experiment, we expect the
dipoles to be located within a certain area of the brain (here,
the visual cortex). We formulate this constrained dynamic source
localization problem as a constrained non-linear state-estimation
problem. Particle filters (PFs) are nowadays the state-of-the-
art in optimal non-linear and non-Gaussian state estimation.
However, PFs cannot handle additional constraints on the state
that cannot be incorporated within the system model. In this
case, the additional constraint is on the mean of the state,
which means that realizations of the state, also called particles
within the PF framework, may or may not satisfy the constraint.
However, the state must satisfy the constraint on average. This
is indeed the case when tracking brain dipoles from EEG
experiments that try to target a specific cortex of the brain.
Such constraints on the mean of the state are hard to deal with
because they reflect global constraints on the posterior density of
the state. The popular solution of constraining every particle in
the PF may lead either to a stronger condition or to a different
(unrelated) condition; both of which result in incorrect estimation
of the state. We propose the Iterative Mean Density Truncation
(IMeDeT) algorithm, which inductively samples particles that are
guaranteed to satisfy the constraint on the mean. Application of
IMeDeT on synthetic and real EEG data shows that incorporating
a priori constraints on the state improves the tracking accuracy
as well as the convergence rate of the tracker.

I. INTRODUCTION

Electroencephalography (EEG) is an electrophysiological
monitoring technique that records the electrical activity of
the brain at the scalp by placing multiple electrodes at the
surface of the head. It is non-invasive, cheap, portable and
has high temporal resolution. These advantages led to the
widespread application of EEG for research and diagnosis to
understand brain function, disorders, strokes as well as build
brain-computer interfaces [1], [2].

However, the advantages of the EEG and particularly its
high temporal resolution are counterbalanced by i) a low signal
to noise ratio and ii) the non-linearity of the EEG signal with
respect to the brain source generating these surface signals.It
is postulated that the EEG signals are generated by few source
brains [3]. Localizing these source brains helps us understand
the different areas in the brain. Brain source localization from

EEG signals has been the subject of intense research [4], [5].
However, until recently, the source brains were assumed to be
stationary. That is, the locations of these sources in the 3D
brain does not change with time. Our recent work was one
of the pioneers of the idea of tracking (rather than stationary
estimation) of source brains over time [5]. The problem is
formulated as a state-space model and a beamformer-particle
filter is used to simultaneously track the positions of the
sources and estimate their moments [5]. In our framework,
the moments and positions of the source brains or neural
generators are the components of the unknown or hidden
state while the EEG measurements are the system observations
model.

In a Bayesian context, optimal estimation of the hidden
state is based on the posterior density function (pdf) of
the state given the observations. In a linear and Gaussian
system, optimal estimation is given by the Kalman filter
[6]. However, the EEG state-space model is non-linear and
may be non-Gaussian. Particle filters (PFs) solve the optimal
estimation problem in non-linear and non-Gaussian state-
spaces [7]. PFs approximate the posterior density of the state
by a set of weighted samples, called particles. The particles
are sampled from any accessible proposal distribution whose
support contains the support of the posterior density, and then
appropriately weighted to make up the difference between the
proposal and posterior densities.The PF solution converges, in
the mean-square error, to the optimal state [7]. However, a
major weakness of the PF resides in the difficulty of handling
additional constraints within the state space model.

We seek to improve the tracking performance of the EEG
source localization problem by introducing additional a priori
knowledge as constraints on the hidden state. In fact, in our
particular EEG experiments, we expect the source brains to
be in the visual cortex most of the time [4]. We subsequently
add a constraint to the state-space model that imposes 3D
coordinates within the visual cortex. In constrained particle
filtering, the current research [8], [9] simply imposes the
constraints on all particles of the PF. This approach actually
constrains the support of the state posterior density. We term
this approach of constraining all particles Pointwise Density
Truncation abbreviated as the PoDeT method.



Ebinger et al. [10] presented a new approach named, Mean
Density Truncation (MeDeT), that imposes the constraints on
the conditional mean estimate of the state without further
restricting the posterior distribution of the state. Specifically,
MeDeT draws N unconstrained particles from the proposal
distribution as in the unconstrained PF. If the weighted mean
of these N particles, which corresponds to the conditional
state estimate, satisfies the constraints, it is kept as the optimal
constrained state estimate. Otherwise, an (N + 1)st particle
is sampled from a high likelihood region to enforce the
constraints on the weighted mean. If one additional particle is
not enough to ensure the constraints on the conditional mean,
more particles are draw one at a time until the constraints
are satisfied [10]. It is important to realize that PoDet and
MeDet have two different views on the constrained problem.
In PoDet, the constraint is assumed to be a hard constraint.
Thus, all possible realizations of the state (all particles) must
satisfy this constraint. In MeDet, the constraint is assumed to
be a soft constraint, where the state satisfies the constraint on
average or with high probability.

In this paper, we propose a new contribution to the con-
strained particle filtering problem and apply it to the dynamic
brain source localization problem based on EEG real data. In
particular, we formulate the EEG source localization problem
as a softly constrained state-space model because we expect
the sources to be in a certain area of the brain with high
probability. Our proposed constrained PF method is different
from [10] in that, instead of drawing the additional particles
one at a time until the constraints are satisfied, we propose
a systematic and inductive procedure that guarantees that the
constraints are satisfied with a draw of N particles.

The paper is organized as follows: In Section II, we review
the unconstrained PF framework. In Section III, we present the
PoDeT, MeDeT and IMeDeT approaches as the state-of-the-art
in constrained particle filtering methods. Section IV formulates
the brain source localization model as a constrained state-
space model, and derives IMeDeT for the EEG dipole source
localization problem. Simulation and comparison results of
synthetic and real EEG data are presented in Section V. Fi-
nally, Section VI summarizes the main findings and concludes
the paper.

II. UNCONSTRAINED PARTICLE FILTERING

Consider a discrete-time state-space model defined by a
state transition model and a measurement model (or observa-
tion model). Both models may be non-Gaussian or nonlinear.

xn+1 = fn(xn) + un, (1)

zn = hn(xn) + vn, (2)

where xn, zn represent, respectively, the state and the mea-
surement vectors at time n. fn, hn are, respectively, the
state and measurement (non-linear) functions. un, vn are,
respectively, the transition and the measurement noise with
known probability density functions, respectively, g and r.
The main objective is to estimate the state of the system

xn at every time step n, using the history of measurements
Zn = [z1, ..., zn] up to time n.

In a Bayesian context, the optimal state estimate xn is given
by the mean of the posterior distribution p(xn|Zn). Using
Bayes rule, this distribution can be computed in two steps:
prediction and update as given by the following equations:

p(xn|Zn−1) =

∫
g(xn|xn−1)p(xn−1|Zn−1) dxn−1, (3)

p(xn|Zn) =
r(zn|xn)p(xn|Zn−1)∫
r(zn|xn)p(xn|Zn−1) dxn

, (4)

Unfortunately, for the nonlinear case, the models given in Eqs.
(1)-(2) are only a conceptual solution, due to the fact that the
integrals are generally intractable.

The particle filter is a sequential Monte Carlo method
designed to estimate the posterior density function of the state,
at time n, using a set of random samples, named particles, and
their associated weights : {x(i)n , w

(i)
n }Ni=1 . The posterior pdf

is approximated as:

p̂(xn|Zn) =

N∑
i=1

w(i)
n δ(xn − x(i)n ), (5)

where δ is the dirac delta function.
In the ideal case, the particles are sampled from the true

posterior,which is not always available. Thus, an impor-
tance distribution or a proposal distribution q(xn|xn−1, zn) is
evoked. Theoretically, the only condition on the importance
distribution is that its support includes the support of the
posterior distribution. However, in practice, the number of
particles is finite and thus, the importance distribution should
be chosen to approximate the posterior distribution [7]. The
importance weights are given by:

w̃(i)
n = w

(i)
n−1

r(zn|x(i)n )g(x
(i)
n |x(i)n−1)

q(x
(i)
n |x(i)n−1, zn)

, (6)

The weights are then normalized such that:
N∑
i=1

w
(i)
n = 1.

The conditional mean estimate of the state at time n is then
given by the weighted mean of the particles:

x̂n = E[xn|Zn] ≈
N∑
i=1

w(i)
n x(i)n . (7)

III. CONSTRAINED PARTICLE FILTERING

We consider the state-space model given in (1)-(2) with the
following additional constraint on the state:

an ≤ φn(x̂n) ≤ bn. (8)

where φn is the constraint function at time n and φn(x̂n) =

φn(E[xn|Zn]) ≈ φn

(
N∑
j=1

w
(i)
n x

(i)
n

)
.

Notice that the constraint is imposed on the conditional
mean estimate. In particular, not all realizations of the state
must satisfy this constraint but on average, we expect the state



to satisfy this constraint. We refer to such a constraint as
a soft constraint in contrast to a hard constraint, where all
realizations of the state (with low and high probabilities) must
satisfy the constraints. This soft constraint imposed on the
mean is harder to solve in an optimal way because it imposes
a global condition on the density. Thus, the constrained
posterior density, if it exists, is not merely the projection of
the unconstrained density onto the constraint set.

A. Point wise Density Truncation

One popular approach to dealing with constrained non-
linear state estimation is to enforce the state constraints on
all particles [8], [9]. Enforcing the constraint on all particles
results, in this case, in a stronger constraint and possibly a
totally different or even irrelevant condition. In fact, constrain-
ing every particle is equivalent to constraining the support of
the posterior distribution to the mentioned interval. This is
a much stronger condition than constraining the mean of the
distribution or any point estimate, to be inside the interval [10].
We refer to this approach as Point wise Density Truncation or
Particle Density Truncation (PoDeT). We will show in our
simulations that PoDeT leads to erroneous estimates of the
density and state when soft constraints are imposed.

B. Mean Density Truncation

The mean density truncation (MeDeT) methods is con-
structed to satisfy the constraint on the conditional mean
estimate rather than the posterior density itself [10]. The main
idea of MeDeT is to first sample N unconstrained particles
from the proposal distribution. If this N -order estimate the
state satisfies the constraints, we keep it. Otherwise, we sample
an (N + 1)th particle from the high probability region (or
high likelihood), to enforce the constraints on the mean.
The sampling of the (N + 1)th particle can be viewed as
a perturbation of the unconstrained posterior distribution so
that its mean shifts in the desired boundaries. If a one-particle
perturbation does not suffice to shift the mean, we draw
another particle in the high-likelihood region and recheck for
the condition, and so on. We keep drawing particles until
the desired condition is satisfied. Assume m is the number
of additional particles required to shift the mean. Notice that
when m = N , the N -particle perturbation is still very different
from the PoDeT method: In the PoDeT method, the original
constraint is enforced on all particles, whereas the N -particle
MeDeT imposes the desirable condition only on the mean
estimate.

C. Inductive Mean Density Truncation

In MeDeT, the minimum number of particles required to
shift the conditional mean estimate to the desired boundaries
depends on the state-space model at hand and especially on
the choice of the proposal distribution from which the particles
are draw. If the proposal distribution is chosen poorly, i.e., far
from the posterior density of the state, it may take a large
number of additional particles (m� 1) to shift the mean of the
distribution to the desired boundaries. This iterative process of

drawing 1 additional particle at a time may be time-consuming
and not efficient. This is especially true for high-dimensional
systems where the number of particles N must be large; thus
leading to a large m as well. To address this computational
inefficiency, we propose an inductive procedure where the
particles are chosen inductively from n = 1, · · · , N such
that every subset of n particles satisfies the constraint on the
weighted mean state. Mathematically, we want the constraint
to be satisfied for any number of particles j = 1, · · · , N ,

an ≤ φn(

j∑
i=1

w(i)
n x(i)n ) ≤ bn for all j = 1, ..., N. (9)

For simplicity and without loss of generality, we assume that
the proposal distribution is chosen to be the prior distribution
and hence the weights are given by the likelihood. Separating
the summation of the (j− 1) unconstrained particles from the
jth particle, the constraint expression (9) becomes:

an ≤ φn(

j−1∑
i=1

p(zn|x(i)n )x
(i)
n + p(zn|x(j)n )x

(j)
n

j∑
i=1

p(zn|x(i)n )

) ≤ bn. (10)

If we further assume that Φn is given by the identity function,
which corresponds to an interval type constraint, the above
inequality can be expressed in terms of the jth particle only
as follows:{

q1(x
(j)
n ) ≤ C1({x(i)n }j−1

i=1 ), q2(x
(j)
n ) ≥ C2({x(i)n }j−1

i=1 ),
(11)

Where: C1, C2 are two constants that depend on the already
sampled (j − 1) particles and q1, q2 are given by{

q1(x
(j)
n ) = p(zn|x(j)n )(an − x(j)n ),

q2(x
(j)
n ) = p(zn|x(j)n )(x

(j)
n − bn),

(12)

Finding a jth particle that satisfies Eq. (11) could be done
analytically or numerically. The set of solutions to Eq. (11)
enforces the constraint on the conditional mean estimate
estimate for any subset of particles j . The following algorithm
details the steps of the inductive MeDeT approach.

IV. BRAIN SOURCE TRACKING

A. The EEG state-space model

Brain electrical activity at the macroscopic level is generated
by the neuronal source brains as equivalent electric dipoles.
Normally, there are several active sources (or dipole) at the
same time in different brain regions with different intensities
that are projected above the scalp with positive or negative
polarity depending on the orientation of the dipole relative to
the position of the electrodes. We denote by M the number of
active dipoles in the brain that are the source of the electrical
activity measured by the multichannel EEG signal Zn from nz
sensor at time n Let sn(m) be the moment signal generated
at dipole m at time n. Let dn(m) denote the location of
the mth dipole at time n. The EEG signal is related to the



Algorithm 1 Inductive Mean Density Truncation (IMeDeT)
Denote by Cn the constraint region::Cn = {xn : an ≤
φ(x̂n) ≤ bn}.
Unconstrained sampling
for n = 1, 2, ..., T ( where T : time lengh) do

for j = 1, 2, ..., N ( where N is the number of particles)
do

Generate samples from an accessible proposal distri-
bution x(j)n ∼ qn(xn).
Calculate the weights w(j)

n of x(j)n using Eq.(6); then ,
normalize the weights.
IMeDeT
for i=1,2,...,j do

if
j∑

i=1

w
(i)
n x

(i)
n ∈ Cn then

Go to the next step.
else

Find a particle x(j)n such that
N∑
i=1

w
(i)
n x

(i)
n ∈ Cn.

end if
end for

end for
x̂n =

N∑
i=1

w
(i)
n x

(i)
n .

end for

dipoles locations and moments through the following non-
linear equation [2,10] :

zn =

M∑
m=1

Lm(dn(m)) sn(m) + un, (13)

where Lm(dn(m)) is the nz×3 lead field matrix at time n for
dipole m, which depends on the dipoles location. un is a zero
mean, white Gaussian noise with covariance Cu. The EEG
observation equation in (13) can be written in vector form as:

zn = L(dn) sn + un, (14)

Where dn = [dn(1), · · · , dn(M)]t has the 3D
location coordinates of all M dipoles, L(dn) =
[L1(dn(1)), · · · , LM (dn(M))] is the nz×3M lead field matrix
of the M dipoles at time n, and sn = [sn(1), · · · , sn(M)]t

is the vector of dipole moments for the M dipoles. The
unknown state vector in the EEG problem is defined by the
dipoles positions and source moments, i.e., xn = [dtn, s

t
n]t.

The EEG state-space model is given by:{
xn = xn−1 + un,

zn = Ln(dn) sn + vn,
(15)

Observe that we used a random walk for the state transition
model. This random walk model reflects the fact that we
have no specific a priori knowledge (flat prior) on the state
dynamics. We would like to use the model in (15) to estimate,
at every time step, the dipole locations dn and moments
sn given the EEG measurement zn. The likelihood of each

measurement can be derived from the Gaussianity of the noise
and Eq. (16) [5] as L(zn|(xn, Sn))

∝ exp[− (zn − L(xn)sn)tC−1
v (zn − L(xn)sn)

2
]. (16)

B. Constrained EEG source tracking using IMeDeT

Our EEG experiments are focused on the visual cortex of the
brain (the experiments are detailed in the sequel). Therefore,
we expect the estimated dipoles to be in the visual cortex most
of the time, which corresponds in our head model geometry
to dyn < 0, where dy is the estimated location of the dipole
along the y-axis. We therefore add the constraint E[dyn] < 0.
We expect that adding this constraint will improve the tracking
accuracy. The IMeDeT algorithm applied to the EEG dynamic
source localization problem in (15) is presented below.

Algorithm 2 EEG dynamic source localization using IMeDeT
Initialization

The constraint region is given by :Cn = {xn : E[dyn] ≤ 0}.
For all points of the grid, compute the lead field matrix L
by solving the Maxwell equations in [5].
for j=1,2,...,N do

Sample x(j)0 ∼ q0(x
(j)
0 ).

Set initial weights w(j)
0 = 1

N .
end for
Sampling

for n=1,2,...,T do
for j=1,2,...,N do

Generate samples from the state transition model:
x
(j)
n = x

(j)
n−1 + u

(j)
n .

For the predicted dipole, find the lead field matrix
L(x

(j)
n ) from the calculation made at the initial step.

Compute the weights by :
wj

n = w
(j)
n−1L(zn|(xn, L(x

(j)
n )), s

(j)
n ).

Normalize the weights so they sum up to unity.
Compute the weighted mean x̂n =

∑j
i=1 w

(i)
n x

(i)
n .

Enforcing the constraint
for i=1,2,...,j do

if x̂n ∈ Cn then
Go to the next step.

else
Find a particle x(j)n such that

j∑
i=1

w
(i)
n x

(i)
n ∈ Cn.

end if
end for

end for
x̂n =

N∑
i=1

w
(i)
n x

(i)
n .

end for

V. SIMULATIONS RESULTS

A. Simulation results on synthetic data

We assume that the observed EEG measurements are gen-
erated by one moving dipole. The moments are supposed to



Fig. 1. A group of images shown to the subjects in the experimental framework.

be sinusoidal waveforms with varying frequencies and am-
plitudes. We apply the unconstrained PF and the constrained
PF using PoDeT and inductive MeDeT algorithms on EEG
dynamic source localization based on synthetic data that we
generate using the model in (15). We use the mean-square
error (MSE) to assess the three algorithms. We perform 10
Monte Carlo runs using 1000 particles for all methods.

Figures 2, 4 and 3 show the tracking of the dipole (position
and moment) using, respectively, the unconstrained particle
filter (Fig. 2), the inductive MeDeT (Fig. 4) and PoDeT (Fig.
3). The star lines represent the estimated positions and the
continuous lines represent the true state for each dimension.
Herein, x-position is in blue, y-position is in green and z-
position is in red. Observe that adding the constraint (in PoDeT
and IMeDeT) seems to increase the convergence and ”locking-
on rate” of the PF. While the unconstrained PF locks onto
the dy location trajectory around time step 23 and locks onto
the x-moment around time step 13, PoDeT and IMeDeT lock
onto their respective trajectories (both location and moment)
very early on. This result of higher convergence rate, though
unexpected, is actually pretty intuitive because enforcing the
constraint helps direct the tracker to the optimal state early on.

Figure 5 shows the MSE of IMeDeT, PoDeT and the
unconstrained PF. IMeDeT is able to track the dipole better
(with the minimum error) than PoDeT and the unconstrained
PF. Moreover, the unconstrained PF seems to have the highest
MSE both in the location and moment estimations.

B. Application to real data

We apply the proposed IMeDeT algorithm to real EEG data
recorded from twelve female subjects aged between 20 and
28 years old. The experimental application was elaborated
by Santos et al. [11] for their study on subject perception
and attention using the evoked potential signals (VEP). Santos
and co-authors were interested in different facial expressions
such as fearful, disgusted and neutral of the subjects. These
different facial expressions were displayed as the result of
exposing the subjects to a sequence of images superimposed
on houses (see Fig.5). For each test, the participants task was
to determine if the current face or house is the same as the one
shown on the previous test. Each test remains 1600 ms (400
points of digitized EEG samples with sampling rate 250 Hz,
comprising a pre-stimulus interval of 148 ms (37 samples) and
post stimulus onset interval of 1452 ms [5]. The distribution of
the electrodes whose responsible of recording the EEG signals
emanate from the scalp around 16 electrodes (Fz, Cz, Pz, Oz

, F7, F8,Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2,) and two
Electrooculogram (EOG) electrodes (vertical and horizontal
EOG) according to the 10/20 International system. In this
experiment, the data corresponds to VEP signals and the brain
activity is perception of visual stimulus. Therefore, we expect
the dipoles to be located, on average, in the primary visual
cortex. We assume the same constraint as in the synthetic data
sets, namely E[dyn] ≤ 0 for all time steps n. We implemented
IMeDeT using 1000 particles. We considered estimating one
dipole source for each participant.

We show the source localization results on two subjects
in Figs. 6 and 7. In each figure, the top row shows tracking
of the dipole position and the bottom row shows the dipole
moments over time. Observe that the constraint is satisfied,
i.e., the position of the estimated dipole is located in the visual
cortex (dy < 0). Another observation is that the x-position of
the dipole location varies between positive and negative values,
which correspond to the right and left lobes of the brain. There
are no significant differences in the dipole locations for the
two subjects. However, the moment signals are different for
the two subjects. Finally, we postulate that in order to observe
significant or abrupt changes in brain source locations, we
need to design an experiment, where two or more areas of the
brain (e.g., visual and motor) are invoked.

VI. CONCLUSION

We proposed the Iterative Mean Density Truncation
(IMeDeT) to optimally track a state in a non-linear state-space
model with additional constraints on the expected value of the
state. In many dynamical state-space models, additional a pri-
ori knowledge on the state is available. The proposed approach
extends the particle filter to handling constraints by inductively
drawing particles that satisfy the desired constraints on the
mean state. We applied IMeDeT to the EEG dynamic source
localization problem, where the source brains are expected
to be located in the visual cortex of the brain. Our results
showed that, incorporating additional a priori knowledge on
the state as constraints improves the estimation accuracy as
well as increases the convergence and locking-on rate of the
non-linear tracker. Moreover, we showed that IMeDeT has a
superior performance compared to the main approach, termed
PoDeT, widely used for constrained particle filtering. PoDeT
relies on imposing the constraints on every realization of the
state, which results in more stringent and may be completely
unrelated conditions than the original conditions on the mean
value of the state. In our future work, we will investigate the



Fig. 2. Tracking of the dipole using unconstrained PF: Position in the top and moment signal in the bottom.

Fig. 3. Tracking of the dipole using Point wise Density Truncation (PoDeT): Position in the top and moment signal in the bottom.

Fig. 4. Tracking of the dipole using Inductive Mean Density Truncation (IMeDeT): Position in the top and moment signal in the bottom.



Fig. 5. The performance of tracking the dipole using MSE are illustrated by the location (top) and moment (bottom).

Fig. 6. Subject 1: Tracking the dipole position and moments using IMeDeT.

convergence properties and theoretical bounds of the proposed
IMeDeT method for non-linear state estimation with additional
constraints on the mean of the state.
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