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Abstract—This is a proof of concept work that proposes a 

solution to the inverse problem of EEG source estimation by 

combining two techniques, namely a Particle Filter (PF) for 

geometrical (3D) localization of the most active brain zones 

(expressed by two dipoles) and a beamformer (BF) as a spatial 

filter for estimation of the oscillations that have originated the 

recorded EEG data.  The estimation is reliable  for  uncorrelated 

brain sources. 

Keywords-brain electrical source localization, filtering and state 

estimation, hidden markov models  

I.  INTRODUCTION 

In brain imaging, the EEG source signal estimation is also 
known as the EEG inverse problem. The problem can be 
formulated as follows: using the measurements of electrical 
potential on the scalp recorded from multi-sensors, the goal is 
to build a reconstruction system able to estimate the location 
(the brain area) and the magnitude and directions of the 
dominative neural brain sources that most probably have 
originated the recorded EEG signal.  Thus the problem can be 
divided in two stages: 1) localization of the principal original 
sources inside the brain; 2) estimation of the source signal 
(waveforms).  

The problem of reconstructing the time pattern of the 
original source signals from a sensor array, can be expressed as 
a number of related Blind Source Separation (BSS) problems. 
In [1], a review of various BSS and independent component 
analysis (ICA) algorithms for static and dynamic models in 
their applications is presented. Beamforming (BF) is also a 
popular analysis procedure for non-invasive recorded 
electrophysiological data sets. The goal is to use a set or 
recording sensors and combine the signals recorded at 
individual sites to increase the signal-to-noise ratio, but 
focusing on a certain region in space (region-of-interest, ROI). 
In that sense, BF uses a different approach to image brain 
activities: the whole brain is scanned point by point. Thus, it is 
in fact a spatial filter designed to be fully sensitive to activity 
from the target location, while being as insensitive as possible 
to activity from other brain regions. This is achieved by 
constructing the spatial filter in an adaptive way, i.e., by taking 
into account the recorded data. More concretely, the BF is 
carried out by weighting the EEG signals, thereby adjusting 
their amplitudes such as that when added together they form 
the desired source signal.  

In this paper we propose a solution to the brain electrical 
source localization combining two techniques, namely a 
Particle Filter (PF) for geometrical (3D) localization of the 



most active brain zones and a beamformer (BF) as a spatial 
filter for estimation of the oscillations that have originated the 
recorder EEG measurements. The EEG inverse problem is 
intensively studded assuming that the source localization is 
known. In this work for the first time the problem of inverse 
modeling is solved simultaneously with the problem of the 
respective source space localization. 

II. FILTERING AND STATE ESTIMATION – PROBABILISTIC 

FRAMERWORK  

A. Hidden Markov Models (HMMs) 

Hidden Markov Models (HMMs) are used to analyze or 
predict time series. HMMs and various probabilistic filters 
such as Kalman filters and Particle Filters (PF) are at the core 
of many deployed practical systems from elevators to 
airplanes. In general, every time there is a time series that 
involves noise, sensors or uncertainty, HMMs are the chosen 
algorithm to be applied. The essence of HMMs is the Markov 
chain. The Markov chain is a Bayes Network of a sequence of 

states { }Ν∈kxk ,  that evolve over time, Ν is the set of natural 

numbers. Every state kx  is possibly a nonlinear function f of 

the previous state 1−kx  and is also affected by the process noise 

sequence 1−kw  

 ( )11, −−= kkk wxfx ,  (1) 

The states are not directly observable, they are related with 

available measurements kz  (observable variables) through 

which the internal, hidden states can be inferred 

 ( )kkk vxhz ,= ,  (2) 

where h is possibly a nonlinear function and kv  is the 

measurement noise sequence. Expressions (1) and (2) are the 
state and the measurement equations of the general HMM [2]. 
It is assumed that the observations are taken as a time series, at 
discrete time points with a discretization time step T. Within 
this Bayesian framework, estimation and prediction problems 
can be formulated and solved. In prediction, the next state or 
the next measurement can be predicted, while state estimation 
means computing the probability of the internal (hidden) state 
given measurements. The estimation problem is to recursively 

calculate some degree of belief in the state kx  at time k, given 

the data kz :1  up to time k [3]. Thus it is required to construct 

the posterior probability density function (pdf) ( )kk zxp :1| . It is 

assumed that the initial pdf ( ) ( )ooo xpzxp ≡|  of the state 

vector, which is also known as the prior, is available ( 0z  is the 

initial measurement). Then, the posterior conditional pdf 

( )kk zxp :1|  may be obtained recursively, in two stages: 

prediction and update. Suppose that the required pdf 

( )1:11 | −− kk zxp  at time k-1 is available. The prediction stage 

involves using the system model (1) to obtain the prior pdf of 
the state at time k via the Chapman-Kolmogorov equation 

 ( ) ( ) ( ) 11:1111:1 ||| −−−−− ∫= kkkkkkk dxzxpxxpzxp    (3) 

The probabilistic model of the state evolution ( )1| −kk xxp is 

defined by the system equation (1) and the known statistics of 

1−kw . At time step k, a measurement kz becomes available and 

this may be used to update the prior (update stage) via the 
Bayes’ rule.  
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( )1:1| −kk zzp is a normalizing constant defined by the 

measurement model (2) and the known statistics of kv . Hence, 

the recursive update of ( )kk zxp |  is proportional ( ∝  is the 

sign of proportionality)  

 ( ) ( ) ( )1:1:1 ||| −∝ kkkkkk zxpxzpzxp .  (5) 

In the update stage (4) the measurement is used to modify the 
prior density to obtain the required posterior density of the 
current state. Equations (3) and (4) form the math of a HMM. 

B. Particle Filters (PFs) 

In many real life problems the recursive propagation of the 
posterior density cannot be performed analytically (the integral 
in eq. (3) is intractable). Usually numerical methods are used 
and therefore a sample-based construction to represent the state 
pdf. The family of techniques that solve numerically the 
estimation problem are denoted as Particle Filters (PFs). The 
key idea of the PFs is the representation of the belief. The state 
space is discrete; it is a collection of points (also termed 
particles). Intuitively speaking, each particle is a representation 
of the possible state and after each iteration some of the 
particles survive other die in proportion to the measurement 
probability. The algorithm sets as an input a set of N particles 

with associated importance weights )(l

kW  Nl ,...,2,1= . Initially, 

the particles are spread out uniformly. The posterior probability 

( )kk zxp :1| is approximated by weighted sum of particles 
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and the update probability is  

 ( ) ( ))(

1

)(

:1

)( ˆ| l

kk

N

l

l

kk

l xxWzxp
k

−= ∑
=

δ  (7) 

where  

 )|(
)()(

1
)( l

k
l

k
l

k k
xzpWW −=   (8) 



The normalized importance weights are 
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New states are calculated, putting more weight on particles 
that are important according to the posterior pdf (7). It is often 
impossible to sample directly from the posterior density 

function ( )kk zxp :1| . This difficulty is circumvented by making 

use of the importance sampling from a known proposal 

distribution ( )1| −kk xxp . During the prediction, stage each 

particle is modified according to the state model (1). In the 
update stage, each particle’s weight is re-evaluated based on 
the new measurements.  

C. Particle degeneracy 

Typical numerical problem when applying the PF algorithm 
is the particle degeneracy, the case when a small set of particles 
(or even just one particle) have significant weights. An 
estimate of the measure of degeneracy, [4] at time k is given as 
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where effN  is the number of (effective) particles with 

significant weights. If the value of effN  is very low, a 

resampling procedure can help to avoid degeneracy. A 
schematic representation of the resampling procedure is 
depicted in Fig. 1 [5]. It shows on the left side 8 particles 
before resampling, where the diameters of the circles are 
proportional to the weights of the particles. The right hand side 
shows circles of the particles after the resampling step. The 
small particles are removed, while the large particles are 
replaced by particles with smaller weights. There are various 
mechanisms to perform the resampling step. Two of them are 
either resampling at each iteration or resampling when the 
effective number of particles falls below a user-defined 

threshold effN . The resampling step introduces variety in the 

particles, but increases the variance error of the particle 
population. 
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Figure 1.  Particle resampling [5] 

The above described HMM and PF concepts are applied in 
multiple fields like robotics, finance, language technologies, 
medicine, ect. For example there has been enormous progress 
in the field of speech decoding mostly due to HMMs that have 
been researched for more than twenty years and nowadays the 
state of the art in computer speech recognition uses variants of 
HMMs. PFs are one of the most successful algorithm in 
Artificial Intelligence (AI) and autonomous machine learning. 
In this paper we extend the application of the PF approach for 
brain electrical source localisation.  

III. HMM OF THE BRAIN SOURCE LOCALIZATION PROBLEM 

In order to apply the particle filter, outlined above, the 
HMM of the source localization has to be first defined.  

A. Source Models: Dipoles and Multipoles 

Let assume the brain activity arises at a small zone of the 

cortex centered at location sx and that the observation point x 

is some distance away from this zone. The primary current 
distribution can be approximated by an equivalent current 

dipole represented as a point source ( ) ( )ss

p xxsxJ −= δ , 

where ( )xδ  is the Dirac delta function, with moment 

( ) ss

p dxxJs ∫≡ . The current dipole is an extension of the 

model of the paired-charges dipole in electrostatics. It is 
important to note that brain activity does not actually consist of 
discrete sets of physical current dipoles, but rather that the 
dipole is a convenient representation for coherent activation of 
a large number of pyramidal cells, possibly extending over a 
few square centimeters of gray matter. The current dipole 
model is the key of EEG processing since a primary current 
source of arbitrary extent can always be broken down into 
small regions, each region represented by an equivalent current 
dipole. However, an identification problem can arise when too 
many small regions and their dipoles are required to represent a 
single large region of coherent activation. These sources may 
be more simply represented by a multipolar model. The 
multipolar models can be generated by performing a Taylor 

series expansion of the function ( )
3

,

s

s

s

xx

xx
xxG

−

−
=  about the 

centroid of the source. Successive terms in the expansion give 
rise to the multipolar components: dipole, quadrupole, 
octupole, and so on. In the present work the current dipole 
model is adopted. 

B. Spherical Head Model 

Computation of the scalp potentials requires a particular source 
model that has to be solved numerically. If the model is based 
on realistic head shapes, the computation can be a real 
challenge. Analytic solutions exist, however, for simplified 
geometries, such as when the head is assumed to consist of a 
set of nested concentric homogeneous spherical shells 
representing brain, skull, and scalp. These models are routinely 
used in most clinical and research applications to EEG source 
localization. Consider the special case of a current dipole with 

moment s located at sx  in a multishell spherical head, the scalp 

potential )(xz measured at location x is  



 s
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axz

q

q
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−
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Assuming that the electrical activity of the brain can be 
modeled by a number of dipoles, i.e. the measured 

multichannel EEG signal signals zn

kz ℜ∈  from zn sensors at 

time k are produced by M dipoles, the forward EEG model is 
given by 

 k

M

m
kkmk vmsmxLz += ∑

=1

)())(( ,  (12) 

where )(mxk  is a three dimensional localization vector (space 

directions), 
3

))((
×ℜ∈ zn

km mxL  is the lead field matrix for 

dipole m, )(msk  is a three dimensional moment vector of the 

mth dipole (the source signal). By kv  the effect of noise in the 

measurements is simulated. ))(( mxL km  is a nonlinear function 

of the dipole localization, electrodes positions and head 

geometry, [6]. Its three columns contain the activity that will be 
measured at the sensors due to a dipole source with unity 
moment in the x, y, and z directions, respectively, and zero 
moment in the other directions. An analytical expression for 
the forward model exists if the dipole localization, electrodes 
positions and head geometry are known. The spherical head 
model is the simplification that preserves some important 
electrical characteristics of the head, while reducing the 
mathematical complexity of the problem. The different electric 
conductivities of the several layers between the brain and the 
measuring surface need to be known. The skull is typically 
assumed to be more resistive than the brain and scalp that, in 
turn, have similar conductivity properties, [7]. In the 
framework of the dipole source localization problem, the states 
that have to be estimated are the geometrical positions of M 

dipoles [ ])(),.....1( Mxxx kkk =  , where  

 [ ]T

k mzmymxmx )(),(),()( = , Mm ,...1=  (13) 

Then the lead field matrix of M dipoles 
Mn

km
zxL

3
)(

×
ℜ∈ is 

 ( ) ( )[ ])(,.....)1()( MxLxLxL kkk =   (14) 

The vector of moments 13 ×ℜ∈ M

ks  is [ ]T

kkk Msss )(),.....1(= , 

where each )(msk  consists of brain source signals in each 

space direction, [ ]Tzyxk msmsmsms )(),(),()( = . Eq. (12) can 

be reformulated in a matrix form as follows 

 kkkk vsxLz += )(  (15) 

Expression (15) corresponds to the measurement equation (2) 
of the HMM. As for the state equation (1), since it is unknown 

how the states (the geometrical positions of M dipoles) evolve 
over time,  a random walk model (first-order Markov chain) is 
assumed in the source localization space,  

 kkk wxx += −1   (16) 

Eqs. (15-16) define the dipole source localization model in 
state space. The intuition behind the PF approach is to estimate 
the 3D location (vector x)  of the principle M dipoles (assuming 

M is known) that originated the underlying EEG recordings kz . 

In the above model certain distributions for the process and the 
measurement noises are assumed and initial values for the 
states are chosen. The lead field matrix can then be computed, 

however the moments )(msk are not known. In order to 

estimate them the beamforming approach is used.  

C. Realistic Head Models 

The EEG forward model, eq. (12), has a closed-form 
solution for heads with conductivity profiles that can be 
modeled as a set of nested concentric homogeneous and 
isotropic spheres. However, in reality, the human heads are 
anisotropic, inhomogeneous, and not spherical. Though the 
spherical models work reasonably well, more accurate 
solutions to the forward problem use anatomical information 
obtained from high-resolution volumetric brain images 
obtained with Magneto Resonance Images (MRI) or X-ray 
computed tomography (CT) imaging.  

Many automated and semi-automated methods exist for 
surface extraction from MRIs The surfaces can then be 
included in a boundary element method (BEM) calculation of 
the forward fields. While this is an improvement on the 
spherical model, the BEM calculations are very time 
consuming and use of realistic head model may appear 
impractical when incorporated as part of an iterative inverse 
solution. In the present work, the spherical head model 
approach is chosen.  

IV. BEAMFORMING AS A SPATIAL FILTER  

The Beamforming(BF) deals with the estimation of the 
time patterns in three space directions of mth current dipole 

[ ]Tzyxk msmsmsms )(),(),()( =   

located at 

[ ]T

k mzmymxmx )(),(),()( =  

using the measurements of electrical potential on the scalp 
recorded from N sensors located at the surface of the head. The 
BF filter consists of weight coefficients (B) that when 
multiplied by the electrode measurements give an estimate of 
the dipole moment at time k: 

 k

T

k zBs = ,  (17) 



where 
MnzB

3×
ℜ∈ is the weighting matrix. The choice of the 

beamformer weights is based on the statistics of the signal 

vector kz  received at the electrodes. Basically, the objective is 

to optimize the beamformer response with respect to a 
prescribed criterion, so that the output s contains minimal 
contribution from noise and interference. There are a number 
of criteria for choosing the optimum weights. The method 
described below represents a linear transformation where the 
transformation matrix is designed according to the solution of a 
constrained optimization problem (the early work is attributed 
to [8]. 

The basic approach consists in the following: assuming that 
the desired signal and its direction are both unknown, accurate 
signal estimation can be provided by minimizing the output 
signal variance. To ensure that the desired signal is passed with 
a specific (unity) gain, a constraint may be used so that the 
response of the beamformer to the desired signal is: 

 ( ) IxLB k

T = ,  (18) 

where I denotes the identity matrix. Minimization of 
contributions to the output due to interference is accomplished 
by choosing the weights to minimize the variance of the filter 
output: 

 { } { }BRBtryVar zk

T

k =  (19) 

where, { }tr  is the trace of the matrix in brackets, zkR  is the 

covariance matrix of the EEG signals. In practice, zkR will be 

estimated from the EEG signals during a given time window.  
Therefore, the filter is derived by minimizing the output 
variance subject to the constraint defined in (19). This 
constraint ensures that the desired signal is passed with unit 
gain. Finally, the optimal solution can be derived by 
constrained minimization using Lagrange mltipliers [9] and it 
can be expressed as: 

 ( ) ( ) ( )( ) 111 −−−= kzkk

T

k

T

zk

opt xLRxLxLRB  (20) 

The response of the beamformer is often called the linearly 
constrained minimum variance (LCMV) beamformer. The 
LCMV provides not only an estimate of the source activity, but 
also its orientation, reason why is classified as vector 
beamforming. The differences and similarities among 
beamformers based on this criterion for choosing the optimum 
weights are discussed in [10].  

V. EXPERIMENTAL WORK 

A. EEG simulation 

EEG data was generated by eq. (12) at 30 scalp locations 
(Fp1, AF3, F7, F3, FC1, FC5, C3, CP1, CP5, P7, P3, Pz, PO3, 
O1, Oz, O2, PO4, P4, P8, CP6, CP2, C4, FC6, FC2, F4, F8, 
AF4, Fp2, Fz, Cz) covering the entire hemisphere according to 

the standard 10/20 International system (Fig. 2). In this study, 
we use a 3-sphere model to approximate the head geometry 
which includes three concentric layers for the brain, skull and 
scalp. The radii of the three concentric spheres are 8.7, 9.2 and 
10 cm respectively and the corresponding conductivity values 
are 0.33, 0.0165 and 0.33 S/m. The origin of the reference 
coordinate system is located in the centre of the spheres with 
the x-axis pointing from right to left, the y-axis pointing back 
to front and the z-axis pointing bottom to top.  

 

Figure 2.  EEG electrode location according to the 10/20 Intern. system 

The solution of the brain electrical source localization 
problem requires a significant number of forward model 
evaluations related with possible different source locations. 
Though these are relatively simple and fast computations, the 
multilayer spherical model is computed off-line by applying a 
grid based method to generate dipoles, assuming that the state 
space is discrete and consists of a finite number of states 
(dipoles). The dipoles are uniformly distributed in a sphere 
with radios 9 cm. Grids with varying dimensions are generated 
(25, 125, 512, 1140 uniformly distributed dipoles). Based on 
the grid of brain dipoles and the EEG electrode locations the 
Leadfield matrix L(x) is computed off-line. The algorithm for 
EEG source estimation is summarized below. It is inspired by 
related works [11],[12].  

B.  EEG Source Estimation algorithm 

for run =1, 2,..MC  (Repeat the same algorithm MC number of 
runs) 

Initialization 

k=0, for Nl ,...,2,1=  

Generate N samples according to a chosen distribution 

)(~ 0

)(

0 xpx l around initial vector 

( ) ),1(*)min()max()min(0 NrandDDDx −+= .  



Set initial weights 
N

W
l 1)(

0 =  (equal initial importance to all 

samples)  

For k=1,2… 

Prediction step 

For Nl ,...,2,1=  compute the state prediction according to the 

random walk state equation (19)  kkk wxx += −1 , where 

),0(~ Qwk Ν  is the process (assumed Gaussian) noise 

, [ ] 0=′
+ jkk wwE for 0≠j . The covariance matrix Q of kw  is 

IQ w

2σ= , I denotes the unit matrix and wσ is the standard 

deviation. wσ  is chosen as a percentage (0-50%)  from the 

previously estimated state vector 1−kx .  

Beamforming step  

i) Extract the underlying leadfield matrix from the 

complete )( kxL  (computed off-line)  

ii) Apply the BF technique to define the spatial filter w 

iii) Compute the amplitudes at time k of the source signal 
propagated  in 3 directions , for  all estimated sources 

ky  

Measurement Update: evaluate the importance weights  

for Nl ,...,2,1= , on the receipt of a new measurement,  

compute the output according to the measurement equation 

(18) and compute the weights ( ))()(

1

)( | l
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l

k

l

k xzLicWW −=  
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for Nl ,...,2,1= , normalize the weights 
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Output 

i) Calculate the posterior mean [ ]kk zxE :1|  as 
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ii) Compute the effective sample size 
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iii) if tresheff NN <  do resampling  

Multiply/suppress samples )(l

kx  with high/low importance 

weights )(ˆ l

kW , in order to obtain N new random samples 

approximately distributed according to the posterior state 

distribution. The residual resembling algorithm, [4] is applied. 
Finally, weights are reset 

for Nl ,...,2,1=  set 
N

WW
l

k

l

k

1ˆ )()( == . 

C. Source correlation test  

The BF filter extracts reliably only noncorrelated neural 
sources. In order to generate EEG data originated by 
uncorrelated inner brain sources, the following correlation test 
is performed [13]. First, the covariance matrix in each direction 
is computed as  

 qxqT

x xsxsP ℜ∈= )()( ,  (21) 

where tqxs ×ℜ∈)(  is a matrix with the source waveform in 

direction x of q active dipoles. The correlation factor is a 

matrix xC , where each element is computed as  

ji
jjPiiP

jiP
C

xx

xji

x ≠= ,
),(),(

),(),(  , qxq

xC ℜ∈  (22) 

If ),( ji

xC  is below a certain threshold, the correlation 

between signals )(xsi  and  )(xs j  is significant. In the 

simulations, sin waveforms only in z direction with amplitude 

1.0=a  and frequencies HzfHzf 15,10 21 == respectively are 

assumed for the two most active dipoles  

 [ ])2sin(,0,0),2sin(,0,0 21 tfatfaYtrue ππ=  . (23) 

The respective EEG signal, recorded with 1 kHz sampling rate 
(1000 samples per second), is generated by the following 
forward model 

 vYdLEEG truetruenoisy += )( , (24) 

where 

),0(~ 2 Iv vσΝ , 
{ }

SNR

YdLVar truetrue
v

)(
=σ , 2330)( x

truedL ×ℜ∈ . 

v reflects the effect of possible other brain active sources or 
non-cerebral activity like eye blinking, muscle contraction and 
other artifacts. The signal-to-noise ratio (SNR) is kept low, in 
the range of (-5, +5) dB, which corresponds to the real EEG 
SNR.  

Since, the EEG is generated assuming two principal brain 

sources, the dimension of the state vector is 16×ℜ∈x  (three 

coordinates per dipole). The initial state vector 

[ ]T
zyxzyxx 2020201010100 ,,,,,= is randomly chosen from the 

defined dipole grid.  



D. Tests 

In all tests the number of the generated particles is N=500. 
Larger N leads to higher computational time however, 
decreasing N worsen the convergence. On Figures 3, 4 and 5 
are summarized the results of the estimation 

errors )( estimatedtrue dd −  over the following scenarios: 

Test 1: Grid of 25 dipoles, two active noncorrelated dipoles 
originated the simulated EEG data. Number of particles in the 
PF algorithm N=500. The algorithm has been repeated 10 
times, the so called Monte Carlo (MC) runs.  

Test 2: the same as Case 1 however EEG data was 
generated by correlated sources (threshold =0.05). 

Test 3: Grid of 1140 dipoles, two active noncorrelated 
dipoles originated the simulated EEG data, N=500, 3 Monte 
Carlo runs.  

Tests 1 and 2 are more proof of concept tests to verify that 
while the reconstruction of the noncorrelated sources (Fig 3) is 
practically without errors, the PF algorithm is not able to 
estimate correctly correlated sources (Fig.4). However, these 
cases are not realistic because the brain activity is limited to 
only 25 inner sources. For such low dimensional grid the 
distance between the dipoles is high (a coarse space grid) and 
in the lack of perturbations the estimation naturally converges. 
Though the higher dimensional grid space of Test 3 is 
associated with small steady state estimation errors (Fig. 5) it 
still converges to the true source coordinates for uncorrelated 
dipoles. A way to reduce the estimation error is to increase the 
number of the Monte Carlo runs (for example MC=100) and 
take the average of the errors. On Figures 6, 7 and 8 are 
depicted the recovered waveforms of the sources that 
originated the EEG data. In contrast to the correlated dipoles, 
the signal propagation at the uncorrelated dipoles are reliably 
estimated.  

VI. CONCLUSIONS 

This is a proof of concept work that pretends to solve the 
inverse problem of EEG source estimation by applying the 
mixture of Particle Filter (PF) and Beamforming (BF) 
approaches. The localization of two principle zones (expressed 
by two dipoles) are estimated starting from a number of 
randomly chosen initial guesses (particles). The estimation 
usually converges well for uncorrelated brain sources. Current 
research is focused on increasing the number of the estimated 
dipoles (more than two) and implementing the proposed 
technique for real EEG data.  
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Figure 3.  The absolute estimation error of the dipole location (Test 1) 
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Figure 4.  The absolute estimation error of the dipole location (Test 2) 
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Figure 5.  The absolute estimation error of the dipole location (Test 3) 
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Figure 6.  BF source waveform estimation (Test 1) 
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Figure 7.  BF source waveform estimation (Test 2) 
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Figure 8.  BF source waveform estimation (Test 3) 


