Fall 2005
CEE 432/532
Quiz \#5

1. Fill in the blanks:
(a) Two equations are widely used to model the velocity of water in uniform river or stream channels: (1) the \qquad equation and (2) the \qquad equation.
(b) For a pipe (radius $=r$) flowing full, the hydraulic radius $\left(r_{h}\right)$ is defined as the ratio of area to \qquad .
(c) In a stream (flow area A), the relationship between discharge (Q) and velocity (V) is:

$$
\mathrm{Q}=\ldots
$$

\qquad
(d) Which of the following represent the correct vertical velocity profile along depth for a river (circle the correct answer).
(e) The average amount of time that water remains in the lake is called the
\qquad time.
(f) The downward surface current in a lake is called wind \qquad .
(g) \qquad occurs when water at the bottom of a lake is denser than the surface water, and water currents fail to generate eddies strong enough to penetrate the boundary between the water layers.
(h) The upper layer of a lake, which is typically well-mixed, is called
\qquad .
(i) The region between the rapid temperature change in lake is called
\qquad .
(j) The isolation of bottom waters from the atmosphere prevents the renewal of oxygen as it is consumed by the organism, and therefore the water may become \qquad or \qquad .
2. The transverse dispersion coefficient of a river ($Q=100 \mathrm{~m}^{\mathbf{3}} /$ day) is
$0.1 \mathrm{~m} 2 / \mathrm{sec}$. The river is most likely:
(A) Beaver
(B) MacKenzie
(C) Danube
(D) Mississippi
3. A lake has a volume of $60,000 \mathrm{~m}^{3}$, and the flow into the lake is $17 \mathrm{~m}^{3} /$ day. [4] The hydraulic detention time (in days) is most nearly:
(A) 1,500
(B) 2,500
(C) 3,500
(D) 4,500
4. The temperature in the epilimnion of a lake is $20^{\circ} \mathrm{C}$. The thermocline is at a depth of 7.5 m (approximate thickness $=3 \mathrm{~m}$). Assuming the molecular diffusion coefficient is $2.5 \times 10^{-5} \mathrm{~cm}^{2} / \mathrm{sec}$, the oxygen flux (in $\mathrm{mg} / \mathrm{cm}^{2}-\mathrm{sec}$) through the thermocline is most nearly:
(A) 7.67×10^{-5}
(B) 7.67×10^{-8}
(C) 2.30×10^{-9}
(D) 7.67×10^{-10}
2.2 Physical Transport in Surface Waters

TABLE 2-4 Solubility of Oxygen (mg/iter) in Water Exposed to Water-Saturated Air at a Total Pressure of $760 \mathrm{~mm} \mathrm{Hg}^{a}$

	Chloride concentration in water (mag/liter).				
Temperature $\left({ }^{\circ} \mathrm{C}\right.$)	0	5,000	10,000	15,000	20,000
0	14.6	13.8	13.0	12.1	11.3
1	14.2	13.4	12.6	11.8	11.0
2	13.8	13.1	12.3	11.5	10.8
3	13.5	12.7	.12 .0	11.2.	10.5
4	13.1	12.4	11.7	11.0	10.3
5	12.8	12.1	11.4	10.7	10.0
6	12.5	11.8	11.1	10.5	9.8
7	12.2	11.5	10.9	10.2	9.6
8	11.9	11.2	10.6	10.0	9.4
9	11.6	11.0	10.4	9.8	9.2
10	11.3	10.7	10.1	9.6	9.0
11	11.1	10.5	9.9	9.4	8.8
11	10.8	10.3	9.7	9.2	8.6
12	10.6	10.1	9.5	9.0	8.5
13	10.4	9.9	9.3	8.8	8.3
14	10.2	9.7	9.1	8.6	8.1
15	10.0	9.5	9.0	8.5	8.0
16	9.7	9.3	8.8	8.3	7.8
17	9.5	9.1	8.6	8.2	7.7
18	9.4	8.9	8.5	8.0	7.6
19	9.2	8.7	8.3	7.9	7.4
20	9.0	8.6	8.1	7.7	7.3
21	8.8	8.4	8.0	7.6	7.1
22	8.7	8.3	7.9	7.4	7.0
23	8.5	8.1	7.7	7.3	6.9
24	8.4	8.0	7.6	7.2	6.7
25					

Physical Transport in Surface Waters

TABLE 2-2 Reported Transverse Dispersion Coefficients ${ }^{\text {a }}$

River type/river	$\begin{gathered} \text { Transverse } \\ \text { dispersion } \\ \text { coefficients }\left(\mathrm{m}^{2} / \mathrm{sec}\right) \end{gathered}$	Discharge during dispersion measurement ($\mathrm{m}^{3} / \mathrm{sec}$)
Straight channels		
Atrisco	0.010	7.4
South	0.0047	1.5
Athabasca	0.093	776
Bends		
Missouri	1.1	1900^{6}
Beaver	0.043	20.5
Mississippi	0.1	92-120
Meandering		
Missouri	0.12	
Danube	0.038	1030
Rea	0.0014	0.30
Orinoco	3.1	
MacKenzie	0.67	15,000 ${ }^{\text {b }}$

${ }^{a}$ Rucherford (1994).
${ }^{\text {b }}$ Estimated based on height, width, and velocity.
${ }^{a}$ American Public Health Association (1960).

