Design a transfer station for MSW for scenario A
Given: $\quad 20$ yr design life
MSW collected per capita in the design year is:

$$
\text { Scen A } \quad 5.5 \quad \mathrm{lb} / \text { person/day }
$$

The remaining
Specific weight of MSW on compaction vehicle and transfer container is
Scen A
S21 $\quad \mathrm{lb} / \mathrm{cu}-\mathrm{yd}$

Specific weight of MSW on private vehicles is
Average service rate at scalehouse is $\quad 1.3$ vehicles/minute

Average service rate at tipping stalls is 0.21 vehicles/minute

SCENARIO A

a. Estimate average and Peak day, and Peak hour throughput in design year, asuming the TS operates

6 days per week. Give answer in tons.

Average	day	Peak day	Peak hour
7	6		
$\mathrm{~d} / \mathrm{wk}$	d / wk		
tons	tons	tons	tons
316	368	737	111

col 1 Pop x MSW coll per person per day / 2000
$\operatorname{col} 2 \operatorname{col} 1 \times 7 / 6$
col 3 col $2 \times$ peak factor
col $4 \quad$ col $3 \times$ peak factor
b. Determine the number of transfer containers required to handle design year peak day. The TS operates

8 hours / working day. Assume a transfer container can be placed,
filled, and removed in 0.25 hours. Use as many containers as required.
The container holds 105 cu-yd. The specific weight is $521 \mathrm{lb} / \mathrm{cu}-\mathrm{yd}$
Number of containers Loads / day TS capacity

1	32	875.888
2	64	1751.776

1 Container is acceptable
c. Estimate the area required to store the peak hour MSW amount in a cubical pile

8 ft high, with specific weight $450 \mathrm{lb} / \mathrm{cu}-\mathrm{yd}$. give answer in cu-yd.
Area $=$ peak hr Amount $/(\mathrm{SW}$ x pile height $)$
$=$
$=$$\quad 111$ tons x 2000lb/ton $\quad /\left(\begin{array}{lllll} \\ = & 184 \text { sq-yd }\end{array}\right.$
d. Estimate the number of compaction and private vehicles using the landfill (separate and together) in the design year during the peak day. Also estimate the corresponding peak day arrival times and utilization factors at the scalehouse.
COMPACTION VEHICLES
number of compaction vehicles $=$ fraction brought x peak day amnt / compaction vehicle capacity

PRIVATE VEHICLES

number of private vehicles $=$ fraction brought x peak day amnt/private vehicle capacity

TOTAL VEHICLES
number $=\quad 457$
arrival rate $=\quad 0.95$
utilization factor $=$ arrival rate $/$ service rate

| $=$ | 0.95 | 1 | 1.3 | $=$ |
| :--- | :--- | :--- | :--- | :--- | 0.73

e. Estimate the average number of vehicles in the scalehouse system, their average wait time, and the 95% probability of having n or fewer vehicles in the system during peak day.
Use total vehicles.
Assuming
1 scalehouse

Average \# of vehicles waiting to be served = utilization factor squared / (1- utilization factor)
$=\quad$ square $\left(\begin{array}{cc}0.73\end{array}\right) /(1-0.73 \quad)$

Average waiting time $=$ arrival rate $/($ service rate x (service rate - arrival rate) $)$

$=$	0.95	$/($	1.3	x	$($	1.3	-
$=$	2.1 minutes					0.95	$)$

Probability of n or less vehicles in system?

n	$\mathrm{P}(\mathrm{n})$	$\mathrm{P}(<=\mathrm{n})$
0	0.27	0.27
1	0.196	0.46
2	0.1435	0.61
3	0.1051	0.71
4	0.077	0.79
5	0.0564	0.85
6	0.0413	0.89
7	0.0302	0.92
8	0.0222	0.94
9	0.0162	0.96

$\mathrm{P}(\mathrm{n})=1$ - utilization factor, if $\mathrm{n}=0$
$\mathrm{P}(\mathrm{n})=\left(\right.$ utilization factor $\left.{ }^{\wedge} \mathrm{n}\right) \times \mathrm{P}(0)$, if $\mathrm{n}>0$
$\mathrm{P}(<=\mathrm{n})=$ sum of $\mathrm{P}(\mathrm{n})$'s up to n
f. For the compaction and private vehicles combined, determine the average number of vehicles in the tipping system, their average wait time, and the probability of having n or fewer vehicles in the system (up to 0.95 probability), for fewest tipping stalls that result in a 95% probability of having 5 or fewer vehicles waiting to tip, during peak day.

arrival rate $=$	0.95	vehicles/minute
service time $=$	0.21	vehicles/minute
utilization factor $=$	4.53	

P(n) PROBABILITY TABLE

number of tipping stalls, K	Probabily, given K and n			
	6		8	9
\# of vehicles in tipping sys. if 5 are waiting facility utilization factor	11	12	13	14
	0.755625	0.648	0.566719	0.504
n				
0	0.008751	0.01	0.010526	0.011
1	0.039676	0.046	0.047723	0.048
2	0.089942	0.104	0.108181	0.11
3	0.135924	0.157	0.163489	0.166
4	0.154062	0.178	0.185304	0.188
5	0.139696	0.161	0.168025	0.17
6	0.105557	0.122	0.126964	0.129
7	0.079762	0.079	0.082232	0.083
8	0.06027	0.051	0.046602	0.047
9	0.045542	0.033	0.02641	0.024
10	0.034412	0.021	0.014967	0.012
11	0.026003	0.014	0.008482	0.006
12	0.019648	0.009	0.004807	0.003
13	0.014847	0.006	0.002724	0.002
14	0.011219	0.004	0.001544	8E-04

CUMULATIVE PROBABILITY TABLE

number of tipping stalls, K \# of vehicles in tipping sys. if 5 are waiting	Cum Probability, given K and n			
	6	7	8	9
	11	12	13	14
n				
0	0.008751	0.01	0.010526	0.011
1	0.048428	0.056	0.058249	0.059
2	0.138369	0.159	0.16643	0.169
3	0.274294	0.316	0.329919	0.334
4	0.428355	0.494	0.515223	0.522
5	0.568051	0.655	0.683248	0.693
6	0.673608	0.776	0.810212	0.821
7	0.75337	0.855	0.892443	0.905
8	0.81364	0.906	0.939046	0.952
9	0.859182	0.939	0.965456	0.976
10	0.893594	0.961	0.980423	0.988
11	0.919597	0.975	0.988905	0.994
12	0.939246	0.983	0.993713	0.997
13	0.954092	0.989	0.996437	0.998
14	0.965311	0.993	0.997981	0.999

From inspection of the table above, it is apparent that 7 tipping stalls are required.
g. How would the transfer station design for Scenario's B and C differ? How would it be similar?

