HW Problem 7	':				SOLUTIO	DN	2005
Design a resider	ntial m	unicipal so	lid waste curb	side colle	ction syster	n for Scena	arios A, B, and C.
Assume that residential MSW accounts for				85	% of the	MSW coll. per person pe	
(determined in e	earlier l	HWs). T	he other		15	% is com	mercial, institutional, etc.
Assume the data	a given	below app	olies.				
	3.3	persons/h	ouse				
		Specific v	veight of MSW	/ is:		Total MS	SW collection rate is:
Scer	n A	168	lb/cu-yd			5.5	lb/person/day, as collec
Scer	n B	168	lb/cu-yd			4.9	lb/person/day, as collec
Scer	n C	169	lb/cu-yd			4.6	lb/person/day, as collec
Coll	ection	vehicle co	mpaction ratio	, r =		3.1	
Cp =	=	7	days/collecti	on period	l		
Max	imum	working d	ays per week =	=	5		
Rou	nd trip	haul time,	h =	0.5	hrs/route		
Nun	nber of	routes col	lection vehicle	serves ea	ach day =		2
crew	v size =		1				
pickup time per pickup location =				1	collector-minute/residence		
Trav	el time	to first pi	ckup location,	t1 =		0.3	hrs/working day
Trav	el time	back to p	arking facility,	, t2 =		0.3	hrs/working day
Off-	route fa	actor, W =		0.15			
At s	ite time	e per trip, s	s =	0.25	hrs/route (time spent	unloading)

a. Determine the number of houses to be served in Dusseau's Folly

number of houses = population / persons/house = 95000 / 3.3 = 28787.88 houses

For 8 and 10 hour working days, complete parts b - f.

b. Determine the time available for each collection route.

Pscs = [H(1-W)-(t1+t2)]/Nd - (s+h)For 8 hrs, Pscs = 2.4 hrs For 10 hrs, Pscs = 3.2 hrs

c. Determine the number of pick-up locations (houses) that can be served per route.

$Np = 60 \times Pscs \times n / tp$		
For 8 hrs, Np =	141	houses per route
For 10 hrs, Np =	192	houses per route

d. Determine the number of routes required per collection period.

Rcp = NOR / Np		
For 8 hrs, Rcp =	204.2	routes/collection period
For 10 hrs, Rcp =	149.9	routes/collection period

e. Determine the required number of collection vehicles, as a real number.

NOV = Rcp / (Nd x Cwp)					
For 8 hrs, NOV =	20.4	vehicles			
For 10 hrs, NOV =	15.0	vehicles			

f. Determine the labor requirements.

$LR = \{n [Rcp x Pscs + Rcpi (s + h) + Cwp (t1 + t2)] x 7\}/[(1 - W) H x Cp)$ Where Cwp is the maximum required number of working days to complete the re					
For 8 hrs, LR =	93.6	collector days/week (8 hr days)			

For 10 hrs, $LR = 70.0$	collector days/week	(10 hour days)
-------------------------	---------------------	----------------

g. For each scenario (and 8 and 10 hr work day), determine the required truck volume.

Truck Volume = FR xVr x Np x SOR / r						
	Vr =	lb MSW/person/d x people/house x Cp / Specific weight				
		and $FR =$ fraction of waste that is residential				
Scen A						
	for 8 hrs,		29	cu-yd		
			10			
	for 10 hrs,		40	cu-yd		

Scen B			
Seen D	for 8 hrs,	26	cu-yd
	for 10 hrs,	36	cu-yd
Scen C	for 8 hrs,	24	cu-yd
	for 10 hrs,	33	cu-yd

r day

:ted :ted :ted outes