Chapter 2: Reaction Kinetics

Reaction kinetics is the study of the speed at which reactions occur or proceed. The rate of a reaction is used to denote the formation or disappearance (removal) of a compound.

Homogenous reactions - reactions that take place in a single phase (liquid, gas or solid)
Heterogeneous Reactions - reactions that occur at surfaces between phases
Production is denoted as +
Removal is denoted as -

Reaction Rates are a function of temperature, pressure and concentration of reactants.

A general mathematical expression describing the reaction rate (r) at which the mass or volume of a material A is changing with time is given as

$$
d A / d t=r
$$

When $r=k$, a constant the reaction is a Zero Order Reaction
If the concentration of A at time 0 is $A o$ and and time t is $A t$ and A is being removed, the integrated form of the zero order reaction is

$$
\int_{\mathrm{Ao}}^{\mathrm{At}} \mathrm{dA}=\int_{0}^{\mathrm{t}}-k \mathrm{dt}
$$

or $A_{t}-A_{o}=-k t$

$$
\text { or } A_{t}=A_{o}-k t
$$

This is a equation of a straight line and can be plotted as follows:

t

First order reactions are reactions where the rate of change of A is proportional to the quantity of component A

Thus $\mathrm{dA} / \mathrm{dt}=-\mathrm{kA}$ represents a First order reaction

Rearranging and integrating again yields

$$
\int_{\mathrm{Ao}}^{\mathrm{At}} \frac{\mathrm{dA}}{\mathrm{~A}}=\int_{0}^{\mathrm{t}}-k \mathrm{dt}
$$

$$
\begin{aligned}
& \ln \mathrm{A}-\ln \mathrm{A}_{0}=-\mathrm{kt} \\
& \text { or } \ln \mathrm{A}=\ln \mathrm{A}_{0}-\mathrm{kt}
\end{aligned}
$$

Similarly a plot of $\operatorname{In} A$ versus time will yield

t

Like the zero and first order reactions, $\mathrm{dA} / \mathrm{dt}=\mathrm{k} \mathrm{A}^{2}$ represents a Second order reaction

Things to remember
Units of \mathbf{k} for a zero order reaction is concentration/time
Units of k for a first order reaction is $1 /$ time

Example Problems:

1) In a first order process a blue dye reacts to form a purple dye. The amount of blue at the end of an hour is 480 g and at the end of 3 hours is 120 g . Estimate the initial amount of dye and the reaction rate.

Let initial dye concentration be Ao
Therefore $\ln (480)=\ln (A o)-k(1)$

Similarly, $\ln (120)=\ln (A o)-k(3)$

Solving the two equations we get $k=0.693 \mathrm{~min}^{-1} \mathrm{Ao}=959 \mathrm{mg} / \mathrm{L}$
2) Data for removing "Gobbledygook" was obtained and is shown below. Determine the reaction order and the reaction rate.

Time min	Gobbledygook $\mathbf{m g} / \mathbf{L}$
0	170
5	160
10	98
20	62
30	40
40	27

Solution:

Calculate In (Gook)

Plot G vs T and $L n G$ vs \mathbf{t} to determine reaction order.

Time min	Gook mg/L	Ln(Gook)
0	170	5.135798
5	160	5.075174
10	98	4.584967
20	62	4.127134
30	40	3.688879
40	27	3.295837

Better correlation when plotted $\ln (\mathrm{g})$ vs. time. Therefore reaction is first order.
Reaction rate is slope of line $=\underline{0.04811 / m i n u t e}$

