HW Problem 15:

1. Estimate the number of drop-off recycling centers needed in Dusseau's Folly if the average number of cars per hour is to be less than or equal to 20 during the typical daily peak hour. Note: The same drop-off centers are used in both Scenario A and B.
Given: $\quad 95000$ people. 3.3 people / house.
Centers are open 7 days per week, 24 hours a day; however, we'll assume they are only used from 7 AM to 7 PM, seven days per week.
30% of the homes participating, drop-off once per week
50% drop-off once in two weeks
20 \% drop-off once in four weeks
Assume the typical daily peak hour rate is 4.75 times the average hourly rate. The centers accept newspaper, cardboard, glass, steel cans, HDPE, PET, and aluminum.
Assume that newspaper is 20 \% of the the paper fraction (as generated)
Assume that HDPE and PET are 80 \% of the plastics fraction
a) What is the participation rate? Assume that participating homes recycle 80% of material availabe (e.g., if a home generates $10 \mathrm{lbs} /$ week of material accepted at the drop-off center, 8 lbs actualy makes it to the center. The rest ends up at the landfill.)
Note: you will need to use data from previous problems. Use the same method as in the recyclables collection problem)

The total amount of material delivered to drop-off centers is 4770 tons
How many people does it take to make that much material?
The materials recycled at the drop off center include:

	lbs available out of 100 lbs generated
Paper (newspaper)	7.0
Cardboard	6.5
Glass	8.9
Steel cans	5.6
Plastic (HDPE \& PET)	5.5
Aluminum cans	0.7
Total	34.2

therefore, 34.2 lb out of every 100 lb generated could be sent to the drop-off center, or 0.342 as a fraction.
Total available amount $=$ population $\mathrm{x} 365 \times$ MSW generated/person/d x fraction recyclable material is of total MSW
$=\quad 69056875 \mathrm{lb} /$ year
PR = Amount sent to drop-off center / Amount available / \% available material delivered to drop off center

$$
=\quad 0.17 \quad \text { or } \quad 17.27 \quad \%
$$

b) How many homes use drop off centers per week?

$=$	$\mathrm{PR} \times$ population / people/home					
$=$	$=$	0.17	x	95000	$/$	3.3

Cars per week, assuming one car per home per trip = number of once per week + once per two week + once per four week cars

c) What is the average number of cars using drop-offs per hour? Assume one car per home per drop-off.

Number of operating hours per week $=7$ days $\times 12$ hours per day $=84$ hours

$$
\text { Average cars per hour }=\quad 2982.719 \quad / \quad 84=\quad 35.5
$$

d) What is the typical daily peak hour rate?
$4.75 \quad \mathrm{x} \quad 35.5 \quad=\quad 169$
e) How many drop-off centers does Dusseau's Folly need?
(i.e., to have <

20 cars during peak hour.)

$=$	169	$/$	20	$=$	8.4

Four or five should be acceptable.

