Fall 2005 CEE 432/532 Fate and Transport of Pollutants

<u>Quiz #4</u>

	1. Fill in the blanks:	[10]
	(a) A reactor in which <u>flow</u> is neither entering nor leaving is define	ed as a
	batch reactor.	
	(b) In a <u>completely</u> mixed flow reactor, fluid particles that enter the reactor are	;
	instantaneously dispersed throughout the reactor volume.	
	(c) In a ρ_{μ} flow reactor, fluid particles pass through the reactor and a	are
5	discharged in the same sequence in which they entered the reactor.	4
	(d) Fugacity is a measure of chemical dispersion the "tendency to flee	,,
	the tendency to nee	•
	(e) Terminal lakes are lakes with no <u>Outlet</u> (exiting stream)	
	(f) In a terminal labor mut 1 and 1 a f 1	
	(1) In a terminal lake, water leaves through intiltration to ground water	
-1	(g) \underline{TCE} is an example of point source pollution to surface water.	
-	(h) $\underline{\top CE}$ is an example of non-point source pollution to surface w	vater.
	(i) Hydraulic radius = flow area/ wetted perimeter.	
	(i) Manning roughness on officient (a) formation	
	than that for smooth concrete	
		6

2. The following relationship for estimating Koc from Kow was proposed by a [5] researcher.

 $\log_{10} K_{oc} (cm^3/gm) = 0.903 \log_{10} K_{ow} + 0.094$

Assuming $\log_{10} K_{ow}$ for anthracene is 4.45, the K_{oc} (in cm³/gm) is given by:

(A) 1.29×10^4 (B) $10^{4.11}$	log 10 Koc (0.903 X 4.45) + 0.094
(C) 12952.3926 (D) all of the above.	log 10 Koc = 0.50785
	Koc = 3,22

104.11 = 18882.5

3. The partial pressure and the Henry's Law constant at 25 °C for oxygen [5] (MW=32 gm/mole) are 0.21 atm and 1.29 x 10^{-3} mole/L-atm, respectively. The concentration of dissolved oxygen (in mg/L) in water equilibrated with the atmosphere at 25 °C is most nearly:

