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ABSTRACT
Location data about U.S. heliports is often inaccurate or nonexistent in the FAA’s databases, which leaves pilots
and air ambulance operators with inaccurate information about where to find safe landing zones. In the 2018 FAA
Reauthorization Act, Congress required the FAA to collect better information from the helicopter industry under part
157, which covers the construction, alteration, activation and deactivation of airports and heliports. At the same time,
there is no requirement to report private helipads to the FAA when constructed or removed, and some public heliports
do not have up to date records. This paper proposes an autonomous system that can authenticate the coordinates in
the FAA master database, as well as search for helipads in a designated large area. The proposed system is based on
a convolutional neural network model that learns optimal helipad features from the data. We used the FAA’s 5010
database and others to construct a benchmark database of rotocraft landing sites. The database consists of 9,324 aerial
images, containing helipads, helistops, helidecks, and helicopter runways in rural and urban areas, as well as negative
examples, such as rooftop buildings and fields. The dataset was then used to train various state-of-the-art convolutional
neural network models. The outperforming model, EfficientNet-b0, achieved nearly 95% accuracy on the validation
set.

INTRODUCTION
Background and Motivation

Accurate information about the location and type of rotor-
craft landing sites is an essential asset for the Federal Aviation
Administration (FAA) and the Department of Transportation
(DOT). However, the acquisition, verification, and regular up-
dating of information about these landing sites is a challeng-
ing task. The lack of reliable information on helipad sites is a
risk factor in several accidents and incidents involving rotor-
crafts. The U.S. Helicopter Safety Team (USHST), of which
the FAA is a key member, has identified and produced recom-
mendations from their infrastructure working group to mod-
ernize and improve “the collection, dissemination, and accu-
racy of heliport/helipad landing sites” as a high priority to in-
crease helicopter safety.
There are thousands of landing locations for helicopters
spread across the United States. In general, rotorcraft opera-
tors can get information about helipads, heliports, and land-
ing sites using various databases, such as the FAA’s 5010
database. However, it is also well-known that the 5010
database and similar databases contain multiple inaccuracies
where some helipads in the database may no longer exist or
their coordinates are imprecise, and other helipads are miss-
ing from the database. The unreliability of this database is a
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consequence of the fact that there is no system to verify that
coordinates remain accurate, nor is there a system to search
for unreported helipads.

In this paper, we propose a machine learning solution to iden-
tify helipads, heliports, and other landing sites, from aerial
imagery, using convolution neural networks (CNNs) (Ref. 1).
We built a comprehensive database by manually checking the
FAA and other databases as well as augmenting them with
satellite images from Google Earth. We subsequently trained
and validated different state-of-the-art CNN models to deter-
mine an appropriate neural network model for this task.

The proposed deep learning solution will allow the FAA and
USDOT to automatically maintain an updated database of he-
lipads, heliports, and landing site infrastructure for the rotor-
craft community. This work presents the first step towards
autonomous identification of specialized heliport infrastruc-
ture and can be optimized with minimal cost using Google
Earth API. The results of this project will help the FAA and
USDOT achieve the first strategic goal of “Improving dura-
bility and extending the life of infrastructure” by providing an
updated record of the infrastructure without committing addi-
tional resources for data collection and recording.

Related Work

We can group the literature of identifying helipads from satel-
lite or aerial imagery into two main approaches. The first is a
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model-based approach, which relies on domain expert knowl-
edge to extract features that can be used to identify helipads
from images. A common feature used to identify helipads
is the “H” marking (Ref. 2), (Ref. 3). For vision-based au-
tonomous landing systems, an improved version of the Scale
Invariant Feature Transform (SIFT), called Speeded Up Ro-
bust Features (SURF), was used in (Ref. 2) to perform feature
points matching and tracking. Features points are compared
to points in an “H” template to determine the similarity of the
template and the aerial image. In (Ref. 4), the detection pro-
cess consists of finding candidate helipads based on the fol-
lowing four properties: 1) a bold circle surrounding the “H”,
2) presence of “H” in a bright color inside this circle against a
dark background, 3) “H” is centered at the center of the circle,
and 4) intersection of diagonals of “H” at the center of the cir-
cle. A Hough transforms was used to identify circles (Ref. 4).
Due to a large number of false positives, the authors used three
tests to eliminate these false positives. None of these tests are
precise and as a consequence, error ranges were added based
on experiments. After a helipad has been detected, a Median
Flow tracker (Ref. 5) was used to track the region.

A vision-based helipad detection algorithm based on curva-
ture was proposed in (Ref. 3). The method creates blobs of
connected pixels, and exploits some intrinsic properties of
each blob, such as the location of its center of mass, the Eu-
ler number, the eccentricity, the perimeter, and the area, to
identify the blobs which represent the helipad marks, namely
the character “H” and the circumscribing circles. The Euler
number is an integer value defined as the number of connected
components minus the whole numbers. In particular, the Euler
number is equal to zero for circle blobs and one for “H” blobs.
A final classification level checks the ratios between the areas
and perimeters of blobs against expected values. Following
detection, an identification step checks if the Euclidean dis-
tance of the centroids of the detected blobs and the ratios of
related areas and perimeters are still met. (Ref. 3). Once the
helipad marks have been identified, the Canny edge detector is
performed in order to extract the 12 corners of “H” edge. In-
stead of using feature extraction operators, such as the Hough
transform and line following algorithms, the authors used a ra-
dius of curvature for every 2-D point of “H” edge to detect the
corners of interest. A big radius value denotes that the point is
far from a corner while a small value indicates that the point
might be a possible candidate to be a corner. Three checks are
performed for all the possible corner candidates, based on the
knowledge of “H” size and exploiting the Euclidean distances
between these points and the centroid of H contour.

Although quite exhaustive, These model-based detection al-
gorithms have many restrictions. First, they were shown to
work only in simple simulated environments and may fail in
more complex environments. Secondly, these algorithms have
limited effectiveness at further distances and angles. Some
of these issues were addressed in (Ref. 6), where the authors
mainly relied on flat ellipse detection as it is the most visible
feature of a helipad seen from long distances. An adaption of
the Hough transform was devised for the specific case of very
flat ellipses. A validation step using many other properties

and visual clues performs the verification of the presence of
the helicopter landing platform in the research areas delimited
by the obtained ellipses.
The main advantage of the model-based approach is its ex-
plainability and its relatively good performance on small
datasets with no prior labeling. However while model-based
methods can identify helipads that adhere to the recommended
standard set in the FAA’s 150/5390-2C (Ref. 7), neither the
circle nor the “H” is a requirement for building a helipad.
Model-based methods will need to consider all possible fea-
tures of all types of helipads/heliports, including those that do
not adhere to the recommended standard, to generalize their
performance.
Data-driven algorithms, on the other hand, involve the col-
lection of large amounts of labeled data, autonomously learn-
ing salient features from the raw data, and identifying heli-
pads based on learned features. As such, data-driven systems
can identify complex patterns of helipads that may be hard
to model. The price paid is the large data and computational
resource requirements. To the best of our knowledge, data-
driven approaches to identify helipads are under-explored, de-
spite the growing prevalence of learning systems in real-world
applications. Nonetheless, there are online systems available.
HelloPad (Ref. 8) is a system that uses a machine learning
algorithm to identify helipads within a specified region. The
system uses a sliding window and a trained neural network
model (ResNet) to identify if a helipad exists at a given lo-
cation. HelloPad reported 67.2% precision and 90% recall in
a Los Angeles downtown area. However, HelloPad collected
negative (non-helipad) examples from urban settings, and will
likely not transfer well to all areas of the U.S.

CONVOLUTIONAL NEURAL NETWORKS
Learning Features with Convolutional Neural Networks

Object detection and identification requires considerable do-
main expertise to design features that transform the raw
data (such as the pixel values of an image) into a lower-
dimensional representation that is discriminatory for the in-
put. Convolutional Neural Networks (CNNs) are designed
to process multidimensional data arrays, such as images, by
automatically discovering the representations needed for de-
tection or classification. There are three types of layers in
a CNN: convolutional layers, pooling layers, and fully con-
nected layers. Each convolutional layer obtains, through con-
volutions followed by non-linear operators, representations
that are important for the classification task. A hierarchical
composition of these representations (starting with the raw
input), where each representation is fed to the next convo-
lutional layer, leads to learned features that are optimal for
discrimination. The first (convolutional) layers typically learn
low-level features, such as edges, and later layers extract more
complex semantic features. The key aspect of CNNs is that
these layers of features are not designed by human engineers
or domain experts: they are learned from data (Ref. 9).
A problem with the output feature maps is that they are sen-
sitive to the precise location of the features in the input. This
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Figure 1. Zoom level in Google API. Left: zoom level of 18; Right: zoom level of 20. At a zoom of 18, numerous possible
parking pads and a helipad are visible. The helipad is not visible at a zoom of 20.

means that small variations in the position of the feature in
the input image will result in a different feature map. One
approach to address this sensitivity is to coarse-grain the po-
sition of each feature through down-sampling, referred to as
“local translation invariance”. The role of pooling layers is
to summarize the feature maps by down-sampling, i.e., dis-
carding the finer details that may not be useful to the task,
creating an invariance to small shifts, while maintaining im-
portant structural elements. A typical pooling unit computes
the maximum value for each patch of the feature map.

Layers of convolutions, non-linearities, and pooling are
stacked to learn robust optimal features for the data, followed
by fully-connected layers that form the classifier for the ex-
tracted features. Backpropagating gradients through a CNN
is as simple as through a regular neural network, allowing all
the weights in all the filters to be trained.

How Convolutional Neural Networks perceive the World

While CNNs have achieved higher-than-human accuracy in
many computer vision tasks, they provide little insight into
their decision-making process (Ref. 10). With the com-
position of convolutions, non-lineariries, pooling and fully-
connected layers, very complex functions can be learned,
making deep learning models black boxes. This poor inter-
pretability significantly hinders the robustness evaluation of
the network, its further optimization, as well as understand-
ing the network adaptability and transferability to different
datasets. In the case of helipad detection, this question be-
comes “Does the network detect salient features of helipads
in the image, or does it detect other features that typically cor-
relate with the presence of a helipad?”. An understanding of
the learning process will allow for the identification of cases
where the algorithm might fail, and also build trust in learning
systems to allow for their safe deployment.

An intuitive approach to understand the inner workings of
deep learning models (such as CNNs) is the gradient saliency
map. This approach computes the gradient of the class score

with respect to the input image; thus, highlighting the ar-
eas of the input image that are discriminative with respect
to the predicted class (Ref. 11). A popular gradient saliency
method is the Gradient-weighted Class Activation Mapping
(Grad-CAM). Grad-CAM uses the gradient information flow-
ing into the last convolutional layer of the CNN to assign im-
portance values to each neuron for a particular decision of in-
terest (Ref. 12).

In this project, Grad-CAM provides a multifaceted advantage.
First, the saliency map will be able to verify that the network
classifies imagery as helipads because of the presence of heli-
pads and not supporting facilities. Second, it can help with
understanding and mitigating false positives, i.e., the non-
helipad samples classified as a helipad. Lastly, the saliency
map can help locate the helipad, which will allow for larger
regions to be searched for helipads.

ROTORCRAFT LANDING DATASET

We acquired three datasets through the FAA, one dataset from
the IOWA DOT website, and another dataset on arcGIS. These
5 datasets provide longitude and latitude of potential helipad
landing locations. We used Google Earth’s API to extract the
corresponding images as well as to sample negative helipad
locations. We noticed some discrepancy in the FAA datasets
and had to manually curate the coordinates to ensure accuracy
for our use cases. In the sequel of this section we will elabo-
rate on each dataset, our curation approach, and our collection
method for negative samples.

Google static maps API

We used Google static maps API to collect, satellite imagery
of positive (helipad) and negative (non-helipad) locations.
The service is accessed by sending an HTTP request with a
query containing the desired parameters. The Google server
responds with an image based on the provided parameters.
The parameters used here are: center, zoom, size, and map-
type. The center provides the coordinates of the center of the
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Figure 2. Sampling Google Earth for helipad labeling. The sampled area is enclosed in the black box. There is no helipad
inside the sampled area. However, a helipad is present just outside the sampled area.

image. Zoom determines the zoom level, which defines the
resolution of the current view. Size determines the number of
pixels in the image. Maptype determines the type of image
to be retrieved (as Google maps contains road maps). For the
purposes of this project, size was set to the maximum value of
640× 640, and the maptype was always satellite. The center
was set to the desired coordinates to be sampled for the im-
age. Zoom was set to 18. The highest resolution images are at
a zoom of 20; however, a zoom of 18 was used instead. The
difference between the two zooms can be seen in Fig. 1. A
lower zoom results in a larger area that will allow for sampling
helipads using fewer API calls. There is a cost associated with
making API calls beyond a certain limit, so efficiency of calls
becomes important when scaling up.

One major issue with the initial databases is the incorrect re-
porting of landing site coordinates. In our experiments, a co-
ordinate was considered correct if there was a landing area
present in the Google imagery taken of the area. This is to
allow for a margin of error in the reported coordinates. The
margin is considered acceptable as it is believed to be rea-
sonable for a pilot to identify a helipad within the given area.
However, there are few cases where helipads would be within
a reasonable range of the coordinates, yet not present within
the imagery being sampled. Figure 2, shows a case where
there is a helipad near the coordinates, however the helipad is
outside the range that was annotated. A lower zoom could be
used to sample a larger area, however while this may still be
within an acceptable margin of error, the markings on helipads
become less noticeable.

Another known issue is the recency of Google’s satellite im-
agery. The images used in Google maps are not real-time im-
ages, but rather imagery taken during an area survey. This
means that the overhead view that was sampled does not ac-
tually reflect the current state of the area. Google attempts
to keep the images up to date such that the available imagery

should be less than 3 years old; yet this may still lead to inac-
curacies in landing site locations
Lastly, there is an issue of some missing imagery. Google
Maps does maintain a database that covers most of the world,
however it does not contain high resolution imagery for every
coordinate in the world. Typically, at higher levels of zoom,
there are fewer coordinates with available imagery. Even
when using a zoom of 18, there are a few coordinates that
simply did not have imagery available. If a zoom of 20 were
used, there would likely be fewer locations where data could
be collected from.

Building the dataset

Positive set Areas with helipads are needed to create the
positive set for our database. While areas can be randomly
sampled and helipads in those areas labeled, this would be
an incredibly inefficient process. There is an extremely low
probability that a randomly sampled location would contain
a helipad. We used the initial FAA, IOWA DOT, and Ar-
cGIS helipad datasets to sample positive areas, The FAA’s
5010 was the largest database. To ensure accuracy, all co-
ordinates were manually annotated so that only coordinates
where a helipad would be visible in the collected image was
added to the training set. From an initial 6,333 coordinates
in the dataset, only 3,887 were manually annotated to be heli-
pads. An additional 157 positive coordinates were added from
other databases provided by the FAA, including the Lifeflight
of Maine dataset
Two publicly available datasets were used. The first is a
dataset found on ArcGIS containing the coordinates of hospi-
tal helipads found in California. This dataset contained 170
coordinates, and after annotation, 169 of these coordinates
were used. The second is Iowa DOT’s dataset, which listed
126 locations, and 111 of these coordinates were considered
to contain helipads.
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Figure 3. Sample aerial images from our Benchmark dataset. While the term helipad is used for the positive set, the
positive set also contains areas that helicopters are intended to land at, e.g., helicopter runways

Negative set A negative (non-helipad) set of images is also
needed to train the machine learning model. The negative
set was collected using random sampling of Google Maps.
These random samples were manually checked to not con-
tain any landing site. As the current goal is to identify he-
lipads in the U.S., the sampling was limited to an area such
that the sampling region includes most of the mainland U.S.
However, most of these samples were of forested areas and
farmlands and contained very few urban areas. This could
bias the network to predict helipads mainly in urban areas It is
therefore important to sample negative locations from urban
areas as well. It is noted that urban areas will likely have a
higher helipad density, and thus a helipad will be more likely
to be found there. To lessen this risk, locations like Wash-
ington D.C. and New York City were chosen due to the lower
density of helipads. In New York City, ownership of rooftop
helipads became more restricted after the 1977 crash at the
Pan Am building (Ref. 13), along with noise complaints con-
tinuing to restrict helicopter flights. Washington D.C. is in
restricted airspace and allows only a few helipads to operate.

Final Benchmark Dataset

After careful and meticulous collection, labeling, and cura-
tion steps, a helipad identification benchmark dataset was cre-
ated. The positive set contains 4,324 samples. Some areas
are more represented than others, as some of the datasets
used were specific to certain regions. However, the largest

dataset making up over 80% of the final dataset is the FAA’s
dataset spread over the United States and its territories cover-
ing different types of landing areas including helicopter park-
ing pads, helidecks, EHLFs(Emergency Helicopter Landing
Facilities), and heliports.

The negative set was created by randomly sampling 5,000 co-
ordinates. 2,000 of these coordinates were from sampling the
mainland United States and contains mostly woodland and
other rural areas. The remaining 3,000 negative images came
from urban areas, such as San Jose, Washington D.C., New
York City, and San Antonio.

The final benchmark dataset has 9,324 satellite images la-
beled as either helipad or non-helipad. Figure 3 shows some
of the images in the dataset. Figure 3 (a) shows some land-
ing locations, including helistops, helidecks, and helicopter
runways. Figure 3 (b) shows some of the randomly sampled
imagery, with the three on the left being samples from the ru-
ral areas, and the two on the right coming from urban areas.
It is also noteworthy to mention the variety of landing sites
shown in Fig. 3(a). In particular helipads have different sizes,
as their minimum required lengths are decided by the rotor di-
ameter of helicopters intended to land. This causes the areas
they represent in squared meters to be different. Other factors,
such as the zoom level which takes into account the distance
from the satellite, the elevation, and the latitude add to the
complexity of the landing sites imagery.
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EXPLAINABLE IDENTIFICATION OF
HELIPADS

Convolutional Neural Network Models

Four different CNN models were evaluated for this classifi-
cation task: ResNet101 (Ref. 14), Inception (Ref. 15), Xcep-
tion (Ref. 16), and efficienetnet-b0 (Ref. 17). These models
where chosen as they represent a variety of possible architec-
ture families (see Table 1)

ResNet101 ResNet101, proposed in (Ref. 14), is a residual
network that contains skip connections. Residual networks
were designed to mitigate the problem of accuracy degra-
dation with network depth. With the network depth increas-
ing, accuracy gets saturated and then degrades rapidly. Skip
connections simply perform identity mapping, and their out-
puts are added to the outputs of the stacked layers. It was
experimentally shown that deep residual networks: 1) ex-
hibit lower training error when the depth increases compared
to their counterpart “plain” networks, and 2) enjoy accuracy
gains from considerably increased depth, producing signifi-
cantly better results than their counterpart “plain” networks.

Inception-V3 Inception-V3, proposed in (Ref. 15), is part
the family of Inception networks. This family of networks
uses the Inception module, which leverages multiple types of
filter sizes in a convolutional layer instead of being restricted
to a single filter size. The motivation of Inception stems from
the human visual cortex, which identifies patterns at different
scales and then accumulates them to form larger perceptions
of objects. Therefore, Inception modules have the potential
to improve optimal feature extraction, and hence improve the
learning.

Xception Xception, proposed in (Ref. 16), improves upon
the Inception family of architectures by replacing Inception
modules with depthwise separable convolutions. A depthwise
separable convolution is a spatial convolution performed in-
dependently over each channel of an input, followed by a
pointwise convolution, i.e., a 1×1 convolution, projecting the
channels output onto a new channel space. Xception is build
by stacking depthwise separable convolutions. This model
also uses skip connections.

EfficientNet-b0 The EfficientNet family of architectures
was proposed in (Ref. 17) to address the issue of scaling CNN
models for better accuracy. Based on a compound scaling
method that balances network width, depth, and resolution,
eight different models (b0 - b7) were proposed, where higher
values correspond to larger networks. The models are made
up of sections of repeating layers which can be efficiently
scaled to create a deeper model.

EXPERIMENTAL RESULTS

We performed 10-fold validation for each network. The re-
sults from each of the 10 runs were averaged to produce the

average performance of the model as shown in Fig. 4. As can
be seen from Fig. 4, EfficientNet-b0 performed the best on
our final benchmark helipad dataset.
Figure 5 shows the results from the grad-CAM implementa-
tion. This overlay shows a heatmap of the most salient pix-
els in the model’s prediction (EfficientNet-b0). Observe that
the network relied on features of the helipad to make its pre-
diction, as opposed to background features, such as nearby
buildings.

HELIPAD SEARCH IN LARGE AREAS
Using the CNN model validated in the previous section, it
is now possible to identify imagery with helipads, which
can be used to verify the accuracy of coordinates in helipad
databases. This system can then be extended to be able to
detect helipads within a designated region. In computer vi-
sion, the distinction between identification and detection is
that identification can determine the presence of an object,
while detection determines where in the image an object is.
In this section, we extend the problem of helipad identifica-
tion from aerial images to detection of helipads from a larger
area, e.g., downtown Los Angeles. To solve this new prob-
lem, without requiring new labeling, we use a sliding window
approach to determine where in a larger image a helipad is.

Collages

Sampling a larger Google Earth area can be done by using a
lower value zoom, dividing it into sections, then upsampling
the images. This approach would minimize the number of
API calls; However, the images retrieved will be of lower res-
olution. The second approach would be to sample using a
higher zoom for higher resolution imagery, then combine the
samples to form a larger image referred to as a collage. This
collage can then be searched for helipads with an overlapping
sliding window. A mapping between the lat/lon coordinates
and pixel values must be derived. Google has provided the
following relationship:

meter
pixel

= 156543.03392×
cos(latitude× π

180 )

2zoom (1)

The distance represented by a pixel decreases as we sample
further from the equator. Equation (1) does not factor in ele-
vation, and may cause issues at different elevations.
Assuming that the circumference of earth is 40.075 million
meters and taking elevation into account, we can derive the
following mapping from pixels to change in lat/lon.

∆ latitude
pixel

= 156543.03392×
cos(latitude× π

180 )

2zoom ×111320
(2)

∆ longitude
pixel

= 156543.03392× 1
2zoom ×111320

(3)

An example of the created collage can be seen in Fig. 6. This
collage is created from a 5×5 sliding window, and shows an
area about 25 times larger than the initial aerial images, while
still keeping the level of detail in a higher zoom. Sub-images
can then be extracted from this area to search for helipads.
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Table 1. Comparison of selected CNN models
Model Skip connections Inception Modules Trainable Parameters (millions) Image-net Top 5-accuracy
ResNet101 yes no 44.71 92.8%
Inception-V3 no yes 23.85 93.7%
Xception yes no 22.91 94.5%
EfficientNet-b0 yes no 5.33 97.1%

Figure 4. Training (blue) and validation (orange) accuracy curves for ResNet101 (top left), Inception-V3 (top right),
Xception (bottom left), and EfficientNet-b0 (bottom right).

Searching for Helipads in Los Angeles

We applied this collage technique to create a Los Angeles
(LA) region. LA makes for an interesting testing area, as it
has a high helipad density, so there will be many helipads to
detect in a small region. However, the LA region is notably
different than the other cityscapes in the dataset. To fix this
data imbalance, some of the data from LA was used to sup-
plement the benchmark dataset. Figure 7 shows the LA area
under study. It was formed via an 11× 11 collage, and will
be broken up using a 20× 20 sliding window producing 400
smaller images. The 200 images making up the top half of
the image will be part of the supplemental training set, and
the 200 images in the bottom half of the image will make up
the testing case. The test achieved the following performance
measures: Accuracy = 76.0%, Precision = 61.6%, and Recall
= 97.4%.

CONCLUSION

We developed a deep learning model for helipad identifica-
tion and detection from aerial Google Earth imagery. We also
devised a framework to begin searching for helipads in desig-
nated areas. We achieved good performance in detecting he-
lipads in the LA region; Nonetheless, more experimentation
is needed before this approach is ready for more widespread
testing. Notably a larger variety of data should be considered,
and a wide variety of locations should be incorporated for test-
ing to ensure that the algorithm will perform in these different
locations.

Although the study was limited to the US, this approach
is readily extendable to helipad identification and detection
across the globe. Future work includes leveraging Grad-CAM
interpretability maps to estimate the location of the helipads
after their identification.
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Figure 5. Grad-CAM heatmaps showing the importance of pixels in the CNN model (EfficientNet-b0) prediction. Aerial
images (left column) and their corresponding Grad-CAM heatmaps (right column). The red area refers to the part
of the model where the network attention is strong, and the blue part refers to the part that does not influence the
prediction.
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Figure 6. Area collected in a 5× 5 collage vs. single API
call.
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