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ABSTRACT

Myoelectric (EMG) signals contain temporal muscle acti-
vation information, that is essential in understanding and
diagnosing neuromuscular disorders. Given the biological
stochasticity and measurement noise, statistical signal pro-
cessing methods are adopted in the literature to detect the
muscle activity onset and offset periods. However, these
methods carry an implicit assumption of stationarity. In this
paper, we show that the EMG signal is non-stationary and
the nature of its non-stationarity is reminiscent of the het-
eroscedasticity, i.e., the conditional variance of the signal
is time-varying. We therefore model the EMG signal using
an Autoregressive-Generalized Autoregressive Conditional
Heteroscedastic (AR-GARCH) process, which captures the
heteroscedasticity of the signal. The Akaike information cri-
terion test confirms that the AR-GARCH model better fits the
EMG signal than the stationary AR model. We subsequently
propose a muscle activity detector that relies on the estimated
conditional variance of the AR-GARCH model. The applica-
tion of the proposed detector to real EMG signal shows that
the proposed AR-GARCH-based detector achieves a higher
accuracy than the widely used double threshold detector.

Index Terms— Myoelectric signal; Heteroscedasticity;
Muscle activity detection; AR-GARCH model.

1. INTRODUCTION

The electromyography (EMG) signal is the signal recorded
from the surface of the muscles and is a representation of
the electric potential field generated by the depolarization of
the outer muscle membrane. EMG signal measurements are
used in a variety of physiological, biomechanical and neuro-
muscular applications such as reaction-time delay, stroke and
Parkinson’s disease. In particular, these applications require
an accurate detection of the onset, offset, and the duration of
the EMG burst. One of the main challenges in designing such
detectors is the stochastic and noisy nature of the EMG sig-
nal. Biological stochasticity results from the interference of
motor units that are far away from the detection point. The
recruitment of the motor units by the central nervous system
as well as their firing rates may vary even when identical ac-
tions are performed. Additionally, measurement noise result-

ing from the sensors, skin contact and ambient noise adds to
the stochasticity of the signal. It is therefore imperative to use
statistical and stochastic signal processing methods in order
to analyze and process EMG measurements.

The main methods investigated in the literature to detect
muscle activity periods from EMG measurements are based
on the hypothesis testing framework, where a likelihood ratio
test is performed in order to decide the onset and offset pe-
riods of the recorded signal [1]. The likelihood computation
assumes independent and identically distributed (i.i.d.) Gaus-
sian samples. However, given that EMG samples are highly
correlated, a pre-whitening filter must be applied prior to the
likelihood computation [1]. The whitening filter characteris-
tics (e.g., filter order and coefficient values) depend on the
correlation structure of the EMG signal, and are usually un-
known. As an alternative to the hypothesis testing framework,
modeling-based approaches have been used to model, ana-
lyze and extract features from the EMG signal. Specifically,
the autoregressive (AR) and autoregressive moving-average
(ARMA) models were widely adopted to model the EMG sig-
nal [2]. ARMA models, however, implicitly assume that the
underlying process is stationary.

In this paper, we show that the EMG signal is non-
stationary and its type of non-stationarity is reminiscent of
heteroscedasticity [3]. A stochastic time-series is called het-
eroscedastic if its conditional variance varies over time [3].
In particular, the presence of heteroscedasticity can invali-
date statistical tests that assume that the residual variances
are uncorrelated. Heteroscedastic processes are characterized
by a volatile nature, and are often encountered in econo-
metrics and finance, as for instance in stock prices, which
exhibit periods of large swings followed by periods of rel-
ative calm. The economist Robert F. Engle won the 2003
Nobel Prize in Economic Sciences for his work on modeling
heteroscedastic processes using the Autoregressive Condi-
tional Heteroscedasticity (ARCH) model [3]. The ARCH
model is suitable for processes where the unconditional vari-
ance may be constant but the variance during some periods of
time is changing. A generalization of the ARCH model, the
Generalized ARCH (GARCH), was proposed in [4] to model
heteroscedasticity in stochastic time series more parsimo-
niously. In this paper, we use the GARCH model to represent
myoelectric signals.



This paper is organized as follows: In Section 2, we
briefly present the GARCH and AR-GARCH processes. In
Section 3, we test the EMG signal for heteroscedasticity and
show that it can be modeled by an AR-GARCH process. The
proposed AR-GARCH-based muscle activity detector is pre-
sented in Section 4. Section 5 presents results on real EMG
measurements and compares the AR-GARCH-based detector
with the double threshold detector [5]. Finally, concluding
remarks and future directions are summarized in Section 6.

2. THE GARCH PROCESS

Let (Zt) be a sequence of i.i.d. random variables with zero
mean and unit variance from some specified probability dis-
tribution (usually assumed to be Gaussian or t-distribution).
The process Yt is called a GARCH(p, q) process if

Yt = σtZt, t ∈ Z (1)

where σt is a non-negative process such that

σ2
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When p = 0, the process is an ARCH(q) process.
Let us denote by E[.], the expectation operator and by

V [.], the variance of the process defined as V [X] = E[X2]−
(E[X])2. From Eqs. (1) and (2), we have
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That is, the GARCH process has zero mean and constant
variance. However, a further look at the conditional vari-
ance reveals that the latter is time-varying. We denote by
ψt the set of past observations up to the current time t, i.e.,
ψt = {Yk, k ≤ t}. Then, we have

E[Yt|ψt−1] = E[σtZt|Yt−1, Yt−2, . . .] = σtE[Zt] = 0.

V [Yt|ψt−1] = E[Y 2
t |Yt−1, Yt−2, . . .]

= E
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Equation (4) demonstrates that the conditional variance is
time-varying. Moreover, we notice that the GARCH process
is uncorrelated, since

E[YtYs] = E[σtZtσsZs] = E[σtZtσs]E[Zs] = 0. (5)

Therefore in order to model heteroscedastic processes, which
exhibit a correlation structure like the EMG signal, we con-
sider the AR-GARCH model.

2.1. The AR-GARCH Process

The process Yt is AR(M )-GARCH if it is an AR(M ) process
with GARCH innovations, i.e.,

Yt =

M∑
m=1

φmYt−m + εt, (6)

where εt represents the white noise process generated by a
GARCH(p, q) model, i.e., we have εt = σtZt, where σt sat-
isfies Eq. (2) and Zt is a zero mean, unit variance white noise
process.

3. THE EMG SIGNAL AS AN AR-GARCH PROCESS

We fitted an AR model to the EMG signal with an appropriate
order that results in white residuals. Specifically, we used the
Ljung-Box modified Q-statistic [6] to test that the series of
residuals exhibits no correlation. We found that an AR model
of order 35 (or higher) corresponds to uncorrelated residuals.
We performed this test for hundreds of EMG signals recorded
from different muscles performing different movements. We
found that the AR model order ranges between 35 to 40 in
most cases.

3.1. Heteroscedasticity of the EMG signal

In his seminal paper, Engle proposed a test for heteroscedas-
ticity [3]. Under the null hypothesis, all ARCH parameters
are zero and under the alternate hypothesis, at least one
ARCH parameter is non-zero. Formally, we have from Eq.
(2)

H0 : α1 = α2 = . . . = αp = 0,

H1 : αi 6= 0, i = 1, 2, . . . , p.
(7)

Engle showed that the derived statistic, R2, can be viewed as
the coefficient of determination of the regression of ε2t on an
intercept and p lagged values of ε2t [3]. Additionally, it can
be shown that R2 is asymptotically distributed as χ2 with p
degrees of freedom when the null hypothesis is true. The test
procedure is therefore to run OLS (Ordinary Least Squares)
regression and save the residuals. Regress the squared residu-
als on a constant and p lags and test R2 as a χ2

p. This test can
be shown to be asymptotically locally most powerful test [3].



We performed the heteroscedasticity test on various EMG
signals and the test resulted in the rejection of the null hy-
pothesis for all the signals. That is, EMG signals are het-
eroscedastic. As an example, the results of the test on the
EMG measurements collected from the tibialis anterior mus-
cle are shown in Table 1 for p = 10, 20 and 50, and with a
95% confidence interval.

Table 1. Results of the test for the heteroscedasticity
p Test statistic Critical value
10 456.93 18.31
20 526.17 31.41
50 597.48 67.50

3.2. Goodness of fit

Finally, we used the Akaike Information Criterion (AIC) to
compare the goodness of fit of the EMG signal to AR(p) and
AR(p)-GARCH models for different values of p. Figure 1
shows that the AIC values for the AR(p)-GARCH(1,1) model
are lower than the corresponding values for the AR(p) model
for p = 1, · · · , 50. This confirms that the AR-GARCH pro-
cess better models the EMG signal than the corresponding
stationary AR model.
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Fig. 1. Goodness of fit of the EMG signal to the AR(p) and
AR(p)-GARCH(1,1) models.

4. MUSCLE ACTIVITY ENVELOP DETECTION
USING AR-GARCH

Once we have modeled the EMG signal as an AR-GARCH
process, we estimate the parameters of the model using the
maximum likelihood technique [4, 3]. First, from (2), we ob-
tain the maximum likelihood estimate of the conditional vari-
ance σ2

t . Next, we propose a detection scheme based upon the
(estimated) AR-GARCH conditional variance in order to de-
tect the muscle contraction periods from noisy EMG measure-
ments. Our method relies on the assumption that the volatility
behavior obtained by σ2

t is reflective of the activity period of
the EMG signal. Therefore, to search for the segments cor-
responding to muscle activity, we extract the large volatility

parts from the signal. We perform the segmentation using a
threshold that depends on the expectation and standard devia-
tion of the conditional variance σ2

t . In each window segment,
the threshold is computed as

t1 = E[σ2
t ] + g × std(σ2

t ), (8)

where g is an arbitrary number and its value may depend upon
the noise in the EMG signal; in our simulations we used g =
100. We can further compare the threshold at each frame with
the threshold at the previous frame as follows; for the first
frame of samples, we compute the first threshold t1 using Eq.
(8). For the second frame, we calculate the second threshold
t2. We select t2 as the threshold if t2 ≤ t1, otherwise use
t1 as the threshold. Similarly, in each frame, we choose the
minimum value of the current and previous threshold values.
This procedure leads to a smoother detector.

4.1. Post-processing

Given the stochastic nature of the signal, the detector output
can be affected by erroneous transitions. It is generally ac-
cepted that a muscle activation shorter than 30 ms has no ef-
fect in controlling the joint motion during gait [5]. Most EMG
activity detection algorithms perform a post-processing step
in order to ignore detected periods lasting less than 30 ms [5].
We applied post-processing using this criteria to the detector
output.

5. EXPERIMENTAL RESULTS

5.1. EMG data recording

We measured the EMG signals of both healthy and young par-
ticipants from lower extremity muscles while performing var-
ious movements. We used the Noraxon TeleMyo DTS Wire-
less EMG system to record the EMG data on Vicon Nexus
1.7.1. In this work, we present the EMG signals from the
tibialis anterior muscle in a Sit-to-Stand movement recorded
at 1500 Hz. To show the importance of accounting for the
time-varying nature of the conditional variance of the EMG
signal, we compare our AR-GARCH-based detector with the
standard double threshold detector [5]. The double threshold
technique is based on a hypothesis testing framework and can
be viewed as a variant of the energy detector.

5.2. Muscle activity detection

Figure 2 shows the EMG activity detection from the tib-
ialis anterior muscle with three activity periods using the
AR-GARCH and the double threshold detectors. Figure 3
provides a closer look at the performance of both detectors.
We found that the detection accuracy of the AR-GARCH-
based method was 98.06%, whereas the double threshold
detector had a lower accuracy of 92.41%.
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Fig. 2. Detection of muscle activity periods: (a) The AR-GARCH detector; (b) The double threshold detector.
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Fig. 3. Detection of muscle activity period: a zoomed view of the first envelop of activity from Fig. 2.

6. CONCLUSION

In this paper, we showed that the EMG signal is non-
stationary and this non-stationarity is due to the time-varying
nature of its conditional variance. This type of non-stationarity
is called heteroscedasticity. Heteroscedastic processes are
characterized by volatility segments as in the case of EMG
signal. We exploited this feature in order to detect the onset
and offset periods of muscle activities in the EMG signal. An
accurate detection of these periods is crucial in many clinical
and biomedical applications, such as Parkinson’s disease and
the development of robotic arms. We used the AR-GARCH
model, suitable for heteroscedastic processes, to model and
estimate the volatility as measured by the conditional vari-
ance of the model. The proposed algorithm relies on the
fact that large-volatility periods of the signal correspond to
muscle activity. We showed that the proposed AR-GARCH-
based detector is more accurate than the widely adopted
double threshold detector. Future research will extend this
work to include further applications of the heteroscedastic
model such as EMG feature extraction for multi-function
myoelectric control and EMG amplitude estimation.
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