9-1 Solid waste container sizes
Given: High school population $=881 ; 30$ class rooms; $0.11 \mathrm{~kg} /$ cap.d plus $3.6 \mathrm{~kg} / \mathrm{room}$; density $=120 \mathrm{~kg} / \mathrm{m}^{3}$; Wednesday \& Friday pickup; containers: $1.5 ; 2.3,3.0,4.6$ m
Solution:
a. Daily solid waste generation

$$
\begin{aligned}
& (30 \text { rooms })(3.6 \mathrm{~kg} / \text { room })=108.0 \mathrm{~kg} / \mathrm{d} \\
& (881 \text { students })(0.11 \mathrm{~kg} / \text { student })=96.91 \mathrm{~kg} / \mathrm{d} \\
& \text { Total }=108.0+96.91=204.91 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

b. Daily volume

$$
\mathrm{V}=\frac{204.91 \mathrm{~kg} / \mathrm{d}}{120 \mathrm{~kg} / \mathrm{m}^{3}}=1.71 \mathrm{~m}^{3} / \mathrm{d}
$$

c. Collection schedule

Wednesday pickup includes Friday, Monday and Tuesday
Friday pickup includes Wednesday and Thursday
Therefore,

$$
\text { Total Volume }=(3 \mathrm{~d})\left(1.71 \mathrm{~m}^{3} / \mathrm{d}\right)=5.12 \mathrm{~m}^{3}
$$

d. Number and size of containers

Many combinations possible:
One of $1.5 \mathrm{~m}^{3}$ and one of $4.6 \mathrm{~m}^{3}=6.10 \mathrm{~m}^{3} \quad$ okay
One of $2.3 \mathrm{~m}^{3}$ and one of $3.0 \mathrm{~m}^{3}=5.30 \mathrm{~m}^{3} \quad$ okay
Two of $3.0 \mathrm{~m}^{3}=6.0 \mathrm{~m}^{3} \quad$ okay

9-6 Density of Davis, CA MSW

Given: Table 9-3 with paper, cardboard, plastics, glass, and tin cans removed

Solution:

a. Tabular computation showing fractions removed

Component	Mass (kg)	Volume $\left(\mathrm{m}^{3}\right)$
Total	45.4	0.429
Paper	-19.6	-0.240
Cardboard	-2.98	-0.0297
Plastics	-0.82	-0.013
Glass	-3.4	-0.018
Tin cans	-2.36	-0.0268
NEW TOTAL	$\mathbf{1 6 . 2 7}$	$\mathbf{0 . 1 0 1 5}$

New Density $=\frac{16.27 \mathrm{~kg}}{0.1015 \mathrm{~m}^{3}}=160.29 \mathrm{~kg} / \mathrm{m}^{3}$

11-7

a. Calculate mean time per collection stop
(3 cans/wk $=1.5$ can per collection for twice a week pickup)
$\mathrm{t}_{\mathrm{p}}=18.00 \mathrm{~s}+(12.60 \mathrm{~s} / \mathrm{can})(1.5 \mathrm{can})+0$
$\mathrm{t}_{\mathrm{p}}=36.90 \mathrm{~s} / \mathrm{stop}$ or 0.615 min or 0.0103 h
b. Number of pickup locations per crew (Eqn. 9-3). The average haul speed(s) is determined from Figure 9-6: $48.0 \mathrm{~km} / \mathrm{h}$
$\mathrm{N}_{\mathrm{p}}=\frac{\frac{8.0}{2}-\frac{2(24)}{48}-(2) \frac{20}{60}-\frac{7.5}{60}-\frac{0.5}{2}}{0.0103}=\frac{1.9583}{0.0103}=190$ pickups per load
c. Volume per pickup

Waste generation rate $=(1.17 \mathrm{~kg} / \mathrm{cap} \mathrm{d})(4$ people $)=4.68 \mathrm{~kg} / \mathrm{d}$
For twice a week pickup assume 4 days between pickups
$(4.68 \mathrm{~kg} / \mathrm{d})(4 \mathrm{~d})=18.72 \mathrm{~kg}$

$$
\mathrm{V}_{\mathrm{p}}=\frac{18.72 \mathrm{~kg}}{144.7 \mathrm{~kg} / \mathrm{m}^{3}}=0.1294 \mathrm{~m}^{3}
$$

d. Compute compaction ratio

$$
\mathrm{r}=\frac{475 \mathrm{~kg} / \mathrm{m}^{3}}{144.7 \mathrm{~kg} / \mathrm{m}^{3}}=3.2827
$$

e. Volume of truck (note numerator of N_{p} is same as bracket of Eqn. 9-1)

$$
\mathrm{V}_{\mathrm{T}}=\frac{0.1294}{(3.2827)(0.0103)}(1.9583)=7.49 \mathrm{~m}^{3}
$$

Since the smallest volume truck is $9.0 \mathrm{~m}^{3}$, Volume of truck $=9.0 \mathrm{~m}^{3}$
f. Number of trucks

The number of trucks required is a function of the population that must be served. An assumption must be made about the number of work days, i.e. pickup days per week. I have assumed 5 days/wk.
$\frac{44000 \text { people }}{4 \text { people } / \text { residence }}=11000$ stops

11,000 stops $\times 2$ pickups/wk $=22,000$ stops/wk
$\frac{22000 \text { stops } / \text { week }}{5 \text { days } / \text { week }}=4400$ stops $/ \mathrm{d}$
$\frac{4400 \text { stops } / \mathrm{d}}{(190 \text { stops } / \text { load })(21 \text { loads } / \mathrm{d})}=11.57$ or 12 trucks

Theoretical production of CH_{4}
Given: 20.3 kg of rapidly decomposing MSW, density of methane $=0.7167 \mathrm{~kg} / \mathrm{m}^{3}$ at STP
Solution:
a. From the text -the chemical formula for rapidly decomposing MSW is

$$
\mathrm{C}_{68} \mathrm{H}_{111} \mathrm{O}_{50} \mathrm{~N}
$$

b. From the reaction equation (9-8)

$$
\mathrm{C}_{68} \mathrm{H}_{111} \mathrm{O}_{50} \mathrm{~N}+\left(\frac{4(68)-111-2(50)+3(1)}{4}\right) \mathrm{H}_{2} \mathrm{O} \rightarrow\left(\frac{4(68)+111-2(50)-3(1)}{8}\right) \mathrm{CH}_{4}+\ldots
$$

OR
$\mathrm{C}_{68} \mathrm{H}_{111} \mathrm{O}_{9} \mathrm{~N}+\left(\frac{64}{4}\right) \mathrm{H}_{2} \mathrm{O} \rightarrow\left(\frac{280}{8}\right) \mathrm{CH}_{4}+\ldots$
$\mathrm{C}_{68} \mathrm{H}_{111} \mathrm{O}_{9} \mathrm{~N}+(16) \mathrm{H}_{2} \mathrm{O} \rightarrow(35) \mathrm{CH}_{4}+\ldots$
c. Calculate GMW of reactant and product

$$
\begin{aligned}
& \mathrm{C}_{68} \mathrm{H}_{111} \mathrm{O}_{9} \mathrm{~N}=1741 \\
& 35 \mathrm{CH}_{4}=560
\end{aligned}
$$

d. Ratio of GMW times mass of waste

$$
\frac{560}{1741}(20.3 \mathrm{~kg})=6.53 \mathrm{~kg}
$$

e. Estimate volume of gas at STP

$$
\frac{6.53 \mathrm{~kg}}{0.7167 \mathrm{~kg} / \mathrm{m}^{3}}=9.11 \mathrm{~m}^{3} \text { of } \mathrm{CH}_{4}
$$

