
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 7, APRIL 1, 2013 1733
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Abstract—In this paper, we develop a comprehensive framework
for optimal perturbation control of dynamic networks. The aim of
the perturbation is to drive the network away from an undesirable
steady-state distribution and to force it to converge towards a de-
sired steady-state distribution. The proposed framework does not
make any assumptions about the topology of the initial network,
and is thus applicable to general-topology networks. We define the
optimal perturbation control as theminimum-energy perturbation
measured in terms of the Frobenius-norm between the initial and
perturbed probability transition matrices of the dynamic network.
We subsequently demonstrate that there exists at most one optimal
perturbation that forces the network into the desirable steady-state
distribution. In the event where the optimal perturbation does not
exist, we construct a family of suboptimal perturbations, and show
that the suboptimal perturbation can be used to approximate the
optimal limiting distribution arbitrarily closely. Moreover, we in-
vestigate the robustness of the optimal perturbation control to er-
rors in the probability transition matrix, and demonstrate that the
proposed optimal perturbation control is robust to data and infer-
ence errors in the probability transition matrix of the initial net-
work. Finally, we apply the proposed optimal perturbation control
method to the Humanmelanoma gene regulatory network in order
to force the network from an initial steady-state distribution associ-
ated with melanoma and into a desirable steady-state distribution
corresponding to a benign cell.

Index Terms—Control, dynamical systems, gene regulatory net-
works, Markov chains, perturbation.

I. INTRODUCTION

E LUCIDATION of the interactions between molecular
structures in biological organisms can provide valuable

insights into human diseases, including cancer [1]. Spurred
by advances in molecular profiling technology, computational
models of cellular networks have been sought, and a variety of
algorithms to infer the structure of molecular networks have
been proposed and evaluated [2]–[7]. From a translational per-
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spective, molecular networks provide the ultimate framework
to develop of genomic-based therapy and treatment. The main
challenge is to design optimal intervention strategies that rely
on molecular network models in order to avoid undesirable
cellular states, e.g., metastasis. Modification of the molecular
network may be biologically viable by perturbation of the
expression level of target genes. Such perturbations have been
shown to occur as a result of the introduction of a chemical
substance (e.g., acid or RNAi) or exposure to radiation (e.g.,
light) that may alter the extant behavior of the cell [8]. Recent
methods developed in the field of biotechnology have demon-
strated the ability to perturb, silence or activate the expression
level of genes in a desirable manner [8].
Despite all of the work that has been devoted to the infer-

ence of genomic and proteomic regulatory networks from pro-
file datasets, little effort has been devoted thus far towards the
control of molecular networks. The difficulty stems from the
fact that traditional control theory, developed for engineering
systems, is not readily applicable to biological systems. Tradi-
tional control schemes rely on an exogenous control signal pro-
vided to input nodes, and used to minimize the total cost of the
system [9]. In biology, however, cost functions ofmolecular sys-
tems are unknown and there are no obvious input variables that
can be used to control the system. Even if target genes were to
be used as control variables, they may not be able to control all
of the genes in the network and thus cannot guarantee controlla-
bility of the regulatory network [10]. Nonetheless, by assuming
knowledge of a cost function and of target genes, Datta et al.
[11] and Faryabi et al. [12] derived an optimal control policy,
i.e., a rule at each time instant used to control the target genes
in order to minimize the cost function. Different choices of the
cost function lead to distinct control strategies, in terms of ef-
ficiency, computational complexity and robustness [13], [14].
Furthermore, the effect of the external control is limited to the
duration of application of the control. That is, the network will
remain controlled only in the presence of the control inputs.
Once the control inputs have been removed, the network will
rely on its original dynamics and will no longer be controlled,
and the system is thus likely to transition to an undesirable state.
In biology, however, we are interested in the steady-state be-
havior of gene regulatory networks, which has been associated
with phenotypes such as cell proliferation and apoptosis [15].
An efficient control strategy for biological networks should,

therefore, alter the dynamics governing the molecular network
in order to shift its steady-state mass to a favorable cellular state
[16]. This limitation suggests a different strategy for biological
intervention from traditional control. Shmulevich et al. [16] re-
lied on genetic algorithms to modify the steady-state distribu-
tion of undesirable states. In [17], the impact of function per-
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turbations in Boolean networks was explored. However, the ap-
proach proposed was limited to singleton attractors. Moreover,
the algorithms developed were computationally complex due to
the requirement to determine the state changes before and after
perturbations. An analysis of steady-state distributions for struc-
turally perturbed probabilistic Boolean networks (PBNs) was
presented in [18]. This analysis, however, focused on rank-one
perturbations, and a proposed extension to higher-rank pertur-
bations relied on an iterative and computationally expensive
method.
A general method for network perturbation was introduced in

[19]. The proposed approach was based on the design of a per-
turbation that changes the steady-state distribution of the net-
work from its original undesirable steady-state distribution to a
desirable one. However, the method is limited to ergodic, i.e.,
irreducible and aperiodic networks. Furthermore, although the
method presented in [19] ensures that the desired state is a pos-
sible steady-state for the perturbed network, it does not guar-
antee that the perturbed network will converge towards the de-
sired steady-state distribution. In fact, a network may possess
a desired steady-state distribution, but fail to converge to the
desired state. In systems biology, however, we are not only in-
terested in changing the dynamical landscape of the molecular
network, but must also force the network to converge to the de-
sired steady-state distribution.
In this paper, we present a comprehensive framework to ad-

dress optimal intervention in general-topology, not necessarily
ergodic, networks and the convergence of the networks towards
a desired steady-state distribution. The proposed framework
of optimal perturbation control in general topology networks
can be applied to any discrete-time system, which can be mod-
eled by a finite-state Markov chain model. Examples include
queuing networks, resource allocation, social and biological
networks, and machine replacement. The remainder of the
paper is organized as follows: In Section II, we investigate
the feasibility of perturbation control of general-topology
networks. In Section III, we formulate and derive the optimal
perturbation algorithm. Robustness of the proposed approach
to optimal perturbation control is investigated in Section IV. In
Section V, we present simulation results for both a synthetic
network as well as a biological network (namely, the Human
melanoma gene regulatory network). Finally, in Section VI, we
provide a brief summary and discussion of the main results of
the paper.
In this paper, we consider real variables. We use to denote

the set of real numbers. Scalars are denoted by lower case letters,
e.g., , . Vectors in are denoted by bold letters, numbers,
or lower-case Greek letters, e.g., , , , where denotes a
vector all of whose components are equal to one. denotes
the transpose of the vector . Matrices in are denoted by
bold capital letters or upper-case Greek letters, e.g., , , .
stands for the identity matrix.

II. FEASIBILITY PROBLEM

We consider a gene regulatory network with genes
, where the expression level of each gene is quan-

tized to values. The expression levels of all genes in the

Fig. 1. (a) The graph of a reducible Markov chain. (b) The graph of an irre-
ducible but periodic Markov chain.

network defines the state vector of the network. The dynamics
of this network can be represented by a finite-state homo-
geneous Markov chain described by a probability transition
matrix of size [20]. The probability transition
matrix encapsulates the one-step conditional probabilities of
the genes thus indicating the likelihood that the network will
evolve from one state vector to another. We do not assume any
particular structure on the initial network topology .
Definition 1: A row probability vector is

called a stationary distribution, or a steady-state distribution, for
if .
Because is stochastic (i.e., its rows sum up to unity), 1 is

an eigenvalue of , and, therefore, has at least one stationary
distribution. The chain is irreducible if its state space is a single
communicating class; in other words, if every state is reach-
able from every other state. If is irreducible, it has a unique
stationary distribution and is strictly positive [21]. If is
irreducible and aperiodic, it is called ergodic. For an ergodic
probability transition matrix , we have convergence towards
the unique, strictly positive, steady-state distribution, in the fol-
lowing sense,

(1)

Equation (1) states that for any initial state distribution , we
have . That is, the network converges to the
stationary distribution from any initial state distribution or the
basin of attraction of is the entire state-space. AMarkov chain
can fail to converge for two reasons (or combinations thereof).
1) The chain is reducible, as in the example shown in
Fig. 1(a), where

In this case, the set of all stationary distributions is the
convex hull spanned by and . In par-
ticular, the matrix does not converge towards a rank-one
matrix.

2) The chain is irreducible but periodic, as in the example
shown in Fig. 2(b), where

In this case, even though the chain admits a unique sta-
tionary distribution, , does not converge
to .
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Fig. 2. Optimal inverse perturbation of the Human melanoma gene regulatory network. (a) The probability transition matrix, , of the melanoma gene regula-
tory network. (b) The initial steady-state distribution (blue) and two different desired steady-state distributions, (green) and (red), which correspond to a
downregulation of the gene WNT5A. (c) The optimal perturbed matrix corresponding to the steady-state distribution (green). converges to . (d) The
optimal perturbed matrix corresponding to the steady-state distribution (red). does not converge to . (e) The perturbed matrix
converging towards . (f) The perturbed matrix converging towards at the same rate as converges towards .

Let us consider an initial molecular network, modeled as a
Markov chain process, with probability transition matrix .
Unlike the work in [19], which assumed an ergodic probability
transition matrix, we do not impose any particular structure
on or the underlying Markov process. Actually, we intu-
itively suspect large molecular networks to be reducible and/or
periodic, hence non-ergodic. Therefore, the initial network
has at least one steady-state distribution. Suppose one initial
steady-state distribution is undesirable, e.g., reflects a disease
cellular state. Our goal is to design an optimal perturbation
matrix such that the perturbed matrix converges to the
desired steady-state distribution as its unique steady-state
distribution. In other words, we propose to alter the dynamical
landscape of the network by replacing all initial stationary
distributions by the unique desirable steady-state. We perturb
the matrix as

(2)

where is a zero-row sum perturbation matrix. The zero
row-sum condition is necessary to ensure that the perturbed
matrix is stochastic. Let us denote by the desired stationary
distribution. The following Lemma provides a necessary and
sufficient condition for a stochastic matrix to converge towards
its steady-state distribution.

Lemma 1: Consider a stochastic matrix . Let denote a
stationary distribution of . Then, we have

(3)

where SLEM denotes the second largest eigenvalue magnitude,
where the eigenvalues are counted with their algebraic multi-
plicity. In other words, the stochastic matrix converges towards
its steady-state distribution if and only if 1 is a simple eigenvalue
of and all other eigenvalues have magnitude strictly less than
1.
It follows from Lemma 1 that a perturbation matrix, which

forces the network to converge towards the desired steady-state
distribution, must satisfy the following four conditions:
(i)
(ii)
(iii)
(iv)
Condition (i) states that is a stationary distribution of
(not necessarily unique). Condition (iv) establishes that the

stationary distribution is unique and the perturbed matrix con-
verges towards it. Conditions (ii) and (iii) ensure that the per-
turbed matrix is a proper probability transition matrix, i.e.,
it is stochastic and elementwise non-negative. Let denote the
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feasible set of perturbation matrices, i.e., is the set of matrices
satisfying conditions (i) through (iv),

(4)

Observe that . It is straightforward to
check that satisfies conditions (i), (ii), and (iii). Moreover,

. In particular,
the feasible set , and therefore, there exists at least one
perturbation, , which forces the network to converge towards
the desired steady-state. The following proposition provides a
characterization of the feasible set of perturbations.
Proposition 1: Given a stochastic matrix and given a de-

sired probability vector not proportional to , consider the
basis formed by the vectors ,

, i.e., is a linear combination of and
that is orthogonal to , and for . If is
proportional to , then define and for .
Let be the representation matrix of basis in the canonical
basis. Then, the perturbed matrix is similar to a
block form matrix, , i.e.,

(5)

where

...
(6)

and the ’s are any real value such that elementwise, and
the magnitude of the maximum eigenvalue of the
submatrix of ’s is strictly less than unity.
For instance, a feasible solution is obtained when all values
are equal to zero. In this case, . From Proposition 1,
we can see that there are infinitely many perturbations, which
force the network to converge towards the desired steady-state
distribution . All such perturbations are plausible interven-
tion strategies, and can be used to drive the network towards
the desired steady-state at equilibrium. At this point, a question
arises “Which feasible perturbation(s) are optimal?” To answer
this question, we need to define an optimality criterion. In this
paper, we consider the minimum energy constraint in order to
minimize the overall “energy” of change between the initial and
perturbed networks.

III. OPTIMAL PERTURBATION CONTROL

We define the “energy” of a network as the Frobenius norm
of its probability transition matrix. The Frobenius norm of

is defined as ,
where denotes the trace of matrix . The minimum-en-
ergy perturbation, which drives the network towards the de-
sired steady-state, is the solution to the following optimization
problem

(7)

where is the feasible set defined in (4). Since the Frobenius
norm is strictly convex, there exists at most one solution to the

problem in (7). In general, the optimal solution belongs to the
closure, , of the feasible set , where is given by

(8)

Denote by the minimum Frobenius norm perturbation ma-
trix over the closure . We know that exists and is unique
because the set is convex and closed. Moreover, can be
computed efficiently as the solution of a semi-definite program-
ming algorithm [19].
A geometric characterization of the optimal perturbation can

be obtained as follows:
Proposition 2: Let , and consider the set

defined as

(9)

Then, the optimal perturbation matrix (over ) is given by

(10)

where denotes the unique projection of onto the convex
set 1.
This geometric characterization will be useful in the robust-

ness analysis of the optimal perturbation (see Section IV).
In what follows, we show that is also the unique optimal

solution of the problem in (7) if .
Proposition 3: Let . Then,
. Moreover, if , then it is the unique optimal solution

of (7).
Two important points can be drawn from Proposition 3. First,

the existence of the optimal perturbation, which drives the net-
work towards the desired steady-state distribution, is indepen-
dent of the initial structure of (i.e., whether the initial net-
work is ergodic or not). In particular, this result generalizes the
work in [19]. Furthermore, even if was ergodic, the optimal
perturbation may result in a non-ergodic perturbed network.
That is, the optimal perturbation may alter the structure and con-
nection properties of the initial network. Second, the existence
of the optimal perturbation depends on the specific values of
and . For instance, if has zero entries, then the perturbed
probability transition matrix will be reducible,
i.e., not fully communicating, and may not converge towards
.
In the case that the optimal perturbation matrix does not exist

(due, for instance, to the particular structure of and ), we
can still get arbitrarily close to the optimal solution by consid-
ering a sequence which converges towards . The fol-
lowing proposition provides a construction of such a sequence.
Proposition 4: Assume that , i.e.,

. Consider the family of matrices described by

(11)

where is a sequence converging to zero, i.e.,
. Then, we have

1) , .

1Note that projection, here, refers to minimal distance to the set. Because
is not a vector subspace, we cannot define (orthogonal) projection onto .

However, we can determine the closest point in to a given point in .
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2)
3) , .
In particular, the perturbation matrix,

, where is any small number, approximates the op-
timal perturbation, and forces the network out of its undesirable
steady-state distribution and into the desirable one.
From Lemma 1, the convergence of the perturbed network

towards the desired steady-state is guaranteed by the condi-
tion . On the other hand, the second largest
eigenvalue modulus defines also the rate of convergence to-
wards the steady-state distribution [21]. The smaller the SLEM,
the faster the convergence towards the steady-state. In partic-
ular, if the SLEM is close to unity (while being strictly smaller
to 1), the perturbed network will converge extremely slowly
to the desired steady-state, and the designed control will be-
come unpractical. Therefore, we propose to replace the con-
straint by , for some .
This new constraint has two advantages: First, it avoids the slow
convergence scenario by making sure that the convergence rate
is at least equal to . Second, it ensures the existence of the
optimal perturbation because the feasible set becomes closed.
The price paid, however, is that the new optimal perturbation
has a higher energy than the optimal solution of (7).
Let us consider the new feasible set

(12)

where . Then, the optimization problem

(13)

admits a global solution because the Frobenius norm is strictly
convex and the feasible set is closed. However, unlike ,
is not convex because the SLEM function is not convex for non-
symmetric matrices. Therefore, the optimal solution may not
be unique. Moreover, the optimization problem in (13) cannot
be solved using convex minimization methods or solvers [22].
Nevertheless, we can find an explicit sub-optimal solution if we
restrict the search space to the line between the minimum energy
perturbed matrix, and the limiting matrix ,
i.e., we consider the following parameterized family of matrices

(14)

Equation (14) can be thought of as a continuous transformation
of into . The perturbation matrix is
then given by

(15)

It is easy to verify that the family . The minimum
energy solution over the parameterized set of perturbation ma-
trices can be computed using the following Lemma from
[19].
Lemma 2 [19]: Consider the family of parameterized ma-

trices in (14). We have
1) .
2) is an increasing function of .

In particular, observe that for , the perturbed family
of matrices has , and therefore, converges to-
wards its unique steady-state distribution. Lemma 2 states that
the SLEM of the perturbed matrix decreases when increases,
and hence the convergence (towards the desired steady-state)
is faster. On the other hand, the norm of the perturbation ma-
trix, and hence the energy deviation between the original and
perturbed networks, increases as a function of . Therefore, the
minimal energy perturbation over the family , ,
is obtained when . Explicitly, we have

(16)

If the optimal perturbation does not exist, i.e., ,
we have

(17)

IV. ROBUSTNESS OF THE OPTIMAL PERTURBATION CONTROL

In practice, the probability transition matrix of the initial net-
work, , is estimated using expression data [20]. Errors made
during data extraction, feature selection, and network inference
will propagate and impact the actual success of the designed
control. An efficient intervention approach must, therefore, pos-
sess some degree of robustness or insensitivity to data and esti-
mation errors.
We assume that the estimated probability transitionmatrix

is given by

(18)

where is a zero-row sum matrix representing noisy and
missed data and estimation errors in . We show that the norm
of the error in the optimal perturbation matrix is bounded by the
norm of the error in . We first present the following Lemma.
Lemma 3: Consider a vector subspace , equipped with an

inner product norm , and a convex subset . Let ,
be two points in , and , be their respective closest points
in . Then, we have

(19)

Proposition 5: The estimated optimal perturbation matrix,
, satisfies , where is the optimal perturba-

tion matrix and is an error zero-row sum matrix satisfying

(20)

That is the norm of the error in the optimal inverse perturbation
matrix is bounded by the norm of the error in , and the op-
timal perturbation control is robust to data and inference errors.

V. SIMULATION RESULTS

The Markov probability transition matrix, describing the dy-
namics of the network at the state level, is related to the actual
gene network by observing that the probability law describing
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the genes’ dynamics can be obtained as the marginal distribu-
tion of the state transition probabilities:

(21)

where denotes the set of all ’s except ; i.e.,
. In order to capture

the dynamics of the gene network, a “wiring rule” is considered
in [20] such that the expression level of each gene at the next
step is predicted by the expression levels of the genes at the
current step. We define the gene network matrix, , as the
matrix whose entries are the conditional probabilities of the
individual genes expression levels given the current network
state, i.e., given the expression levels of all other genes. We
order the columns of such that the first columns indicate the
probabilities of gene , respec-
tively, given the network states; the next columns provide the
probabilities of gene given the network states,
and so on. For instance, for a binary quantization , we
have
and . Formally, the gene network
matrix, for a binary quantization, is defined as

where

if is even;
if is odd.

if is even;
if is odd.

We first illustrate how the proposed optimal perturbation con-
trol alters the dynamics of the gene network through the fol-
lowing example.

A. Synthetic Example

Consider a two-gene network, , , where the expression
level of each gene is quantized to 0 (downregulated) and 1 (up-
regulated). Hence, the state-space of the network has 4 states:
00, 01, 10, and 11. Let us assume that the probability transition
matrix of this network is given by

(22)

The gene network matrix can be computed using (22) as

(23)

Observe that gene is always upregulated when the network
is at state 00. We have

. Hence .
Also, observe that there are no state feedback loops, i.e., the di-

agonal of the p.t.m. has zero entries. This network converges
towards the steady-state distribution

(24)

Assume that the state 10, which has steady-state mass equal
to 0.3276 corresponds to an undesirable cellular state, and all
other states are equally desirable. We, therefore, wish to design
an optimal perturbation, which forces the network to converge
towards the desired steady-state

(25)

The optimally perturbed p.t.m. is computed as

(26)

The gene network dynamics after control is, therefore, given by

(27)

Observe that, in the controlled network, gene 1 may become
downregulated if the network is at state 00: we have

. On the other hand, the control did
not alter the genes’ expressions given the network state 10, i.e.,
the third rows of and are identical. The control, how-
ever, introduced state feedback loops (the diagonal of the per-
turbed p.t.m. is not identically zero). Finally, observe that
even though the optimally perturbed p.t.m is reducible (state 10
is not reachable), it converges towards the desired steady-state
distribution as its unique steady-state distribution.

B. Human Melanoma Gene Regulatory Network

We consider the Human melanoma (skin cancer) gene
regulatory network [23]. The abundance of mRNA for the
gene WNT5A was found to be highly discriminating between
cells with properties typically associated with high versus
low metastatic competence. Furthermore, it was found that an
intervention that blocked the Wnt5a protein from activating
its receptor, the use of an antibody that binds the Wnt5a pro-
tein, could substantially reduce Wnt5A’s ability to induce a
metastatic phenotype [11], [18], [23]. This suggests a control
strategy that reduces WNT5A’s action in affecting biological
regulation.
A seven-gene probabilistic Boolean network model of the

melanoma network containing the genesWNT5A, pirin, S100P,
RET1, MART1, HADHB, and STC2 was derived in [24]. The
Human melanoma Boolean network consists of states
ranging from to , where the states are ordered as
WNT5A, pirin, S100P, RET1, MART1, HADHB, and STC2,
with WNT5A and STC2 denoted by the most significant bit
(MSB) and least significant bit (LSB), respectively.
Because the aim is to downregulate the WNT5A gene, the

states from 64 to 127, which correspond to WNT5A upregu-
lated, should have near zero steady-state mass. In our simula-
tions, we consider two different desired steady-state distribu-
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Fig. 3. versus (blue), and versus (red), where
is given by (11).

tions and , shown in Fig. 2(b). The first distribution, ,
assigns probability to the states having WNT5A upregu-
lated and a uniform mass equal to 0.015525 to the other states.
The second distribution, , also assigns a uniform mass of

to the undesirable states but assigns random probabilities
to the other states such that the total probability mass is equal
to 1. The first and second steady-state distributions are plotted
in blue and red, respectively, in Fig. 2(b). The corresponding
optimal perturbed transition matrices, and , are depicted
in Fig. 2(c) and (d), respectively. The original transition ma-
trix, , is shown in Fig. 2(a). The matrix plots are obtained
using the function MatrixPlot in MATHEMATICA. They pro-
vide a visual representation of the values of elements in the ma-
trix. The color of entries varies from white to red corresponding
to the values of the entries in the range of 0 to 1. We have

and . Therefore, the optimal
perturbed network with p.t.m. converges towards the de-
sired stationary distribution , whereas there exists no optimal
perturbation, which forces the network to converge towards .
However, from Proposition 4, we can design perturbation ma-
trices that are arbitrarily close to the optimal solution.
We now consider the desired steady-state distribution ,

which corresponds to a and hence an opti-
mally perturbed matrix which does not converge towards the
desired steady-state. Proposition 4 states that the corresponding
sequence of perturbation matrices , given by (11), corre-
spond to ergodic perturbed matrices, which converge towards
. In Fig. 3, we plotted and versus
. Observe that the SLEM is a decreasing function, whereas the

Frobenius norm increases with . In particular, given a ,
there exists such that , and .
Therefore, can be considered as suboptimal solutions to the
inverse perturbation problem in (7). Fig. 2(e) shows the p.t.m.

for , and Fig. 2(f) shows
for . From

(17), converges towards at the same rate as converges
towards .

Fig. 4. Optimal inverse perturbation of the Human melanoma gene regulatory
network. (a) The Human melanoma gene network matrix, . (b) The optimal
melanoma gene network matrix, corresponding to the steady-state distri-
bution . (c) The optimal melanoma gene network matrix, corresponding
to the steady-state distribution . (d) The optimal melanoma gene network
matrix, corresponding to the p.t.m. (in Fig. 2(e)) for . (e) The
optimal melanoma gene network matrix, corresponding to the p.t.m. (in
Fig. 2(f)).

TABLE I
FROBENIUS DISTANCES BETWEEN THE PROBABILITY

TRANSITION MATRICES IN FIG. 2

TABLE II
FROBENIUS DISTANCES BETWEEN THE GENE NETWORK MATRICES IN FIG. 4

The corresponding gene network matrices are plotted in
Fig. 4. Tables I and II show the Frobenius distances between
the probability transition matrices and the gene network
matrices, respectively. In particular, observe that a “small”
perturbation of the p.t.m. leads to a “small” perturbation in the
corresponding gene network. This can be seen as follows: If
the probability transition matrix is perturbed linearly with
a zero-row sum matrix , then conditional
probability of each gene is perturbed
linearly by , where is the index of the state vector

and is an interval isomorphic to .
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In particular, “small” perturbations of the proba-
bility transition matrix that satisfy the zero-row sum condition

, lead to “small” perturbations of the genes’
dynamics.
TheMATLAB andMATHEMATICA codes are posted online

at http://syen.ualr.edu/nxbouaynaya/TSP%202012.html. Also,
the numerical values of all output matrices in Figs. 2 and 4 can
be downloaded in Excel format from the same website.

VI. CONCLUSION

In this paper, we presented a comprehensive framework for
optimal perturbation control of general-topology networks. The
aim of perturbation control is to perturb the network in such
a way that it will drive the network away from an undesirable
steady-state distribution and into a desirable one. We proved
that there are infinitely many perturbations, which can serve as
control strategies and achieve the aim of perturbation control.
We defined the optimal perturbation as the minimum Frobe-
nius-norm perturbation that minimizes the energy between the
probability transition matrices of the initial and perturbed net-
works. We demonstrated that there exists at most one solution
to the optimal perturbation control problem. The existence of
an optimal perturbation control depends both on the initial net-
work dynamics as well as the desired steady-state distribution.
In the event that an optimal perturbation control does not exist,
we constructed a family of suboptimal perturbations, which ap-
proximate the optimal limiting distribution arbitrarily closely.
Moreover, we investigated the robustness of optimal perturba-
tion control to errors in the initial probability transition matrix,
and showed that the proposed perturbation control method is
robust to data and inference errors in the probability transition
matrix of the initial network. The proposed optimal perturba-
tion control in general-topology networks can be applied to any
system modeled as a discrete-time homogeneous Markov chain
in order to reach a desired steady-state distribution. Examples
include computer networks and social networks. We applied the
proposed optimal perturbation control to the Human melanoma
gene regulatory network, where the desired steady-state distri-
bution corresponds to down-regulation of the WNT5A gene.
The aim of perturbation in this case is to force the network
away from its initial steady-state distribution associated with
melanoma and into a benign state corresponding to a healthy
cell. Steady-state distributions of gene regulatory networks have
been associated with phenotypes such as cell proliferation and
apoptosis.
Current biotechnology methods, however, may not easily

translate into implementation of optimal control strategies. For
example, in order to implement the proposed optimal control of
the gene regulatory melanoma network in a laboratory setting,
the probability that the network is in a given state should be
determined experimentally by observing the dynamics of the
melanoma cell over a period of time. We nonetheless believe
that future translational research efforts will benefit from the
proposed mathematically rigorous modeling and derivation
methodology introduced in this paper provided it is properly
adapted by incorporating clinical constraints dictated by the
state-of-the-art molecular biotechnology techniques. For in-
stance, although we have adopted the minimization of the
energy, or the Frobenius norm, as the cost function used for

Fig. 5. Graphical illustration of the proof of Lemma 3.

determining the optimal perturbation control, other clinical ob-
jective criteria can and should be considered for determination
of the optimal perturbation strategy in order to more closely
adhere to clinical concerns. Furthermore, despite our focus
on perturbation of the gene expression levels, other clinical
control parameters can and should be considered in the future as
potentially far more powerful methods for molecular network
perturbation for gene regulation.

APPENDIX A
PROOF OF LEMMAS

Proof of Lemma 1: The proof follows immediately from
the Jordan decomposition of the matrix . Since is stochastic,
1 is the largest magnitude eigenvalue, and for any other eigen-
value , we have . Therefore, converges towards its
steady-state distribution if and only if .

Proof of Lemma 3: Consider the line . Let
(resp., ) be the hyperplane orthogonal to at
(resp., ). Then, must be to the left of (see Fig. 5),
otherwise some point strictly inside the segment
will be closer to than . Similarly, must be to the right
of . Therefore, .

APPENDIX B
PROOF OF PROPOSITIONS

Proof of Proposition 1: We will distinguish between the
matrix and its corresponding operator . Let us find a finite
dimensional operator that satisfies:

(28)

Consider the basis defined as follows:
, and , for . We know

that the operator can be written in the following form

(29)

Applying the operator to the vector , we obtain

(30)

Since by construction, the condition is equiv-
alent to and , for . Similarly, the
condition is equivalent to and , for
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. Finally, the operator satisfying the two condi-
tions in (28) can be written as:

(31)

Applying the operator in (31) to the basis , we obtain the
desired block form representation . The condition
is satisfied if and only if for all ,
or equivalently , where denotes the

canonical basis, i.e., the standard basis for the Euclidean space
.
The fact that the magnitude of the maximum eigenvalue of

the submatrix of ’s is strictly less than
unity follows from the condition that . Given
the block-diagonal structure of , is equal to the
maximum eigenvalue of the submatrix.

Proof of Proposition 2: We first observe that any feasible
perturbation matrix can be written as

(32)

where . Therefore, the optimization problem over is
equivalent to minimizing the Frobenius norm of sub-
ject to . It is straightforward that the solution to this
problem is

(33)

Therefore, .
Proof of Proposition 3: Because is a stochastic

matrix, we have . Therefore, . If
, then and because ,

is also the optimal solution of the optimization problem in (7).

Proof of Proposition 4: We will prove each of the three
facts separately.
1) We need the following Lemma from [19]
Lemma 4 [19] Let

(34)

where and . Then, we have

(35)

Because is a stochastic matrix, we have
. Therefore, from Lemma 4, we obtain
for . It is easy to check that satsfies

conditions (i)–(iii). Hence, , .
2) The fact that is obvious given that .
3) We have , and is the unique Frobe-
nius norm minimizer over . Hence, .
Moreover, . In particular, , .
Therefore, we have strict inequality ,

.

Fig. 6. Graphical illustration of the proof of Proposition 5.

Proof of Proposition 5: From proposition 2, we have

(36)

(37)

(38)

Let be the subspace defined by the two equality constraints,
i.e., . Let us consider the
decomposition of as

(39)

where and are, respectively, the projections of
onto the subspace and its orthogonal . Then (38) becomes

(40)

Let us further decompose into the subspaces parallel and

orthogonal to , i.e.,

(41)

We have

From Lemma 3 and given that is in the opposite direction

as (see Fig. 6), we have

(42)

Therefore,

Finally, (40) becomes

(43)

(44)

(45)
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