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Abstract—The theory of spatially variant (SV) mathematical
morphology is used to extend and analyze two important image
processing applications: morphological image restoration and
skeleton representation of binary images. For morphological
image restoration, we propose the SV alternating sequential filters
and SV median filters. We establish the relation of SV median fil-
ters to the basic SV morphological operators (i.e., SV erosions and
SV dilations). For skeleton representation, we present a general
framework for the SV morphological skeleton representation of
binary images. We study the properties of the SV morphological
skeleton representation and derive conditions for its invertibility.
We also develop an algorithm for the implementation of the SV
morphological skeleton representation of binary images. The
latter algorithm is based on the optimal construction of the SV
structuring element mapping designed to minimize the cardinality
of the SV morphological skeleton representation. Experimental
results show the dramatic improvement in the performance of
the SV morphological restoration and SV morphological skeleton
representation algorithms in comparison to their translation-in-
variant counterparts.

Index Terms—Adaptive morphology, alternating sequential
filter, kernel representation, median filter, morphological skeleton
representation, spatially variant mathematical morphology.

I. INTRODUCTION

OVER the past few decades, morphological operators have
gained increasing popularity in the implementation of

signal and image processing systems [1]–[12]. The inherent
parallelism of the class of morphological filters allows the
implementation of very efficient and low-complexity algo-
rithms for signal and image processing applications [1], [2],
[6], [9]–[11], [13]–[16].

The basic concepts and analytic tools in mathematical
morphology can be found, for binary images, in set theory
and integral geometry [6], [9]. In mathematical morphology,
a binary image is represented as a subset of the two-dimen-
sional (2–D) Euclidean space, or its digitized equivalent

, and image processing transformations are represented as
set mappings between collections of subsets. Erosions and
dilations are the two fundamental morphological operators
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[1], [2], [17]–[21]. They are characterized by a subset called
the structuring element that is used to probe the image. Math-
eron has captured the ubiquity of morphological operators
by demonstrating that any increasing (i.e., operators which
preserve signal ordering) and translation-invariant operators
can be represented as unions (respectively, intersections) of
erosions (respectively, dilations) [6].

In most applications of mathematical morphology, the struc-
turing element remains constant in shape and size as the image is
probed. Hence, the focus of mathematical morphology has been
mostly devoted to translation-invariant operators. An extension
of the theory to spatially variant (SV) operators has emerged due
to the requirements of some applications, such as traffic spatial
measurements [22] and range imagery [23]. For example, in the
analysis of images from traffic control cameras in [11], vehi-
cles at the bottom of the image are closer and appear larger than
those higher in the image. Hence, the structuring element size
should vary linearly with the vertical position in the image. In
range imagery, the value of each pixel is related to the distance
to the imaging device. Consequently, the apparent height of an
object is a function of the object’s intensity range. Hence, one
can process (e.g., extract or eliminate) differently scaled objects
of interest in the image by adapting the size of the structuring
element(s) to the local intensity range [23].

Different techniques and algorithms to spatially adapt
the structuring element in an image have been proposed in
[23]–[28]. Roerdink [29], [30] introduced the theoretical back-
ground for a mathematical morphology that is not based on
translation-invariant transformations in the Euclidean space.
The proposed approach, however, is restricted by various
rigid algebraic constructions such as polar morphology and
constrained perspective morphology. In [31], a new class of
morphological operations, which allow one to select varying
shapes and orientations of structuring elements, is presented.
However, the sweep erosion and dilation do not satisfy the basic
properties of mathematical morphology. In particular, they are
not increasing operators in general and the sweep dilation
operator does not commute with the union. A unified theory
of SV mathematical morphology requires a further abstrac-
tion of the basic notions of translation-invariant mathematical
morphology. A fundamental result in lattice morphology1

that provides the representation of a large class of nonlinear
and nonnecessarily translation-invariant operators in terms of
lattice erosions and dilations has been presented in [33]. This

1Lattice morphology, introduced by Serra [11], is a powerful tool for the ab-
straction of mathematical morphology based on lattice theory, a topic devoted
to the investigation of the algebraic properties of partially ordered sets [32].
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representation, however, does not posses the geometric inter-
pretation, captured by the structuring element, that is crucial in
signal and image processing. A separate approach to the rep-
resentation of SV mathematical morphology, which preserves
the geometrical structuring element, in the Euclidean space,
has been introduced by Serra in [11]. Serra defined the concept
of a structuring function, which associates to each point in the
space a structuring element. Charif-Chefchaouni and Schon-
feld [34], [35] pursued the investigation of SV mathematical
morphology in a systematic way. They introduced the basic SV
morphological operators and investigated their properties. A
comprehensive development of the theory of SV mathematical
morphology in the Euclidean space has been presented in [36].

This paper elaborates on the theory and applications of SV
mathematical morphology presented in [36]. We illustrate the
power of the theory of SV mathematical morphology for two
important image processing applications: morphological image
restoration and skeleton representation.

Morphological Image restoration is an important problem in
image processing and analysis applications. It requires the de-
velopment of an efficient filtering procedure which restores an
image from its noisy version [4], [5], [8], [11], [37], [38]. In
order to devise such a filtering procedure, we have to consider
two fundamental issues: 1) the restoration filter should be ef-
fective in eliminating the noise degradation and 2) it should be
able to restore various important aspects of the shape-size con-
tent of the noise-free image under consideration, as well as pre-
serve its crucial geometrical and topological structure. The ef-
fectiveness of morphological filters in the restoration of noisy
images has been demonstrated repeatedly [4], [8], [9], [11],
[22], [37]–[41]. For example, Maragos and Schafer [4] have
demonstrated a strong relationship between the alternating filter
and the median filter. Sternberg [37] introduced alternating se-
quential filters (ASF) and experimentally showed their noise re-
moval capability. Moreover, Schonfeld and Goutsias [8] have
shown that the class of alternating sequential filters is a set of
smoothing morphological filters which best preserve the crucial
structure of input images, in the least-mean-difference sense.
Translation-invariant morphological filters can be used to re-
move noise structures that are smaller than the size of the struc-
turing element. However, some important features of the signal
might be removed as well. Many researchers considered adap-
tive morphological filtering in order to deal with this problem
[24]–[26]. For example, Chen et al. [24], developed an algo-
rithm for adaptive signal smoothing by spatially varying the fil-
tering scales depending on the local property of each point in
the signal. To achieve this goal, they introduced the progres-
sive umbra-filling (PUF) procedure. Their experimental results
have shown that this approach can successfully eliminate noise
without oversmoothing the important features of a signal. It can
be easily established that the morphological operators proposed
in [24] are the gray-level extensions of the SV binary morpho-
logical operators [42]. In this paper, we show that the theory of
SV mathematical morphology unifies many classical morpho-
logical filters that use SV structuring elements, which are suit-
able for adaptive image processing applications. We introduce
SV alternating sequential filters and SV median filters for the
restoration of images from their noisy versions. We derive the

basic properties of SV alternating sequential filters. We also de-
rive a kernel representation of SV median filters, which estab-
lishes the relation between the SV median filters and the basic
SV morphological operators.

We also demonstrate the power of the theory of SV mathe-
matical morphology by generalizing the morphological skeleton
representation to the SV morphological skeleton representation.
The morphological skeleton has been investigated by many re-
searchers [9], [43]–[46], mainly for the purpose of image coding
and shape recognition. In [44], a general theory for the morpho-
logical representation of discrete binary images was presented.
The basis of this theory relies upon the generation of a set of
nonoverlapping segments of an image, which produce a de-
composition that guarantees exact reconstruction of the original
image. Decreasing the cardinality of the morphological skeleton
representation by reducing its redundancy has been explored by
many authors [43], [44], [46]. In this paper, We extend the mor-
phological skeleton representation framework presented in [44]
to the SV case. We study the properties of the SV morpholog-
ical skeleton representation and derive conditions for its invert-
ibility. We also propose an algorithm for the implementation of
the SV morphological skeleton. This algorithm minimizes the
cardinality of the image representation by deriving an optimal
universal algorithm for the construction of a SV structuring el-
ement mapping.

This paper is organized as follows. In Section II, we pro-
vide a brief overview of SV mathematical morphology. Specif-
ically, we present the basic SV morphological operators. We
summarize the SV kernel representation, which shows that any
increasing operator that fixes the entire space can be represented
as a union (respectively, intersection) of SV erosions (respec-
tively, SV dilations). This result demonstrates the ubiquity of
the basic SV morphological operators (i.e., SV erosions and
SV dilations). In Section III, we illustrate the impact of SV
mathematical morphology on image restoration applications.
In particular, we address morphological image restoration by
introducing the SV alternating sequential filters and SV me-
dian filters. We also provide an example for selection of the SV
structuring element mapping for image restoration applications.
We experimentally show the superior noise removal capabilities
of these filters compared to their translation-invariant counter-
parts. In Section IV, we demonstrate the power of SV mathemat-
ical morphology in skeleton representation applications. Specif-
ically, we propose the SV morphological skeleton representa-
tion, develop some of its properties and derive conditions for its
invertibility. We further propose a universal algorithm for the
implementation of the SV morphological skeleton representa-
tion. We provide simulation results which demonstrate the enor-
mous improvement of the SV morphological skeleton represen-
tation in comparison to its translation-invariant counterpart. Fi-
nally, in Section V, we present a brief summary of our results
and discuss our plan for future work.

The proofs of all theoretical results that are new contributions
in this paper are presented in Appendices A and B.

II. SPATIALLY VARIANT MATHEMATICAL MORPHOLOGY

Notation: We consider a nonempty set or . The set
denotes the set of all subsets of . Elements of the set
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will be denoted by lower-case letters; e.g., , , . Elements of
the set will be denoted by upper-case letters; e.g., , , .
An order on is imposed by the inclusion . We use and

to denote the union and intersection in , respectively.
denotes the complement of . The set difference

of sets and is defined by . The
translation also denoted by of a set by

is defined by .
The cardinality of a set is the total number of elements
contained in the set. We use to denote the set
of all operators mapping into itself. Elements of the set
will be denoted by lower case Greek letters; e.g., , , . An
order on is imposed by the inclusion ; i.e., if and
only if , for every . We shall restrict
our attention to nondegenerate operators; i.e., and

for some and , for every
(the set is used to denote the empty set).

A mapping is:
• increasing if , for all

;
• translation-invariant if , for every

and every ;
• extensive (respectively, anti-extensive) if (re-

spectively, ), for all ;
• idempotent if , for all .

The mapping is the dual of the mapping iff

A. SV Morphological Operators

We shall now present an overview of the basic definitions
and properties of SV mathematical morphology introduced by
Charif-Chefchaouni and Schonfeld [34], [35]. For a more com-
prehensive introduction to SV mathematical morphology refer
to [36].2

1) SV Erosions and SV Dilations: The SV structuring ele-
ment is a mapping from into . The transposed SV struc-
turing element is a mapping from into given by

(1)

In translation-invariant mathematical morphology, is the trans-
lation mapping by a fixed set , i.e., ,

. Hence, the transposed structuring element corresponds
to the translation by the transposed set .

The SV erosion is given by

(2)

2Some of the results presented in this section have been extended to the gray-
level case by Chen et al. [24], [25].

The SV dilation is given by

(3)

The SV erosions and dilations satisfy the basic properties of
translation-invariant erosions and dilations. Below we list the
main properties that we need in the sequel.

2) Properties of SV Erosions and SV Dilations:
a) Adjunction: For every mapping from to the pair

defines an adjunction on . In other words

(4)

This result states that and are an erosion and a
dilation, respectively, in the sense that these operators are
distributive over intersection and union, respectively, i.e.,

(5)
for an arbitrary collection of sets

. These identities can also be derived easily without
reference to the framework of adjunctions.

b) Duality: The SV erosion and the SV dilation are
dual operators, i.e.,

(6)

This relation states that dilating a set by the mapping
is equivalent to eroding its complement by the same
mapping and complementing the result.

c) Increasing: For a given mapping , the SV erosion and
the SV dilation are increasing operators, i.e.,

(7)

Increasing operators preserve order (contrast) in the sense
that they prohibit extraction of information from occluded
regions. This property is consistent with the models of
the human visual system which have been investigated in
the field of cognitive psychology. Specifically, the high-
level vision models of gestalt psychology state that the
perceptual processes underlying the visual interpretation
of a scene are increasing operators [9], [47], [48].

d) Extensivity and Anti-Extensivity: If for every
, then the SV erosion is anti-extensive and the

SV dilation is extensive, i.e.,

(8)

Authorized licensed use limited to: University of Arkansas Litte Rock. Downloaded on December 24, 2008 at 12:42 from IEEE Xplore.  Restrictions apply.



3582 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 11, NOVEMBER 2006

e) Serial Composition: Let us use and
to denote the mappings from into given by

and
, for every . Successively SV eroding

(respectively, SV dilating) a set first by and then by
is equivalent to SV eroding (respectively, SV dilating) by
the dilated mapping , i.e., we have

(9)

and

(10)

3) SV Openings and SV Closings: We shall now present the
SV openings and closings and review their main properties. The
SV opening is given by

(11)

The SV closing is given by

(12)

The SV opening and SV closing have nice geometrical interpre-
tations. Let us refer to by the local structuring element at
point . The SV opening of a set is the domain swept out by
all local structuring elements which are included in . By du-
ality, a point belongs to the SV closing if and only if all the
local structuring elements containing hit . Formally, we have
the following equivalent definitions for the SV opening and SV
closing:

(13)

(14)

for every .
4) Properties of SV Openings and SV Closings:
a) Duality: The SV opening and the SV closing are

dual operators, i.e.,

(15)

b) Increasing: For a given , the SV opening and the SV
closing are increasing operators on , i.e.,

(16)

c) Extensivity and Anti-Extensivity: For every mapping , the
SV opening (respectively, SV closing) is anti-extensive
(respectively, extensive). We have

(17)

d) Idempotence: The SV opening and SV closing are
idempotent operators, i.e., for every ,

(18)

e) Fixed Points: It was shown in [6] and [49] that the trans-
lation-invariant opening and closing can be completely
specified from their fixed points. The framework of fixed
points can be extended to the SV case by defining -open
and -closed sets as follows.

5) Definition 1: is -open (respectively, -closed)
if [respectively, ].

A useful characterization of -open and -closed sets is given
by the following proposition.

Proposition 1: [36] is -open [respectively,
-closed] if and only if there exists such that

(respectively, ).
The concept of -open and -closed sets was further extended

to mappings as follows. Consider mappings and from
into . The mapping is -open (respectively, closed)
if is -open (respectively, -closed), for every .
We then have the following result: If is -open, then

(19)
a) Sieving structure: If is open, then we have

(20)

and

(21)

for every .

B. SV Kernel Representation

An important notion related to set mappings is that of the
kernel, introduced by Matheron [6] for translation-invariant
mappings. Matheron subsequently showed that every increasing
and translation-invariant operator can be written as a union of
translation-invariant erosions, or, alternatively, as an intersec-
tion of translation-invariant dilations. This result was extended
to SV operators in [36]. To state the corresponding theorem,
we need the notion of a SV kernel. Let . The SV kernel

of is given by

(22)

An operator is a covering operator (abbreviated as -op-
erator) if is increasing and satisfies . An important
property of -operators is that their kernel is nontrivial and is
unique. In other words, the mapping which associates to each

-operator its kernel is a one-to-one mapping. [36].
The kernel representation of -operators is given by the fol-

lowing theorem;
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Theorem 1: [36] An operator is a -operator if and
only if

(23)

for every .
Theorem 1 is not only interesting theoretically but also for

practical applications. For some -operators, a subset of the
kernel, called a basis, is sufficient for its representation in terms
of SV erosions or SV dilations. Therefore, if the kernel of a

-operator or one of its basis has a finite number of mappings
then the -operator can be exactly represented as a finite union
of SV erosions, or equivalently, as a finite intersection of SV di-
lations. This representation can tremendously simplify the anal-
ysis and implementation of the nonlinear -operator. We will
show later that the adaptive median filter has a finite basis rep-
resentation. Hence, it can be exactly expressed via a closed for-
mula involving only intersections and unions of sets without re-
quiring any sorting.

In Sections III–V, we apply the general theory of SV math-
ematical morphology to two image processing applications:
morphological restoration of noisy images and morphological
skeleton representation.

III. SPATIALLY VARIANT MORPHOLOGICAL RESTORATION

We shall consider SV alternating sequential filters (SVASF)
and adaptive median filters for SV or adaptive image restoration.

A. SVASFs

1) Theoretical Aspects: Alternating sequential filters (ASFs)
were introduced by Sternberg [37] and were extensively studied
by Serra [11]. Basically, an alternating sequential filter is a com-
position of openings and closings by structuring elements of in-
creasing sizes. In this section, we shall extend the class of ASF
to the SV case. In our work and denote the trans-
lation-invariant erosion and dilation, respectively, between the
sets and . We use AF and ASF to denote the trans-
lation-invariant alternating filter and translation-invariant alter-
nating sequential filter, respectively. SVAF and SVASF will de-
note the SVAF and SVASF, respectively.

Given a binary image , let us assume that the transformation
produces a degraded binary image given by

(24)

where

(25)

The model given by (25) is known as the germ-grain model [8],
[9], [50]. In this case is a sequence of sets,
known as the primary grains, whereas is a

sequence of sites, known as the germs, which are randomly dis-
tributed in ; e.g., a Bernouilli point process.3 Observe that the
sequence of germs indicates the “centers”
of the primary grains in the noise process

, .
The SVAF by the structuring element mapping is defined as

the compound SV open-close

(26)

A SV alternating sequential filter is an iterative application of
SV alternating filters

(27)

where , is the order of the filter and the
sequence is increasing i.e., , for all

, for all .
An operator is called a morphological filter if it is

increasing and idempotent. This terminology is different from
the word “filter,” which is commonly used by the signal and
image processing community to denote an “operator.” Although
the class of increasing transformations is closed under compo-
sition, the class of idempotent transformations is not. The fol-
lowing proposition gives a sufficient condition on the sequence
of structuring element mappings for the SV alternating se-
quential filter to be a morphological filter.

Proposition 2:
(a) For every structuring element mapping , the SV alter-

nating filter is a morphological filter.
(b) If is -open (i.e., , ),

for , then the SV alternating sequential filter
of order , is a morphological filter.

In the translation-invariant case, the sequence of structuring
element mappings is usually chosen to be

, where ( times) and
[8]. Then, we have

; that is, is open. Hence, the
condition of Proposition 2 is satisfied in the translation-invariant
case. Since for a special choice of the structuring element map-
ping , the SVASF reduces to the translation-invariant ASF, the
class of SVASFs is still the subset of smoothing morphological
filters which best preserve the crucial structure of input images
in the least mean difference sense [8].

2) Simulations: As in the translation-invariant case, SV
mathematical morphology theory is not constructive, in the
sense that it does not build a systematic algorithm to find the
“optimal” structuring element at each point of the image. The
choice of the structuring element mapping obviously depends
on the considered application.

We propose a general selection rule for image restoration.
We assume that the noise model degradation is characterized
by the germ-grain model given by (24) and (25). In translation-

3Often, the sequence of germs fx ; n = 1; 2; . . .g is distributed according
to a Poisson point process. In this case, the germ-grain model is known as the
Boolean model [9], [50], [51].
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invariant morphology, a priori knowledge of the noise model
leads to the selection of a structuring element of size larger than
the largest noise-grain [8]. This approach ensures that the noise
is eliminated from the image. However, the geometric and topo-
logical structure of the restored image is degraded during the
restoration process. Denoising should be performed so that the
noise is reduced sufficiently and the geometric and topological
characteristics of the image are preserved. This can be achieved
by spatially varying the structuring element depending on the
local properties at each pixel in the image. The idea of the pro-
posed algorithm is to use, at each pixel, a structuring element
of size slightly bigger than the size of the noise-grain at that
point. The mappings of the are selected as shown
in the equation at the bottom of the page, where , is
the 3 3 square structuring element and . Ob-
serve that the above definition of the s does not imply that
these mappings are equal, since the noise is reduced as the it-
erations increase. For instance, assume that at the first iteration,
a point is detected as the center of a noise grain . So,

. Assume further that the latter noise-grain is
small enough so that it has been removed by the filter .
Hence, at the second iteration, no noise-grain is detected at point

and thus , i.e., the point is not filtered at the second
iteration. Moreover, observe that the constructed s do not sat-
isfy Proposition 2 and thus the , for , is not
idempotent. The detection of the presence of a noise-grain
centered at the pixel is determined by selecting the largest
possible grain in the germ-grain model given by (24) and
(25), which is present or absent in the degraded image (i.e.,

or ) [8].
The performance of the algorithm is measured by the

signal-to-noise ratio (SNR). Let denote the original image
of size and the restored (denoised) image. The SNR
is defined by

Consider the binary image depicted in Fig. 1(a). The de-
graded binary image , obtained by using (24) and (25), with

, formed by the overlapping of square structuring
elements distributed according to a Bernouilli process, is de-
picted in Fig. 1(b). Fig. 1(c) [respectively, Fig. 1(d)] shows the
output image of the AF using the rhombus structuring element
in [43] (respectively, 3 3 square structuring element) dilated
eight times. A slight improvement is obtained by the use of
an ASF of order 8 using the rhombus structuring element (re-

Fig. 1. Denoising of a binary image using morphological filters and SNR com-
parison. (a) Original binary image. (b) Degraded image by a germ-grain noise
model. (c) AF using the rhombus SE dilated eight times. (d) AF using a 3� 3
square SE dilated eight times. (e) ASF using the rhombus SE. (f) ASF using
a 3� 3 square SE. (g) SVAF. (h) SVASF .

spectively, 3 3 square structuring element) in Fig. 1(e) [re-
spectively, Fig. 1(f)]. Although most of the noise is removed by
the ASF, the original image is highly smoothed and its original
topology is lost. We immediately see the drastic improvement
of the SVAF and SVASF over their translation-invariant coun-
terparts in Fig. 1(g) and (h), respectively. The SVASF removes
the noise while preserving the edges and the geometric structure
of the image. The SNR of the different experiments are provided
below their corresponding images. The SVASF achieves a SNR
80-dB higher than its invariant homologue.

The simulation results obtained illustrate that, given an image
degraded by noise characterized by the germ-grain model, even
if one were to select the optimal parametrization [8] and the
optimal structuring element [38] for the translation-invariant AF
and ASF morphological filters, the results would be inferior to
those obtained by using SV morphological filters (see [8, Fig.
3]).

B. Adaptive Median Filter

1) Theoretical Aspects: Consider . Let be
a mapping from into such that and

is odd, for every . The
median of with respect to the adaptive window

is given by

(28)

It is easy to show that the median filter is a self-dual -operator,
i.e., it is a -operator such that it is its own dual. Therefore, it can
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Fig. 2. Denoising using median filters and SNR comparison: (a) Original grayscale image. (b) Image degraded by a germ-grain model. (c) Eight iterations of me-
dian filtering by a fixed 3� 3 window. (d) Eight iterations of median filtering by a fixed 5� 5 window. (e) Median filtering by a fixed 17� 17 window. (f) Median
filtering by a fixed 19� 19 window. (g) Alternating sequential median filter ASMF of size eight using initial window of size 3� 3 incremented by two at each
iteration. (h) Alternating sequential median filter ASMF using initial window of size 5� 5 incremented by two at each iteration. (i) SV median filtering with
adaptive window size corresponding to the germ grain size incremented by one. (j) SV median filtering with adaptive window size corresponding to the germ-grain
size incremented by two. (k) Second iteration of SV median filtering with adaptive window size corresponding to the germ-grain size incremented by one. (l)
Second iteration of SV median filtering with adaptive window size corresponding to the germ-grain size incremented by two.

be shown from the definition of the kernel and from Theorem 1
that

(29)

where and if and only if is any subset
of of cardinality .

Equation (29) establishes the relation between the adaptive
median filter and the basic SV morphological filters, i.e., SV
erosion and SV dilation. The implication of (29) are profound
because they enable us to express the adaptive median filter via
a closed formula involving only unions and intersections of sets,
without requiring any sorting. For small adaptive window sizes,
it was shown that the implementation of the median filter via
its kernel representation is more attractive than sorting schemes
[48].

Although the theory of SV mathematical morphology has
been presented for the binary case, its extension to gray-scale
is straightforward and follows the steps used to extend transla-
tion-invariant binary morphology to translation-invariant gray-
scale morphology [37], [42]. Therefore, we will apply adaptive
median filtering to gray-scale images.

2) Simulations: The key idea of the implementation of the
adaptive median filter is identical to the SVASF. Specifically, the
size of the local window at a given point is selected to be slightly
larger than the size of the germ-grain at this point. In our sim-
ulations, we consider the original image depicted in Fig. 2(a).
Its corrupted version by a germ-grain noise model appears in
Fig. 2(b).

In the first experiment, we applied the median filter iteratively
to the degraded image using a fixed square window of size 3 3.
The output image is shown in Fig. 2(c). Notice that since some
of the germ-grains have size larger than 3, the median filter using
the 3 3 window fails to remove the larger noise structures. We
repeat the same experiment using a 5 5 square window. The
resulting image is depicted in Fig. 2(d). While the median filter

using the 5 5 window removes most of the noise in iteration
8, the output image is more smoothed.

In a second experiment, we applied a Median filter using a
fixed square window of size 17 17 [see Fig. 2(e)]. Although
more noise has been removed than the iterative median filters
in the first experiment, the restored image is overly smoothed.
The same experiment is repeated using a square window of size
19 19 [Fig. 2(f)]. The filtered image is cleaner but equally
smoothed.

In a third experiment, we applied an alternating sequential
median filter (ASMF) of order 8, which is composed of eight
median filters of increasing window sizes. The window size is
incremented by two at each iteration. Fig. 2(g) shows the re-
sult of ASMF using an initial square window of size 3 3. Al-
though the noise-grains are totally removed, the restored image
is over smoothed and its features (e.g., windows, edges) are
completely lost. We reach the same conclusion if we apply an
ASMF using an initial square window of size 5 5 [Fig. 2(h)].
Observe that the largest window of the ASMF with an initial
window of size 3 3 (respectively, 5 5) has size 17 17 (re-
spectively, 19 19).

In the last experiment, we applied the SV median filter
(SVMF). Fig. 2(i) and (j) is obtained by SV median filtering
using, at each point, a local window size equal to the size of
the noise-grain, at the same point, incremented by one and
two, respectively. The restored images preserve the edges
and geometric structure of the noise-free image. Notice that
using a local window size equal to the size of the noise-grain
incremented by two performs better in terms of noise removal
capability, than using a local window of size equal to the size of
the noise-grain incremented by one. The reason is that some of
the noise-grains overlap and merge to form bigger noise-grains.
Therefore, a larger local window size is needed to ensure that
these noise-grains are suppressed. However, if the local window
size is too large, the median value computed in that window
will not provide a good estimate of the noise-free pixel because
only pixels in a small neighborhood are strongly correlated.
Therefore, there is a trade-off between the noise removal
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capability and the accuracy of the estimation. Fig. 2(k) and (l)
shows two iterations of the SVMF using a local window size
equal to the size of the noise-grain incremented by one and
two, respectively. All of the noise has been removed in the
second iteration of the SVMF without altering the topological
characteristics of the noise-free image. The SNR of the above
experiments are provided below their corresponding images in
Fig. 2. Notice that the SVAMF achieves a SNR which is 20 dB
higher than its translation-invariant counterpart.

IV. SPATIALLY VARIANT MORPHOLOGICAL

SKELETON REPRESENTATION

Let , , and denote the translation-invariant
erosion, dilation and opening, respectively, of the set by the
structuring element [9]. Let ( times).

A. Theoretical Aspects

Consider a sequence of mappings from into
such that , for every , for all and

, for all . Consider the sequence of mappings from
into given by
for , and , for every . We define
the integer by for a given

.
Let denote a collection of operators

in such that

(30)

for every , every and , for
every .

Definition 2: Consider . The SV morphological
skeleton representation of is given by

(31)

where is the SV morphological skeleton representation
subset of order given by

(32)

Definition 3: The SV morphological skeleton representation
of is invertible if there exists a sequence

of operators in such that

(33)

The following theorem establishes a restriction on the choices
of the sequences as a direct consequence of
constraint (30) and establishes the invertibility of under
this restriction.

Theorem 2: If the sequence of operators
in satisfies constraint (30), then

(34)

for and for every . Moreover, is
invertible and

(35)

From Theorem 2, we observe that the SV morphological rep-
resentation of , , obtained by the sequence of transfor-
mations which satisfy restriction (30), de-
composes into a sequence of subsets

which uniquely characterizes , thereby allowing for
a SV morphological representation which permits the exact re-
construction of . In the remainder of this section, we shall
investigate some properties of .

The following proposition shows that the resulting
morphological image representation subsets , for

, are disjoint and anti-extensive.
Proposition 3: We have

(36)

(37)

In the following proposition we show that, under a certain
condition on the mappings , a repeated appli-
cation of the transformation does not influence the image
representation.

Proposition 4: If

(38)

then

(39)

When condition (38) is not satisfied, the repeated application
of may result in a further reduction of the total cardinality
of the representation. This is a desirable result in many applica-
tions of interest (e.g., image coding [52], [53]).

1) Example (Generalized Morphological Skeleton [3]): The
following example is an important special case of the general
SV morphological image representation . Consider

(40)

The following proposition shows that the above sequence
satisfies constraint (34).
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Proposition 5:

(41)

for and .
Therefore, the representation , given by (31) and (32),

is invertible and the reconstruction formula is given by (35).

B. Algorithmic Analysis

In this section, we develop an algorithm for the implemen-
tation of the SV morphological skeleton representation studied
above. We compare the SV skeleton representation with the
translation-invariant representation. The performance of the
morphological skeleton representations is assessed by the
number of points, in the image representation, required for
exact reconstruction of the original image.

From our perspective, the purpose of morphological skeleton
representations is coding, compression and storage. In a com-
munication framework, our goal is to minimize the average
code length of the compressed binary image. It has been shown
that efficient encoding of the skeleton representation using
run-length type codes can be used to provide an efficient com-
pression routine for binary images [43]. This approach relies
on the sparse representation of skeletons to efficiently encode
long run-lengths corresponding to pixels that do not lie in the
skeleton. Therefore, it is not surprising that investigators have
determined that lower cardinality skeleton representations yield
superior compression ratios [43]. Our goal is thus to minimize
the cardinality of the source image under the constraint of
lossless compression. For the purpose of this presentation, we
assume the channel to be noiseless. Therefore, the receiver
will be able to reconstruct the original image perfectly without
error.

The optimal SE, in the sense of minimizing the cardinality of
the morphological skeleton representation, would be the image
itself. The translation-invariant and SV morphological skeleton
representations would be identical and consist of one point.
However, this is a trivial solution since it is impractical and as-
sumes that the image to be transmitted by the sender is already
known by the receiver and is stored in its library. We will as-
sume a fixed library of structuring elements at the encoder and
decoder and construct the optimal SV structuring element map-
ping to minimize the cardinality of the morphological skeleton
representation. The idea of the proposed algorithm is similar
to the matching pursuit algorithm [54]. The matching-pursuit
algorithm adaptively decomposes a signal into waveforms
that are the dilations, translations, and modulations of a single
function; thus, providing an interpretation of the signal struc-
ture. In the proposed algorithm, let denote the original
image and a fixed structuring element. Table I describes a
universal algorithm to construct the optimal structuring element
mapping for the SV morphological skeleton representation.
The algorithm is an iterative process. At each iteration, the
algorithm selects the center of the dilated structuring element

that maximally intersects the image, for some integer .
The union of these center points constitutes the SV morpho-
logical skeleton representation. The exact reconstruction of the

TABLE I
UNIVERSAL ALGORITHM TO CONSTRUCT THE OPTIMAL STRUCTURING

ELEMENT MAPPING FOR THE SV-MORPHOLOGICAL

SKELETON REPRESENTATION

Fig. 3. Morphological skeleton representation: (a) Original image. (b) SV mor-
phological skeleton representation (162 points). (c) Translation-invariant mor-
phological skeleton representation (502 points).

original image is guaranteed given the set of center points and
their corresponding integer .

It is easy to show that the resulting SV morphological
skeleton representation using the proposed algorithm is com-
pact, in the sense that the set is not
redundant; i.e., the reconstruction based on any partial subset of
the resulting SV morphological skeleton representation would
form a strict subset of the original image. It is also interesting
to observe that the sets are not
necessarily disjoint. Thus, the optimal morphological skeleton
representation is not derived by a decomposition of the original
image into nonoverlapping shapes. Instead, overlapping shapes
are exploited in order to reduce the number of shapes required
to cover the image. This approach allows for a substantial
reduction in the cardinality of the morphological skeleton rep-
resentation. Moreover, as we have seen earlier in the example
of the SV skeleton representation of a synthetic image, the
resulting SV morphological skeleton representation using the
optimal SV structuring elements outlined in the algorithm is
identical to the SV erosion using the same structuring element
mapping. The SV and translation-invariant morphological
skeleton representations are shown in Fig. 3(b) and (c), re-
spectively. The SV morphological skeleton representation has
a compression ratio which is more than three times higher

Authorized licensed use limited to: University of Arkansas Litte Rock. Downloaded on December 24, 2008 at 12:42 from IEEE Xplore.  Restrictions apply.



3588 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 11, NOVEMBER 2006

than its translation-invariant counterpart. We shall once again
determine the number of parameters needed for representation
of the skeleton and ignore the effects of the use of encoding
schemes using run-lengths type techniques in computing the
storage capacity requirements. If the morphological skeleton
representation is used for storage or communication, then we
need parameters to transmit the SV morpho-
logical skeleton representation. On the other hand, the total
number of parameters required for transmission of the transla-
tion-invariant morphological skeleton representation is equal
to . Therefore, the SV morphological skeleton
representation has a storage capacity gain that is 2.32 times
higher than the translation-invariant morphological skeleton
representation.

V. CONCLUSION

In this paper, we presented a general theory of SV mathe-
matical morphology and showed its enormous potential through
two important image processing applications. First, we intro-
duced SV alternating sequential filters and SV median filters
for SV morphological denoising of degraded images. Simula-
tion results demonstrated that, not only is the noise removal
capability of the SV morphological filters dramatically higher
than their translation-invariant counterparts, but also the topo-
logical and geometrical structure of the original image are pre-
served. Second, we extended the translation-invariant morpho-
logical skeleton representation to the SV case. We have also de-
veloped a universal algorithm for optimal selection of the SV
structuring element mapping for skeletonization by minimizing
the cardinality of the SV morphological skeleton representation.
This approach has been shown to yield a substantial reduction
in the cardinality of the SV morphological skeleton representa-
tion in comparison to its translation-invariant counterpart. As a
result of this investigation, we have complemented the elegant
theory of SV mathematical morphology with powerful prac-
tical algorithms for image processing applications. The SV mor-
phological framework presented can be applied to many clas-
sical image processing problems related to nonlinear filtering. In
the future, we plan to further explore the power of the SVMM
framework by developing more sophisticated and faster algo-
rithms for non linear filtering in various image processing ap-
plications. We also plan to investigate the optimal SV struc-
turing element mapping for morphological image restoration
applications by extending the work of Schonfeld [38] for trans-
lation-invariant morphological filters. We further plan to explore
the robustness of the SV morphological skeleton representa-
tion to noise degradation by extending the work of Schonfeld
and Goutsias [45] for the translation-invariant morphological
skeleton representation. A formal analysis of the optimal struc-
turing element mapping and investigation of the robustness of
the morphological structuring element require the use of random
set theory [6], [9], [50], [51].

APPENDIX A
PROOF OF PROPOSITIONS

Proof [Proof of Proposition 2]: From Section II-A4, we
know that and are increasing operators. Since the class of
increasing operators is closed under composition, we conclude
that the and the are increasing.

a) Let us first prove the idempotence of the SVAF. By the
anti-extensivity property of , we have

for all . Applying to the above inequality
and, since is increasing, we obtain

where the last equality follows from the idempotence of
. Therefore, we have

(42)

By the extensivity property of , we have

Applying to the above inequality and since is in-
creasing, we obtain

(43)

where the last equality follows from the idempotence of
.

Applying to (43), and since is increasing, we obtain

Therefore, we have

(44)

Using (42) and (44), we establish the idempotence of the
.

b) The idempotence of the follows from the more
general result established by Schonfeld and Goutsias in
[8, Proposition 1]. All the necessary conditions to apply
Proposition [8, Proposition 1] are satisfied.

Proof [Proof of Proposition 3]: From (32) and constraint
(30), we have

(45)
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Assume that are such that . From the
definition of , we have

Therefore,
. From (45), we obtain . Equation (37) is a direct

consequence of (32) and the fact that .
This completes the proof.

Proof [Proof of Proposition 4]: Let such that
. From the definition of and , we have

, for every . Therefore, .
From (32) and the fact that , we have

. From the constraint
(30) and since , we have . Therefore,
from (32), we have for . Finally, we see that

(46)

Now, we will show that satisfies .
Let us take . From (32), we see that
and . From constraint (30), we see
that . From the
definition of , there exists such that

. Since
and by hypothesis for ,

we have . Thus, for every
. Consider now, and consider

the set . By definition of the mappings , we have
that . Since , we conclude that

for every . Thus,
for every or . Finally, by using (46)
with , we prove (39).

Proof [Proof of Proposition 5]: By the extensivity
property of the SV dilation, we have that

. By the extensivity property
of SV closing, we have

(47)

Using (10), we have that .
From the construction of , we have that

, for and . Therefore

Therefore, ,
. Finally, (47) becomes

.
Therefore, the sequence sat-

isfies constraint (34) for every . Hence, by The-

orem 2, is invertible and
.

APPENDIX B
PROOF OF THEOREMS

Proof [Proof of Theorem 2]: Since constraint (30) must be
satisfied for every , we can choose .
Therefore, we obtain

(48)

for . From (12), we observe that
. From the fact

that is -closed, we have, using Proposition 1

(49)

Substituting the above equation into (48), we obtain (34).
From (32), we have

(50)

where satisfies restriction (30).
Let . Applying to (50) and using (34) and

the anti-extensivity of , we obtain

(51)

Observe that and . By iter-
ating (51) for , , we obtain

(52)

From (32), we have ; thus, since the SV dila-
tion is increasing, , i.e.,

(53)

for . We observe that is -open. There-
fore, from (19), we have , which results in

(54)

From (53) and (54), we have

(55)
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Equations (52) and (55) prove that

(56)

Observe that . Therefore, we obtain (35).
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