HW Problem 4:

SOLUTION
2005
Solid waste planning students in Dusseau's Folly often gather at a restaurant called Cleary's Cajun Cantonese.
Here students may be found engaged in heated debate on cutting edge environmental issues, such as the best means of addressing cumulative environmental impacts, or the pronunciation of Tchobanoglous. Cleary's CC, offers a unique and tasty menu, unfortunately, it has been implicated as a maior greenhouse gas contributor due to the spicy nature of it's cuisine.

Select the least cost container size (follow ex. 7-2 and 6-3, use arithmetic probability paper).
Evaluate 25, 30, 35, 40, 45, and 50 cu-yd containers
Use the following data:

Week	Waste ($\mathrm{yd}^{\wedge} 3 / \mathrm{wk}$)							
1	39							
2	35							
3	38							
4	40							
5	37		Cost pe	tainer	ection	$=\$$	50	
6	25		Useful 1	conta	$=$	10	yr	
7	34		Discoun	$=$	10	\%		
8	27		Capital	ery fact		0.162745		
9	42							
10	37		The Cap	nd O	costs			
11	41			Сара	cu-yd			
12	29	Cost	25	30	35	40	45	50
13	32	Capital,\$	2750	3000	3500	4000	4900	6100
14	30	O \& M, \$	135	155	180	230	300	400
15	46							

a. Rank the waste generation data and determine the plotting position
Raste Amount Ru-yd/wk
1

b. Graph plotting position versus waste amount (use Normal probability paper)

You have to do your own Probability Paper!
c. Determine the percentage and number of extra container collections for each container

	Capacity exceeded			
	Container	Percent	Nun	
	Capacity 1			round up 4
	25	93.5	48.62	49
	30	79	41.08	42
	35	54	28.08	29
	40	26	13.52	14
	45	9	4.68	5
	50	2	1.04	2
Calculations				
Column	Description			
1	Container capacity, cu-yd (given)			
2	Percentage of weeks given capacity is expected to be exceeded (100-\% read off of graph)			
3	Number of weeks capacity exceeded (52 x column 2/100)			
4	Round up of column 3			

d. Estimate the yearly cost for each container

e. Identify the low cost container

The lowest cost container has a capacity of $45 \mathrm{cu}-\mathrm{yd}$
However, the 40 and 50 cu-yd containers are not much more expensive.

