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ABSTRACT

Particle filtering framework has revolutionized probabilistic
tracking of objects in a video sequence. In this framework
the proposal density can be any density as long as its sup-
port includes that of the posterior. However, in practice, the
number of samples is finite and consequently the choice of
the proposal is crucial to the effectiveness of the tracking.
The CONDENSATION filter uses the transition prior as the
proposal density. We propose in this paper a motion-based
proposal. We use Adaptive Block Matching (ABM) as the
motion estimation technique. The benefits of this model are
two fold. It increases the sampling efficiency and handles
abrupt motion changes. Analytically, we derive a Kullback-
Leibler (KL)-based performance measure and show that the
motion proposal is superior to the proposal of the CON-
DENSATION filter. Our experiments are applied to head
tracking. Finally, we report promising tracking results in
complex environments.

1. INTRODUCTION

Reliable object tracking in complex environments is a chal-
lenging task. Its applications include video surveillance [1],
autonomous vehicle navigation [2], and virtual reality [3]
among many others. Recently temporal Bayesian filtering
[4], [5] has become very popular for object tracking. In this
probabilistic framework, the goal is to estimate the system’s
current state given its past and current observations. How-
ever, except for the linear gaussian case (Kalman filter [5])
the problem does not admit an analytical solution. More-
over, real world object tracking does not satisfy kalman fil-
ter requirements: the system dynamics can be highly non-
linear and the observation density is multimodel due to clut-
ter. Particle filters can handle non-linear and non-Gaussian
systems. The idea is to approximate the posterior density by
its sample set. Since it is hard to sample directly from the
posterior, Particle filter employs the Importance Sampling
technique [6], [7], [8]. In Importance Sampling, a proposal
density, also called importance function, is used to generate

samples. Each sample is then assigned a proper weight to
make up the difference between the posterior density and
the proposal density. It can be shown that (i) the compen-
sated sample set is a fair approximation of the posterior and
(ii) if number of samples is sufficiently large, the sample ap-
proximation of the posterior density can be made arbitrarily
accurate [9], [10]. However, in practice the resources are fi-
nite. To make the situation worse, if a good dynamic model
is not available or if the state dimension of the tracked ob-
ject is high, the number of required samples becomes even
larger and Particle filter can be computationally prohibitive.
Choosing the right proposal density is one of the most im-
portant issues in particle filters’ design.

In this paper we propose to use a motion-based proposal
density. The benefits of this model are two fold. First the
motion estimation allows efficient allocation of the samples.
Second the tracker is adaptive to all kinds of motion. Partic-
ularly it handles sudden and unexpected motion; e.g., a mo-
tion that is not captured by the state transition model. We
choose Adaptive Block Matching technique because of its
simplicity in implementation [11]. However, our model can
be generalized with any motion estimation algorithm. The
rest of the paper is organized as follows. In Section 2, we
construct the motion proposal using the motion vector esti-
mated by the ABM. In Section 3, we set up an optimization
problem based on the KL performance measure and prove
that the motion proposal is superior to the proposal used
in the CONDENSATION filter, i.e., the transition prior. In
Section 4, we apply our algorithm to head tracking using
challenging real-world video sequences. Concluding re-
marks and future work are given in Section 5.

2. A MOTION-BASED PARTICLE FILTER

We assume a Markovian discrete-time state space model.
Let Xk represent the target characteristics at discrete time
k (position, velocity, shape, etc). The state space model is
described by a state transition and measurement equations.
The goal is to estimate the posterior density p(X) of the tar-
get given its past and current observations. In what follows,
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we use a subscript to denote the time index and a superscript
to denote the sample index; e.g., X

(n)
k is the nth sample at

time k. Let {X(n), n ∈ N} be a sample set from a proposal
density q(X). The importance weights are then given by

π(n) =
p(X(n))
q(X(n))

π̃(n), (1)

where π̃(n) are the un-compensated weights associated with
the sampling of q(X). The state estimate is then given by
the sample mean:

X̂k =
N∑

i=1

π
(i)
k X

(i)
k . (2)

Our experiments are applied to head tracking. The hu-
man head is well modelled by an ellipse [12]. This domain
knowledge helps avoid erroneous shape evolvement there-
fore greatly improving the tracking results. Specifically,
we use a four dimension parametric ellipse to represent the
head contour:

Xk = [xc(k), yc(k), b(k), φ(k)]T , (3)

where (xc(k), yc(k)) is the center of the ellipse at time k,
b(k) and φ(k) are the minor axis and the orientation of the
ellipse at time k, respectively. The ratio of the major and
minor axis of the ellipse is held constant equal to its value
computed in the first frame. This is a very reasonable as-
sumption that allows us to reduce the dimensionality of the
state vector by 1. The ABM module output is a mask of the
object at the current time. The motion vector that interests
us is given by

∆Xk = [xc(k) − xc(k − 1), yc(k) − yc(k − 1), 0, 0]. (4)

If we model computational errors by a zero-mean white
Gaussian noise, we have the following sampling scheme

X
(n)
k = X

(n)
k−1 + ∆Xk + v

(n)
k , (5)

where
vk ∼ N(0, ΣG), (6)

and

ΣG =

⎛
⎜⎜⎝

σ2
x 0 0 0
0 σ2

y 0 0
0 0 σ2

s 0
0 0 0 σ2

r

⎞
⎟⎟⎠ , (7)

where σ2
x, σ2

y , σ2
s and σ2

r are the variances of the motion
diffusion in the (x-y) direction, scaling and rotation respec-
tively. The motion proposal qm is then given by

qm(Xk|Xk−1, Zk) ≡
N∑

i=1

NXk
(X(i)

k−1 + ∆Xk,ΣG), (8)

where we made use of the following notation that we will
be also using for the rest of this paper

NX(µ,Σ) ≡ 1
2π|Σ|exp(−1

2
(X − µ)T Σ−1(X − µ)). (9)

In addition to the proposal evaluation, we also need to
calculate the particle likelihood p(Zk|Xk) and transition prob-
ability p(Xk|Xk−1). We use both face color and edge detec-
tion as visual clues for particle weighting. For the gradient
module, we use the model developed by Isard in [4]. For
the color module, we use the histogram model developed in
[13]. We adopt a simple random walk model for the prior
dynamics.

3. OPTIMAL IMPLEMENTABLE IMPORTANCE
FUNCTION

As pointed out in [8] and [10], the optimal proposal density
qopt is the one that minimizes the variance of the importance
weights. In practice, however, sampling from the optimal
density is very difficult if not impossible. Though we can-
not practically sample from qopt, we can assess the perfor-
mance of any proposal density q by computing some kind
of similarity measure between qopt and q. The Kullback-
Leibler (KL) measure between two continuous functions q
and qopt is defined as the multiple integral:

I(qopt, q) =
∫

qopt(x) log(
qopt(x)
q(x)

)dx, (10)

where log denotes the natural logarithm.
I(qopt, q) is the “information” lost when a given proposal
density q is used to approximate the optimal proposal den-
sity qopt. Ideally, the general optimization problem would
be to minimize I(qopt, q) over the set Q of practically im-
plementable density functions:

q∗ = min
q∈ Q

I(qopt, q). (11)

Notice that Q does not contain the optimal density qopt.
However this general problem is intractable. For simplifi-
cation we consider the subset Q2 of Q containing only two
densities. Q2 = {q, qc}, where q is a given implementable
density and qc is the proposal density in the CONDENSA-
TION filter; i.e.,

qc(Xk|X(i)
k−1) = p(Xk|X(i)

k−1).

Let us choose a set S that contains the region of support
of the optimal density qopt. Let Ω be the set of densities q
satisfying the inequality

∫
S

qoptqc

q dXk ≤ 1. Then we have
the following result:

Proposition. If q ∈ Ω then I(qopt, q) ≤ I(qopt, qc).
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Proof.

I(qopt, q) − I(qopt, qc)

=
∫
S

qopt log(
qc

q
) dXk

(12)

≤ log(
∫
S

qoptqc

q
) dXk (13)

≤
∫
S

qoptqc

q
dXk − 1 (14)

≤ 0

Equation (13) uses Jensen’s Inequality and equation (14)
uses the inequality log(x) ≤ x − 1.

To establish the performance properties of the motion-
based proposal density, we need the following assumption:
In equation (5), v

(n)
k � ∆Xk. This assumption is perfectly

legitime in our case since the motion proposal increases the
sampling efficiency allowing for a small noise variance in
the propagation process. Let ΣP be the covariance matrix of
the transition dynamics. We then have the following corol-
lary:

Corollary. If ΣG = ΣP , then qm ∈ Ω and I(qopt, qm) ≤
I(qopt, qc).

Proof.

qm(Xk = X
(n)
k |X(n)

k−1, Zk)

=
1

2π|ΣG| exp(− 1
2 (X

(n)
k −X

(n)
k−1−∆Xk)T Σ−1

G (X
(n)
k −X

(n)
k−1−∆Xk))

=
1

2π|ΣG| exp(− 1
2 (X

(n)
k −X

(n)
k−1)

T Σ−1
G (X

(n)
k −X

(n)
k−1))

exp([(X
(n)
k −X

(n)
k−1)− 1

2∆Xk]T Σ−1
G ∆Xk)

=
1

2π|ΣG| exp(− 1
2 (X

(n)
k −X

(n)
k−1)

T Σ−1
G (X

(n)
k −X

(n)
k−1))

exp([ 12∆Xk+v
(n)
k ]T Σ−1

G ∆Xk)

The last equation was obtained by replacing X
(n)
k by its ex-

pression in equation (5).
Using the assumption we introduced earlier, we end up with

qm(Xk = X
(n)
k |X(n)

k−1, Zk)

=
1

2π|ΣG| exp(− 1
2 (X

(n)
k −X

(n)
k−1)

T Σ−1
G (X

(n)
k −X

(n)
k−1))

exp( 1
2∆XT

k Σ−1
G ∆Xk)

= p(X(n)
k |X(n)

k−1) exp( 1
2∆XT

k Σ−1
G ∆Xk)

where the last equality uses the fact that the prior is a ran-
dom walk with covariance matrix ΣP = ΣG.

Replacing q by qm in equation (14), we have

I(qopt, qm) − I(qopt, qc)

≤
∫
S

qoptqc

qm
dXk − 1

=
∫
S

qopt exp−( 1
2∆XT

k Σ−1
G ∆Xk) dXk − 1

≤
∫
S

qopt dXk − 1 (15)

= 0

The last equality follows from the fact that the region S in-
cludes the region of support of qopt.

The proposition gives a KL-based performance measure
for a given density compared to the CONDENSATION fil-
ter. From an information theory viewpoint, this result means
that qm is a better approximation to qopt than qc.

4. EXPERIMENTS

We test our algorithm in different challenging real world
situations. Clutter, full rotation and fast and erratic move-
ments are considered. In the experiment, we propagate 50
particles. The prediction model is a random walk reflecting
a poor a priori knowledge of the object’s dynamics. Figure 1
shows the tracking results of simultaneous jumping and full
plane rotation of the head. Figure 2 compares MBPF and
CONDENSATION filter in case of sudden movement. The
person in the video walks slowly then suddenly bends and
quickly recovers. The transition prior model does not take
into account such an erratic movement and consequently
CONDENSATION filter fails. On the other hand, because
MBPF’s proposal distribution places the limited particles
more effectively, it tracks both sequences successfully.

5. CONCLUSION

Choosing the right proposal density is one of the most im-
portant issues in particle filter’s design. We presented a mo-
tion based particle filter. The motion estimation increases
the sample allocation efficiency and handles all kinds of mo-
tion, particulary fast and erratic motion. Our model can be
generalized with any motion estimation technique. We then
set up a general optimization problem to find the optimal
implementable proposal density in the KL measure sense.
For simplicity we constrained ourselves to a sub-optimal
solution to the general optimization problem. This led us
to interesting analytical results comparing the motion pro-
posal with the CONDENSATION filter proposal in the KL
measure sense.
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Fig. 1. Motion-Based Particle Filter handles simultaneous jumping and full rotation of the head.

(a) Motion-Based Particle Filter

(b) CONDENSATION filter

Fig. 2. Tracking a sudden movement. The person in this video walks slowly then suddenly bends and quickly recovers.
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