HW Problem 7:
SOLUTION
2005
Design a residential municipal solid waste curbside collection system for Scenarios A, B, and C.

Assume that residential MSW accounts for
(determined in earlier HWs). The other
Assume the data given below applies.
3.3 persons/house

Specific weight of MSW is:

Scen A	168	lb/cu-yd
Scen B	168	lb/cu-yd

Scen C 169 lb/cu-yd
Collection vehicle compaction ratio, $\mathrm{r}=$
$\mathrm{Cp}=\quad 7 \quad$ days/collection period
Maximum working days per week $=$
Round trip haul time, $\mathrm{h}=\quad 0.5 \mathrm{hrs} /$ route
Number of routes collection vehicle serves each day $=$
85 \% of the MSW coll. per person pe
15 \% is commercial, institutional, etc.
crew size = 1
pickup time per pickup location $=$ Travel time to first pickup location, $\mathrm{tl}=$ Travel time back to parking facility, $\mathrm{t} 2=$
Off-route factor, $\mathrm{W}=$
0.15
$0.25 \mathrm{hrs} /$ route (time spent unloading)
a. Determine the number of houses to be served in Dusseau's Folly
number of houses $=$ population $/$ persons/house

$$
=95000 / 3.3 \quad=28787.88 \text { houses }
$$

For 8 and 10 hour working days, complete parts b-f.
b. Determine the time available for each collection route.

Pscs $=[\mathrm{H}(1-\mathrm{W})-(\mathrm{t} 1+\mathrm{t} 2)] / \mathrm{Nd}-(\mathrm{s}+\mathrm{h})$

For 8 hrs , Pscs $=$
For 10 hrs, Pscs =
2.4 hrs
3.2 hrs
c. Determine the number of pick-up locations (houses) that can be served per route.
$\mathrm{Np}=60 \times \operatorname{Pscs} \mathrm{x} / \mathrm{tp}$
For $8 \mathrm{hrs}, \mathrm{Np}=\quad 141$ houses per route
For $10 \mathrm{hrs}, \mathrm{Np}=192$ houses per route
d. Determine the number of routes required per collection period.

$$
\mathrm{Rcp}=\mathrm{NOR} / \mathrm{Np}
$$

For 8 hrs, Rcp =
For $10 \mathrm{hrs}, \mathrm{Rcp}=$
204.2 routes/collection period
149.9 routes/collection period
e. Determine the required number of collection vehicles, as a real number.

$$
\mathrm{NOV}=\operatorname{Rcp} /(\mathrm{Nd} x \mathrm{Cwp})
$$

For 8 hrs, NOV $=$	20.4	vehicles
For 10 hrs, NOV $=$	15.0	vehicles

f. Determine the labor requirements.
$\mathrm{LR}=\{\mathrm{n}\lceil\operatorname{Rcp} \times \operatorname{Pscs}+\operatorname{Rcpi}(\mathrm{s}+\mathrm{h})+\mathrm{Cwp}(\mathrm{t} 1+\mathrm{t} 2)\rceil \times 7\} /\lceil(1-\mathrm{W}) \mathrm{H} \times \mathrm{Cp})$ Where Cwp is the maximum required number of working days to complete the rc

For $8 \mathrm{hrs}, \mathrm{LR}=\quad 93.6$ collector days/week (8 hr days)
For $10 \mathrm{hrs}, \mathrm{LR}=\quad 70.0 \quad$ collector days/week (10 hour days)
g. For each scenario (and 8 and 10 hr work day), determine the required truck volume.

Truck Volume $=\mathrm{FR} \times \mathrm{Vr} \times \mathrm{Np} \times \mathrm{SOR} / \mathrm{r}$
$\mathrm{Vr}=\quad \mathrm{lb}$ MSW/person/d \times people/house $\times \mathrm{Cp} /$ Specific weight and $F R=$ fraction of waste that is residential
Scen A for 8 hrs ,

29 cu-yd for 10 hrs ,

40
cu-yd
Scen B

for 8 hrs,	26	cu-yd
for 10 hrs,	36	cu-yd

Scen C

for 8 hrs,	24	cu-yd
for 10 hrs,	33	cu-yd

r day
sted
zted
zted
jutes

