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The great tragedy of science—
the slaying of a beautiful hypothesis by an ugly fact.

T. H. Huxley (1825–1895)

Since turning our attention fully to Statistics in Part IV, our focus has been
on characterizing the population completely, using finite-sized samples. The
discussion that began with sampling in Chapter 13, providing the mathe-
matical foundation for characterizing the variability in random samples, and
which continued with estimation in Chapter 14, providing techniques for de-
termining values for populations parameters, concludes in this chapter with
hypothesis testing. This final tier of the statistical inference edifice is con-
cerned with making—and testing—assertive statements about the population.
Such statements are often necessary to solve practical problems, or to answer
questions of practical importance; and this chapter is devoted to presenting
the principles, practice, and mechanics of testing the validity of hypothesized
statements regarding the distribution of populations. The chapter covers ex-
tensive ground—from traditional techniques applied to traditional Gaussian
problems, to non-Gaussian problems and some non-traditional techniques; it
ends with a brief but frank discussion of persistent criticisms of hypothesis
tests and some practical recommendations for handling such criticisms.

15.1 Introduction

We begin our discussion by returning to the first problem presented in
Chapter 1 concerning yields from two chemical processes; we wish to use it to
illustrate the central issues with hypothesis testing. Recall that the problem
requires that we decide which process, the challenger, A, or the incumbent,
B, should be chosen for commercial operation. The decision is to be based
on economically driven comparisons that translate to answering the following
mathematical questions about the yields YA and YB :

1. Is YA ≥ 74.5 and YB ≥ 74.5, consistently?

2. Is YA > YB?

3. If yes, is YA − YB > 2?
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To deal with the problem systematically, inherent random variability com-
pels us to start by characterizing the populations fully with pdfs which are
then used to answer these questions. This requires that we postulate an appro-
priate probability model, and determine values for the unknown parameters
from sample data.

Here is what we know thus far (from Chapters 1 and 12, and from various
examples in Chapter 14): we have plotted histograms of the data and postu-
lated that these are samples from Gaussian-distributed populations; we have
computed sample averages, ȳA, ȳB, and sample standard deviations, sA, sB;
and in various Chapter 14 examples, we have obtained point and interval
estimates for the population means µA, µB, and the population standard de-
viations σA, σB .

But by themselves, these results are not quite sufficient to answer the ques-
tions posed above. To answer the questions, consider the following statements
and the implications of being able to confirm/refute them:

1. YA is a random variable characterized by a normal population with mean
value 75.5 and standard deviation 1.5, i.e., YA ∼ N(75.5, 1.52); similarly,
YB ∼ N(72.5, 2.52); as a consequence,

2. The random variables, YA and YB, are not from the same distribution
because µA $= µB and σ2

A $= σ2
B ; in particular, µA > µB;

3. Furthermore, µA − µB > 2.

This is a collection of assertions about these two populations, statements
which, if confirmed, will enable us answer the questions raised. For example,
Statement #1 will allow us to answer Question 1 by making it possible to
compute the probabilities P (YA ≥ 74.5) and P (YB ≥ 74.5); Statement #2 will
allow us to answer Question 2, and Statement #3, Question 3. How practical
problems are formulated as statements of this type, and how such statements
are confirmed or refuted, all fall under the formal subject matter of hypothesis
testing. In general, the validity of such statements (or other assumptions about
the population from which the sample data were obtained) is checked by (i)
proposing an appropriate “statistical hypothesis” about the problem at hand;
and (ii) testing this hypothesis against the evidence contained in the data.

15.2 Basic Concepts

15.2.1 Terminology and Definitions

Before launching into a discussion of the principles and mechanics of hy-
pothesis testing, it is important to introduce first some terminology and defi-
nitions.
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Statistical Hypothesis

A statistical hypothesis is a statement (an assertion or postulate) about
the distribution of one or more populations. (Theoretically, the statistical
hypothesis is a statement regarding one or more postulated distributions for
the random variable X—distributions for which the statement is presumed to
be true. A simple hypothesis specifies a single distribution for X ; a composite
hypothesis specifies more than one distribution for X .)

Modern hypothesis testing involves two hypotheses:

1. The null hypothesis, H0, which represents the primary, “status quo” hy-
pothesis that we are predisposed to believe as true (a plausible explana-
tion of the observation) unless there is evidence in the data to indicate
otherwise—in which case, it will be rejected in favor of a postulated
alternative.

2. The alternative hypothesis, Ha, the carefully defined complement to H0

that we are willing to consider in replacement if H0 is rejected.

For example, the portion of Statement #1 above concerning YA may be for-
mulated more formally as:

H0 : µA = 75.5
Ha : µA $= 75.5 (15.1)

The implication here is that we are willing to entertain the fact that the true
value of µA, the mean value of the yield obtainable from process A, is 75.5;
that any deviation of the sample data average from this value is due to purely
random variability and is not significant (i.e., that this postulate explains
the observed data). The alternative is that any observed difference between
the sample average and 75.5 is real and not just due to random variability;
that the alternative provides a better explanation of the data. Observe that
this alternative makes no distinction between values that are less than 75.5
or greater; so long as there is evidence that the observed sample average is
different from 75.5 (whether greater than or less than), H0 is to be rejected
in favor of this Ha. Under these circumstances, since the alternative admits
of values of µA that can be less than 75.5 or greater than 75.5, it is called a
two-sided hypothesis.

It is also possible to formulate the problem such that the alternative ac-
tually “chooses sides,” for example:

H0 : µA = 75.5
Ha : µA < 75.5 (15.2)

In this case, when the evidence in the data does not support H0 the only other
option is that µA < 75.5. Similarly, if the hypotheses are formulated instead
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as:

H0 : µA = 75.5
Ha : µA > 75.5 (15.3)

the alternative, if the equality conjectured by the null hypothesis fails, is that
the mean must then be greater. These are one-sided hypotheses, for obvious
reasons.

A test of a statistical hypothesis is a procedure for deciding when to reject
H0. The conclusion of a hypothesis test is either a decision to reject H0 in
favor of Ha or else to fail to reject H0. Strictly speaking, one never actually
“accepts” a hypothesis; one just fails to reject it.

As one might expect, the conclusion drawn from a hypothesis test is shaped
by how Ha is framed in contrast to H0. How to formulate the Ha appropriately
is best illustrated with an example.

Example 15.1: HYPOTHESES FORMULATION FOR COM-
PARING ENGINEERING TRAINING PROGRAMS
As part of an industrial training program for chemical engineers in their
junior year, some trainees are instructed by Method A, and some by
Method B. If random samples of size 10 each are taken from large groups
of trainees instructed by each of these two techniques, and each trainee’s
score on an appropriate achievement test is shown below, formulate a
null hypothesis H0, and an appropriate alternative Ha, to use in testing
the claim that Method B is more effective.

Method A 71 75 65 69 73 66 68 71 74 68
Method B 72 77 84 78 69 70 77 73 65 75

Solution:
We do return to this example later to provide a solution to the problem
posed; for now, we address only the issue of formulating the hypotheses
to be tested.

Let µA represent the true mean score for engineers trained by
Method A, and µB , the true mean score for those trained by the other
method. The status quo postulate is to presume that there is no dif-
ference between the two methods; that any observed difference is due
to pure chance alone. The key now is to inquire: if there is evidence in
the data that contradicts this status quo postulate, what end result are
we interested in testing this evidence against? Since the claim we are
interested in confirming or refuting is that Method B is more effective,
then the proper formulation of the hypotheses to be tested is as follows:

H0 : µA = µB

Ha : µA < µB (15.4)

By formulating the problem in this fashion, any evidence that contra-
dicts the null hypothesis will cause us to reject it in favor of something
that is actually relevant to the problem at hand.
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Note that in this case specifying Ha as µA != µB does not help us

answer the question posed; by the same token, neither does specifying
Ha as µA > µB because if it is true that µA < µB , then the evidence

in the data will not support the alternative—a circumstance which, by

default, will manifest as a misleading lack of evidence to reject H0.

Thus, in formulating statistical hypotheses, it is customary to state H0

as the “no difference,” nothing-interesting-is-happening hypothesis; the alter-
native, Ha, is then selected to answer the question of interest when there
is evidence in the data to contradict the null hypothesis. (See Section 15.10
below for additional discussion about this and other related issues.)

A classic illustration of these principles is the US legal system in which
a defendant is considered innocent until proven guilty. In this case, the null
hypothesis is that this defendant is no different from any other innocent indi-
vidual; after evidence has been presented to the jury by the prosecution, the
verdict is handed down either that the defendant is guilty (i.e., rejecting the
null hypothesis) or the defendant is not guilty (i.e., failing to reject the null
hypotheses). Note that the defendant is not said to be “innocent”; instead,
the defendant is pronounced “not guilty,” which is tantamount to a decision
not to reject the null hypothesis.

Because hypotheses are statements about populations, and, as with esti-
mation, hypothesis tests are based on finite-sized sample data, such tests are
subject to random variability and are therefore only meaningful in a proba-
bilistic sense. This leads us to the next set of definitions and terminology.

Test Statistic, Critical Region, and Significance Level

To test a hypothesis, H0, about a population parameter, θ, for a random
variable, X , against an alternative, Ha, a random sample, X1, X2, . . . , Xn

is acquired, from which an estimator for θ, say U(X1, X2, . . . , Xn), is then
obtained. (Recall that U is a random variable whose specific value will vary
from sample to sample.)

A test statistic, QT (U, θ), is an appropriate function of the parameter θ
and its estimator, U , that will be used to determine whether or not to reject
H0. (What “appropriate” means will be clarified shortly.) A critical region (or
rejection region), RC , is a region representing the numerical values of the test
statistic (QT > q, or QT < q, or both) that will trigger the rejection of H0;
i.e., if QT ∈ RC , H0 will be rejected. Strictly speaking, the critical region is
for the random variable, X ; but since the random sample from X is usually
converted to a test statistic, there is a corresponding mapping of this region
by QT (.); it is therefore acceptable to refer to the critical region in terms of
the test statistic.

Now, because the estimator U is a random variable, the test statistic will
itself also be a random variable, with the following serious implication: there is
a non-zero probability that QT ∈ RC even when H0 is true. This unavoidable
consequence of random variability forces us to design the hypothesis test such
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FIGURE 15.1: A distribution for the null hypothesis, H0, in terms of the test statistic,
QT , where the shaded rejection region, QT > q, indicates a significance level, α.

that H0 is rejected only if it is “highly unlikely” for QT ∈ RC when H0 is true.
How unlikely is “highly unlikely”? This is quantified by specifying a value α
such that

P (QT ∈ RC |H0 true) ≤ α (15.5)

with the implication that the probability of rejecting H0 when it is in fact
true, is never greater than α. This quantity, often set in advance as a small
value (typically 0.1, 0.05, or 0.01), is called the significance level of the test.
Thus, the significance level of a test is the upper bound on the probability of
rejecting H0 when it is true; it determines the boundaries of the critical region
RC .

These concepts are illustrated in Fig 15.1 and lead directly to the consid-
eration of the potential errors to which hypothesis tests are susceptible, the
associated risks, and the sensitivity of a test in leading to the correct decision.

Potential Errors, Risks, and Power

Hypothesis tests are susceptible to two types of errors:

1. TYPE I error : the error of rejecting H0 when it is in fact true. This is
the legal equivalent of convicting an innocent defendant.

2. TYPE II error : the error of failing to reject H0 when it is false, the legal
equivalent of letting a guilty defendant go scotfree.
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TABLE 15.1: Hypothesis test decisions and risks

Decision → Fail to Reject Reject
Truth ↓ H0 H0

H0 True Correct Decision Type I Error
Probability: (1 − α) Risk: α

Ha True Type II Error Correct Decision
Risk: β Probability: (1 − β)

Of course a hypothesis test can also result in the correct decision in two
ways: rejecting the null hypothesis when it is false, or failing to reject the null
hypothesis when it is true.

From the definition of the critical region, RC , and the significance level,
the probability of committing a Type I error is α; i.e.,

P (QT ∈ RC |H0 true) = α (15.6)

It is therefore called the α-risk. The probability of correctly refraining from
rejecting H0 when it is true will be (1 − α).

By the same token, it is possible to compute the probability of committing
a Type II error. It is customary to refer to this value as β, i.e.,

P (QT /∈ RC |H0 false) = β (15.7)

so that the probability of committing a Type II error is called the β-risk. The
probability of correctly rejecting a null hypothesis that is false is therefore
(1 − β).

It is important now to note that the two correct decisions and the probabil-
ities associated with each one are fundamentally different. Primarily because
H0 is the “status quo” hypothesis, correctly rejecting a null hypothesis, H0,
that is false is of greater interest because such an outcome indicates that the
test has detected the occurrence of something significant. Thus, (1 − β), the
probability of correctly rejecting the false null hypothesis when the alternative
hypothesis is true, is known as the power of the test. It provides a measure of
the sensitivity of the test. These concepts are summarized in Table 15.1 and
also in Fig 15.2.

Sensitivity and Specificity

Because their results are binary decisions (reject H0 or fail to reject it),
hypothesis tests belong in the category of binary classification tests; and the
effectiveness of such tests are characterized in terms of sensitivity and speci-
ficity. The sensitivity of a test is the percentage of true “positives” (in this
case, H0 deserving of rejection) that it correctly classifies as such. The speci-
ficity is the percentage of true “negatives” (H0 that should not be rejected)
that is correctly classified as such. Sensitivity therefore measures the abil-
ity to identify true positives correctly; specificity, the ability to identify true
negatives correctly.
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FIGURE 15.2: Overlapping distributions for the null hypothesis, H0 (with mean µ0),
and alternative hypothesis, Ha (with mean µa), showing Type I and Type II error risks
α, β, along with qC the boundary of the critical region of the test statistic, QT .

These performance measures are related to the risks and errors discussed
previously. If the percentages are expressed as probabilities, then sensitivity
is (1 − β), and specificity, (1 − α). The fraction of “false positives” (H0 that
should not be rejected but is) is α; the fraction of “false negatives” (H0 that
should be rejected but is not) is β. As we show later, for a fixed sample size,
improving one measure can only be achieved at the expense of the other, i.e.,
improvements in specificity must be traded off for a commensurate loss of
sensitivity, and vice versa.

The p-value

Rather than fix the significance level, α, ahead of time, suppose it is free to
vary. For any given value of α, let the corresponding critical/rejection region
be represented as RC(α). As discussed above, H0 is rejected whenever the
test statistic, QT , is such that QT ∈ RC(α). For example, from Fig 15.1, the
region RC(α) is the set of all values of QT that exceed the specific value q.
Observe that as α decreases, the “size” of the set RC(α) also decreases, and
vice versa. The smallest value of α for which the specific value of the test
statistic QT (x1, x2, . . . , xn) (determined from the data set x1, x2, . . . , xn) falls
in the critical region (i.e., QT (x1, x2, . . . , xn) ∈ RC(α)) is known as the p-value
associated with this data set (and the resulting test statistic). Technically,
therefore, the p-value is the smallest significance level at which H0 will be
rejected given the observed data.

This somewhat technical definition of the p-value is sometimes easier to
understand as follows: given specific observations x1, x2, . . . , xn and the cor-
responding test statistic QT (x1, x2, . . . , xn) computed from them to yield the
specific value q; the p-value associated with the observations and the corre-
sponding test statistic is defined by the following probability statement:

p = P [QT (x1, x2, · · · , xn; θ) ≥ q|H0] (15.8)
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In words, this is the probability of obtaining the specific test statistic value, q,
or something more extreme, if the null hypothesis is true. Note that p, being
a function of a statistic, is itself a statistic—a subtle point that is often easy
to miss; the implication is that p is itself subject to purely random variability.

Knowing the p-value therefore allows us to carry out hypotheses tests at
any significance level, without restriction to pre-specified α values. In general,
a low value of p indicates that, given the evidence in the data, the null hy-
pothesis, H0, is highly unlikely to be true. This follows from Eq (15.8). H0 is
then rejected at the significance level, p, which is why the p-value is sometimes
referred to as the observed significance level—observed from the sample data,
as opposed to being fixed, à-priori, at some pre-specified value, α.

Nevertheless, in many applications (especially in scientific publications),
there is an enduring traditional preference for employing fixed significance
levels (usually α = 0.05). In this case, the p-value is used to make decisions
as follows: if p < α, H0 will be rejected at the significance level α; if p > α,
we fail to reject H0 at the same significance level α.

15.2.2 General Procedure

The general procedure for carrying out modern hypotheses tests is as fol-
lows:

1. Define H0, the hypothesis to be tested, and pair it with the alternative
Ha, formulated appropriately to answer the question at hand;

2. Obtain sample data, and from it, the test statistic relevant to the prob-
lem at hand;

3. Make a decision about H0 as follows: Either

(a) Specify the significance level, α, at which the test is to be per-
formed, and hence determine the critical region (equivalently, the
critical value of the test statistic) that will trigger rejection; then

(b) Evaluate the specific test statistic value in relation to the critical
region and reject, or fail to reject, H0 accordingly;

or else,

(a) Compute the p-value corresponding to the test statistic, and
(b) Reject, or fail to reject, H0 accordingly on this basis.

How this general procedure is applied depends on the specific problem at
hand: the nature of the random variable, hence the underlying postulated
population itself; what is known or unknown about the population; the par-
ticular population parameter that is the subject of the test; and the nature of
the question to be answered. The remainder of this chapter is devoted to pre-
senting the principles and mechanics of the various hypothesis tests commonly
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encountered in practice, some of which are so popular that they have acquired
recognizable names (for example, the z-test; t-test; χ2-test; F -test; etc.). By
taking time to provide the principles along with the mechanics, our objec-
tive is to supply the reader with the sort of information that should help to
prevent the surprisingly common mistake of misapplying some of these tests.
The chapter closes with a brief discussion of some criticisms and potential
shortcomings of classical hypothesis testing.

15.3 Concerning Single Mean of a Normal Population

Let us return to the illustrative statements made earlier in this chapter
regarding the yields from two competing chemical processes. In particular, let
us recall the first half of the statement about the yield of process A—that
YA ∼ N(75.5, 1.52). Suppose that we are first interested in testing the validity
of this statement by inquiring whether or not the true mean of the process
yield is 75.5. The starting point for this exercise is to state the null hypothesis,
which in this case is:

µA = 75.5 (15.9)

since 75.5 is the specific postulated value for the unknown population mean
µA. Next, we must attach an appropriate alternative hypothesis. The orig-
inal statement is a categorical one that YA comes from the distribution
N(75.5, 1.52), with the hope of being able to use this statement to distin-
guish the YA distribution from the YB distribution. (How this latter task is
accomplished is discussed later). Thus, the only alternative we are concerned
about, should H0 prove false, is that the true mean is not equal to 75.5; we do
not care if the true mean is less than, or greater than, the postulated value.
In this case, the appropriate Ha is therefore:

µA $= 75.5 (15.10)

Next, we need to gather “evidence” in the form of sample data from process
A. Such data, with n = 50, was presented in Chapter 1 (and employed in the
examples of Chapter 14), from which we have obtained a sample average,
ȳA = 75.52. And now, the question to be answered by the hypothesis test is
as follows: is the observed difference between the postulated true population
mean, µA = 75.5, and the sample average computed from sample process data,
ȳA = 75.52, due purely to random variation or does it indicate a real (and
significant) difference between postulate and data? From Chapters 13 and 14,
we now know that answering this question requires a sampling distribution
that describes the variability intrinsic to samples. In this specific case, we
know that for a sample average X̄ obtained from a random sample of size n
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from a N(µ, σ2) distribution, the statistic

Z =
X̄ − µ

σ/
√

n
(15.11)

has the standard normal distribution, provided that σ is known. This imme-
diately suggests, within the context of hypothesis testing, that the following
test statistic:

Z =
ȳA − 75.5
1.5/

√
n

(15.12)

may be used to test the validity of the hypothesis, for any sample average
computed from any sample data set of size n. This is because we can use
Z and its pdf to determine the critical/rejection region. In particular, by
specifying a significance level α = 0.05, the rejection region is determined as
the values z such that:

RC = {z|z < −z0.025; z > z0.025} (15.13)

(because this is a two-sided test). From the cumulative probability characteris-
tics of the standard normal distribution, we obtain (using computer programs
such as MINITAB) z0.025 = 1.96 as the value of the standard normal variate
for which P (Z > z0.025) = 0.025, i.e.,

RC = {z|z < −1.96; z > 1.96}; or |z| > 1.96 (15.14)

The implication: if the specific value computed for Z from any sample data
set exceeds 1.96 in absolute value, H0 will be rejected.

In the specific case of ȳA = 75.52 and n = 50, we obtain a specific value
for this test statistic as z = 0.094. And now, because this value z = 0.094 does
not lie in the critical/rejection region defined in Eq (15.14), we conclude that
there is no evidence to reject H0 in favor of the alternative. The data does
not contradict the hypothesis.

Alternatively, we could compute the p-value associated with this test statis-
tic (for example, using the cumulative probability feature of MINITAB):

P (z > 0.094 or z < 0.094) = P (|z| > 0.094) = 0.925 (15.15)

implying that if H0 is true, the probability of observing, by pure chance alone,
the sample average data actually observed, or something “more extreme,” is
very high at 0.925. Thus, there is no evidence in this data set to justify reject-
ing H0. From a different perspective, note that this p-value is nowhere close
to being lower than the prescribed significance level, α = 0.05; we therefore
fail to reject the null hypothesis at this significance level.

The ideas illustrated by this example can now be generalized. As with
previous discussions in Chapter 14, we organize the material according to the
status of the population standard deviation, σ, because whether it is known
or not determines what sampling distribution—and hence test statistic—is
appropriate.
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15.3.1 σ Known; the “z-test”

Problem: The random variable, X , possesses a distribution, N(µ, σ2), with
unknown value, µ, but known σ; a random sample, X1, X2, . . . , Xn, is drawn
from this normal population from which a sample average, X̄, can be com-
puted; a specific value, µ0, is hypothesized for the true population parameter;
and it is desired to test whether the sample indeed came from such a popula-
tion.

The Hypotheses: In testing such a hypothesis—concerning a single mean of
a normal population with known standard deviation, σ—the null hypothesis
is typically:

H0 : µ = µ0 (15.16)

where µ0 is the specific value postulated for the population mean (e.g., 75.5
used in the previous illustration). There are three possible alternative hy-
potheses:

Ha : µ < µ0 (15.17)

for the lower-tailed, one-sided (or one-tailed) alternative hypothesis; or

Ha : µ > µ0 (15.18)

for the upper-tailed, one-sided (or one-tailed) alternative hypothesis; or, finally,
as illustrated above,

Ha : µ $= µ0 (15.19)

for the two-sided (or two-tailed) alternative.
Assumptions: The underlying distribution in question is Gaussian, with

known standard deviation, σ, implying that the sampling distribution of X̄ is
also Gaussian, with mean, µ0, and variance, σ2/n, if H0 is true. Hence, the
random variable Z = (X̄ − µ0)/(σ/

√
n) has a standard normal distribution,

N(0, 1).
Test Statistic: The appropriate test statistic is therefore

Z =
X̄ − µ0

σ/
√

n
(15.20)

The specific value obtained for a particular sample data average, x̄, is some-
times called the “z-score” of the sample data.

Critical/Rejection Regions :
(i) For lower-tailed tests (with Ha : µ < µ0), reject H0 in favor of Ha if:

z < −zα (15.21)

where zα is the value of the standard normal variate, z, with a tail area
probability of α; i.e., P (z > zα) = α. By symmetry, P (z < −zα) = P (z >
zα) = α, as shown in Fig 15.3. The rationale is that if µ = µ0 is true, then
it is highly unlikely that z will be less than −zα by pure chance alone; it is
more likely that µ is systematically less than µ0 if z is less than −zα.
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FIGURE 15.3: The standard normal variate z = −zα with tail area probability α. The
shaded portion is the rejection region for a lower-tailed test, Ha : µ < µ0.

(ii) For upper-tailed tests (with Ha : µ > µ0), reject H0 in favor of Ha if
(see Fig 15.4):

z > zα (15.22)

(iii) For two-sided tests (with Ha : µ $= µ0), reject H0 in favor of Ha if:

z < −zα/2 or z > zα/2 (15.23)

for the same reasons as above, because if H0 is true, then

P (z < −zα/2 or z > zα/2) =
α

2
+

α

2
= α (15.24)

as illustrated in Fig 15.5.
Tests of this type are known as “z-tests” because of the test statistic (and

sampling distribution) upon which the test is based. Therefore,

The one-sample z-test is a hypothesis test concerning the mean of
a normal population where the population standard deviation, σ,
is specified.

The key facts about the z-test for testing H0 : µ = µ0 are summarized in
Table 15.2.

The following two examples illustrate the application of the “z-test.”
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FIGURE 15.4: The standard normal variate z = zα with tail area probability α. The
shaded portion is the rejection region for an upper-tailed test, Ha : µ > µ0.
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FIGURE 15.5: Symmetric standard normal variates z = zα/2 and z = −zα/2 with
identical tail area probabilities α/2. The shaded portions show the rejection regions for
a two-sided test, Ha : µ != µ0.
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TABLE 15.2: Summary of H0 rejection
conditions for the one-sample z-test

For General α For α = 0.05
Testing Against Reject H0 if: Reject H0 if:
Ha : µ < µ0 z < −zα z < −1.65

Ha : µ > µ0 z > zα z < 1.65

Ha : µ $= µ0 z < −zα/2 z < −1.96
or or
z > zα/2 z > 1.96

Example 15.2: CHARACTERIZING YIELD FROM PRO-
CESS B
Formulate and test (at the significance level of α = 0.05) the hypothesis
implied by the second half of the statement given at the beginning of this
chapter about the mean yield of process B, i.e., that YB ∼ N(72.5, 2.52).
Use the data given in Chapter 1 and analyzed previously in various
Chapter 14 examples.

Solution:
In this case, as with the YA illustration used to start this section, the
hypotheses to be tested are:

H0 : µB = 72.5

Ha : µB != 72.5 (15.25)

a two-sided test. From the supplied data, we obtain ȳB = 72.47; and
since the population standard deviation, σB , is given as 2.5, the specific
value, z, of the appropriate test statistic, Z (the “z-score”), from Eq
(15.20), is:

z =
72.47 − 72.50

2.5/
√

50
= −0.084 (15.26)

For this two-sided test, the critical value to the right, zα/2, for α = 0.05,
is:

z0.025 = 1.96 (15.27)

so that the critical/rejection region, RC , is z > 1.96 to the right, in con-
junction with z < −1.96 to the left, by symmetry (recall Eq (15.14)).
And now, because the specific value z = −0.084 does not lie in the crit-
ical/rejection region, we find no evidence to reject H0 in favor of the al-
ternative. We conclude therefore that YB is very likely well-characterized
by the postulated distribution.

We could also compute the p-value associated with this test statistic

P (z < −0.084 or z > 0.084) = P (|z| > 0.084) = 0.933 (15.28)

with the following implication: if H0 is true, the probability of observing,
by pure chance alone, the actually observed sample average, ȳB = 72.47,
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or something “more extreme” (further away from the hypothesized mean

of 72.50) is 0.933. Thus, there is no evidence to support rejecting H0.
Furthermore, since this p-value is much higher than the prescribed sig-

nificance level, α = 0.05, we cannot reject the null hypothesis at this

significance level.

Using MINITAB

It is instructive to walk through the typical procedure for carrying out such
z-tests using computer software, in this case, MINITAB. From the MINITAB
drop down menu, the sequence Stat > Basic Statistics > 1-Sample Z
opens a dialog box that allows the user to carry out the analysis either us-
ing data already stored in MINITAB worksheet columns or from summarized
data. Since we already have summarized data, upon selecting the “Summa-
rized data” option, one enters 50 into the “Sample size:” dialog box, 72.47 into
the “Mean” box, and 2.5 into the “Standard deviation” box; and upon slecting
the “Perform hypothesis test” option, one enters 72.5 for the “Hypothesized
mean.” The “Options” button allows the user to select the confidence level
(the default is 95.0) and the “Alternative” for Ha: with the 3 available options
displayed as “less than,” “not equal,” and “greater than.” The MINITAB re-
sults are displayed as follows:

One-Sample Z
Test of mu = 72.5 vs not = 72.5
The assumed standard deviation = 2.5
N Mean SE Mean 95% CI Z P
50 72.470 0.354 (71.777, 73.163) -0.08 0.932

This output links hypothesis testing directly with estimation (as we an-
ticipated in Chapter 14, and as we discuss further below) as follows: “SE
Mean” is the standard error of the mean (σ/

√
n) from which the 95% con-

fidence interval (shown in the MINITAB output as “95% CI”) is obtained
as (71.777, 73.163). Observe that the hypothesized mean, 72.5, is contained
within this interval, with the implication that, since, at the 95% confidence
level, the estimated average encompasses the hypothesized mean, we have no
reason to reject H0 at the significance level of 0.05. The z statistic computed
by MINITAB is precisely what we had obtained in the example; the same is
true of the p-value.

The results of this example (and the ones obtained earlier for YA) may now
be used to answer the first question raised at the beginning of this chapter
(and in Chapter 1) regarding whether or not YA and YB consistently exceed
74.5.

The random variable, YA, has now been completely characterized by the
Gaussian distribution, N(75.5, 1.52), and YB by N(72.5, 2.52). From these
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probability distributions, we are able to compute the following probabilities:

P (YA > 74.5) = 1 − P (YA < 74.5) = 0.748 (15.29)
P (YB > 74.5) = 1 − P (YB < 74.5) = 0.212 (15.30)

The sequence for calculating such cumulative probabilities with MINITAB is
as follows: Calc > Prob Dist > Normal, which opens a dialog box for enter-
ing the desired parameters: (i) from the choices “Probability density,” “Cu-
mulative probability” and “Inverse cumulative probability,” one selects the
second one; “Mean” is specified as 75.5 for the YA distribution, “Standard
deviation” is specified as 1.5; and upon entering the input constant as 74.5,
MINITAB returns the following results:

Cumulative Distribution Function
Normal with mean = 75.5 and standard deviation = 1.5

x P(X<=x)
74.5 0.252493

from which the required probability is obtained as 1−0.252 = 0.748. Repeating
the procedure for YB, with “Mean” specified as 72.5 and “Standard deviation”
as 2.5 produces the result shown in Eq (15.30).

The implication of these results is that process A yields will exceed 74.5%
around three-quarters of the time, whereas with the incumbent process B,
exceeding yields of 74.5% will occur only one-fifths of the time. If profitability
is related to yields that exceed 74.5% consistently, then process A will be
roughly 3.5 times more profitable than the incumbent process B.

This next example illustrates how, in solving practical problems, “intu-
itive” reasoning without the objectivity of a formal hypothesis test can be
misleading.

Example 15.3: CHARACTERIZING “FAST-ACTING” RAT
POISON
The scientists at the ACME rat poison laboratories, who have been
working non-stop to develop a new “fast-acting” formulation that will
break the “thousand-second” barrier, appear to be on the verge of a
breakthrough. Their target is a product that will kill rats within 1000
secs, on average, with a standard deviation of 125 secs. Experimental
tests conducted in an affiliated toxicology laboratory in which pellets
were made with a newly developed formulation and administered to 64
rats (selected at random from an essentially identical population). The
results showed an average “acting time,” x̄ = 1028 secs. The ACME
scientists, anxious to declare a breakthrough, were preparing to ap-
proach management immediately to argue that the observed excess 28
secs, when compared to the stipulated standard deviation of 125 secs,
is “small and insignificant.” The group statistician, in an attempt to
present an objective, statistically sound argument, recommended in-
stead that a hypothesis test should first be carried out to rule out
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the possibility that the mean “acting time” is still greater than 1000
secs. Assuming that the “acting time” measurements are normally dis-
tributed, carry out an appropriate hypothesis test and, at the signifi-
cance level of α = 0.05, make an informed recommendation regarding
the tested rat poison’s “acting time.”

Solution:
For this problem, the null and alternative hypotheses are:

H0 : µ = 1000

Ha : µ > 1000 (15.31)

The alternative has been chosen this way because the concern is that the
acting time may still be greater than 1000 secs. As a result of the nor-
mality assumption, and the fact that σ is specified as 125, the required
test is the z-test, where the specific z-score is:

z =
1028 − 1000

125/
√

64
= 1.792 (15.32)

The critical value, zα, for α = 0.05 for this upper-tailed test is:

z0.05 = 1.65 (15.33)

obtained using MINITAB’s inverse cumulative probability feature for
the standard normal distribution (tail area probability 0.05), i.e.,

P (Z > 1.65) = 0.05 (15.34)

Thus, the rejection region, RC , is z > 1.65. And now, because z = 1.78
falls into the rejection region, the decision is to reject the null hypothesis
at the 5% level.

Alternatively, the p-value associated with this test statistic can be
obtained (also from MINITAB, using the cumulative probability fea-
ture) as:

P (z > 1.792) = 0.037 (15.35)

implying that if H0 is true, the probability of observing, by pure chance
alone, the actually observed sample average, 1028 secs, or something
higher, is so small that we are inclined to believe that H0 is unlikely to
be true. Observe that this p-value is lower than the specified significance
level of α = 0.05.

Thus, from these equivalent perspectives, the conclusion is that the

experimental evidence does not support the ACME scientists prema-
ture declaration of a breakthrough; the observed excess 28 secs, in fact,

appears to be significant at the α = 0.05 significance level.

Using the procedure illustrated previously, the MINITAB results for this
problem are displayed as follows:
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One-Sample Z
Test of mu = 1000 vs > 1000
The assumed standard deviation = 125
N Mean SE Mean 95% Lower Bound Z P
64 1028.0 15.6 1002.3 1.79 0.037

Observe that the z- and p- values agree with what we had obtained earlier;
furthermore, the additional entries, “SE Mean,” for the standard error of
the mean, 15.6, and the 95% lower bound on the estimate for the mean,
1002.3, link this hypothesis test to interval estimation. This connection will
be explored more fully later in this section; for now, we note simply that the
95% lower bound on the estimate for the mean, 1002.3, lies entirely to the right
of the hypothesized mean value of 1000. The implication is that, at the 95%
confidence level, it is more likely that the true mean is higher than the value
hypothesized; we are therefore more inclined to reject the null hypothesis in
favor of the alternative, at the significance level 0.05.

15.3.2 σ Unknown; the “t-test”

When the population standard deviation, σ, is unknown, the sample stan-
dard deviation, s, will have to be substituted for it. In this case, one of two
things can happen:

1. If the sample size is sufficiently large (for example, n > 30), s is usually
considered to be a good enough approximation to σ, that the z-test can
be applied, treating s as equal to σ.

2. When the sample size is small, substituting s for σ changes the test
statistic and the corresponding test, as we now discuss.

For small sample sizes, when S is substituted for σ, the appropriate test
statistic, becomes

T =
X̄ − µ0

S/
√

n
(15.36)

which, from our discussion of sampling distributions, is known to possess a
Student’s t-distribution, with ν = n−1 degrees of freedom. This is the “small
sample size” equivalent of Eq (15.20).

Once more, because of the test statistic, and the sampling distribution
upon which the test is based, this test is known as a “t-test.” Therefore,

The one-sample t-test is a hypothesis test concerning the mean of
a normal population when the population standard deviation, σ,
is unknown, and the sample size is small.
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TABLE 15.3: Summary of H0

rejection conditions for the
one-sample t-test

For General α
Testing Against Reject H0 if:
Ha : µ < µ0 t < −tα(ν)

Ha : µ > µ0 t > tα(ν)

Ha : µ $= µ0 t < −tα/2(ν) or
t > tα/2(ν)
(ν = n − 1)

The t-test is therefore the same as the z-test but with the sample standard
deviation, s, used in place of the unknown σ; it uses the t-distribution (with
the appropriate degrees of freedom) in place of the standard normal distribu-
tion of the z-test. The relevant facts about the t-test for testing H0 : µ = µ0

are summarized in Table 15.3, the equivalent of Table 15.2 shown earlier. The
specific test statistic, t, is determined by introducing sample data into Eq
(15.36). Unlike the z-test, even after specifying α, we are unable to determine
the specific critical/rejection region because these values depend on the de-
grees of freedom (i.e., the sample size). The following example illustrates how
to conduct a one-sample t-test.

Example 15.4: HYPOTHESES TESTING REGARDING EN-
GINEERING TRAINING PROGRAMS
Assume that the test results shown in Example 15.1 are random sam-
ples from normal populations. (1) At a significance level of α = 0.05,
test the hypothesis that the mean score for trainees using method A
is µA = 75, versus the alternative that it is less than 75. (2) Also, at
the same significance level, test the hypothesis that the mean score for
trainees using method B is µB = 75, versus the alternative that it is not.

Solution:
(1) The first thing to note is that the population standard deviations are
not specified; and since the sample size of 10 for each data set is small,
the appropriate test is a one-sample t-test. The null and alternative
hypotheses for the first problem are:

H0 : µA = 75.0

Ha : µA < 75.0 (15.37)

The sample average is obtained from the supplied data as x̄A = 69.0,
with a sample standard deviation, sA = 4.85; the specific T statistic
value is thus obtained as:

t =
69.0 − 75.0

4.85/
√

10
= −3.91 (15.38)
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Because this is a lower-tailed, one-sided test, the critical value, −t0.05(9),
is obtained as −1.833 (using MINITAB’s inverse cumulative probability
feature, for the t-distribution with 9 degrees of freedom). The rejection
region, RC , is therefore t < −1.833. Observe that the specific t-value
for this test lies well within this rejection region; we therefore reject the
null hypothesis in favor of the alternative, at the significance level 0.05.

Of course, we could also compute the p-value associated with this
particular test statistic; and from the t-distribution with 9 degrees of
freedom we obtain,

P (T (9) < −3.91) = 0.002 (15.39)

using MINITAB’s cumulative probability feature. The implication here
is that the probability of observing a difference as large, or larger, be-
tween the postulated mean (75) and actual sample average (69), if H0

is true, is so very low (0.002) that it is more likely that the alternative
is true; that the sample average is more likely to have come from a
distribution whose mean is less than 75. Equivalently since this p-value
is less than the significance level 0.05, we reject H0 at this significance
level.

(2) The hypotheses to be tested in this case are:

H0 : µB = 75.0

Ha : µB != 75.0 (15.40)

From the supplied data, the sample average and standard deviation are
obtained respectively as x̄B = 74.0, and sB = 5.40, so that the specific
value for the T statistic is:

t =
74 − 75.0

5.40/
√

10
= −0.59 (15.41)

Since this is a two-tailed test, the critical values, t0.025(9) and its mir-
ror image −t0.025(9), are obtained from MINITAB as −2.26 and 2.26
implying that the critical/rejection region, RC , in this case is t < −2.26
or t > 2.26. But the specific value for the t-statistic (−0.59) does not
lie in this region; we therefore do not reject H0 at the significance level
0.05.

The associated p-value, obtained from a t-distribution with 9 degrees
of freedom, is:

P (t(9) < −0.59 or t(9) > 0.59) = P (|t(9)| > 0.59) = 0.572 (15.42)

with the implication that we do not reject the null hypothesis, either

on the basis of the p-value, or else at the 0.05 significance level, since

p = 0.572 is larger than 0.05.

Thus, observe that with these two t-tests, we have established, at a significance
level of 0.05, that the mean score obtained by trainees using method A is less
than 75 while the mean score for trainees using method B is essentially equal
to 75. We can, of course, infer from here that this means that method B must
be more effective. But there are more direct methods for carrying out tests to
compare two means directly, which will be considered shortly.
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Using MINITAB

MINITAB can be used to carry out these t-tests directly (without having to
compute, by ourselves, first the test statistic and then the critical region, etc.).
After entering the data into separate columns, “Method A” and “Method B”
in a MINITAB worksheet, for the first problem, the sequence Stat > Basic
Statistics > 1-Sample t from the MINITAB drop down menu opens a di-
alog box where one selects the column containing the data (“Method A”); and
upon selecting the “Perform hypothesis test” option, one enters the appropri-
ate value for the “Hypothesized mean” (75) and with the “Options” button
one selects the desired “Alternative” for Ha (less than) along with the default
confidence level (95.0).

MINITAB provides three self-explanatory graphical options: “Histogram
of data”; “Individual value plot”; and “Boxplot of data.” Our discussion in
Chapter 12 about graphical plots for small sample data sets recommends that,
with n = 10 in this case, the box plot is more reasonable than the histogram
for this example.

The resulting MINITAB outputs are displayed as follows:

One-Sample T: Method A
Test of mu = 75 vs < 75

95% Upper
Variable N Mean StDev SE Mean Bound T P
Method A 10 69.00 4.85 1.53 71.81 -3.91 0.002

The box plot along with the 95% confidence interval estimate and the
hypothesized mean H0 = 75 are shown in Fig 15.6. The conclusion to reject
the null hypothesis in favor of the alternative is clear.

In dealing with the second problem regarding Method B, we follow the
same procedure, selecting data in the “Method B” column, but this time, the
“Alternative” is selected as “not equal.” The MINITAB results are displayed
as follows:

One-Sample T: Method B
Test of mu = 75 vs not = 75
Variable N Mean StDev SE Mean 95% CI T P
Method B 10 74.00 5.40 1.71 (70.14, 77.86) -0.59 0.572

The box plot along with the 95% confidence interval for the mean and the
hypothesized mean H0 = 75 are shown in Fig 15.7.

15.3.3 Confidence Intervals and Hypothesis Tests

Interval estimation techniques discussed in Chapter 14 produced estimates
for the parameter θ in the form of an interval, (uL < θ < uR), that is expected
to contain the unknown parameter with probability (1 − α); it is therefore
known as the (1 − α) × 100% confidence interval.
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FIGURE 15.6: Box plot for Method A scores including the null hypothesis mean,
H0 : µ = 75, shown along with the sample average, x̄, and the 95% confidence interval
based on the t-distribution with 9 degrees of freedom. Note how the upper bound of the
95% confidence interval lies to the left of, and does not touch, the postulated H0 value.

!

8580757065

X
_

Ho

Method B

Boxplot of Method B
(with Ho and 95% t-confidence interval for the mean)

!

FIGURE 15.7: Box plot for Method B scores including the null hypothesis mean,
H0, µ = 75, shown along with the sample average, x̄, and the 95% confidence interval
based on the t-distribution with 9 degrees of freedom. Note how the 95% confidence
interval includes the postulated H0 value.
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Now, observe first from the definition of the critical/rejection region, RC ,
given above, first for a two-tailed test, that at the significance level, α, RC

is precisely complementary to the (1 − α) × 100% confidence interval for the
estimated parameter. The implication therefore is as follows: if the postulated
population parameter (say θ0) falls outside the (1 − α) × 100% confidence
interval estimated from sample data (i.e., the postulated value is higher than
the upper bound to the right, or lower than the lower bound to the left), this
triggers the rejection of H0, that θ = θ0, at the significance level of α, in
favor of the alternative Ha, that θ $= θ0. Conversely, if the postulated θ0 falls
within the (1 − α) × 100% confidence interval, we will fail to reject H0. This
is illustrated in Example 15.2 for the mean yield of process B. The 95% con-
fidence interval was obtained as (70.74, 74.20), which fully encompasses the
hypothesized mean value of 72.5; hence we do not reject H0 at the 0.05 signif-
icance level. Similarly, in part 2 of Example 15.4, the 95% confidence interval
on the average method B score was obtained as (70.14, 77.86); and with the
hypothesized mean, 75, lying entirely in this interval (as shown graphically in
Fig 15.7). Once again, we find no evidence to reject H0 at the 0.05 significance
level.

For an upper-tailed test (with Ha defined as Ha : θ > θ0), it is the lower
bound of the (1−α)×100% confidence interval that is now of interest. Observe
that if the hypothesized value, θ0, is to the left of this lower bound (i.e., it
is lower than the lowest value of the (1 − α) × 100% confidence interval),
the implication is twofold: (i) the computed estimate falls in the rejection
region; and, equivalently, (ii) value estimated from data is larger than the
hypothesized value—both of which support the rejection of H0 in favor of Ha,
at the significance level of α. This is illustrated in Example 15.3 where the
lower bound of the estimated “acting time” for the rat poison was obtained
(from MINITAB) as 1002.3 secs, whereas the postulated mean is 1000. H0 is
therefore rejected at the 0.05 significance level in favor of Ha, that the mean
value is higher. On the other hand, if the hypothesized value, θ0, is to the
right of this lower bound, there will be no support for rejecting H0 at the 0.05
significance level.

The reverse is true for the lower-tailed test with Ha : θ < θ0. The upper
bound of the (1 − α) × 100% confidence interval is of interest; and if the
hypothesized value, θ0, is to the right of this upper bound (i.e., it is larger than
the largest value of the (1−α)× 100% confidence interval), this hypothesized
value would have fallen into the rejection region. Because this indicates that
the value estimated from data is smaller than the hypothesized value, the
evidence supports the rejection of H0 in favor of Ha, at the 0.05 significance
level. Again, this is illustrated in part 1 of Example 15.4. The upper bound
of the 95% confidence interval on the average method A score was obtained
as 71.81, which is lower than the postulated average of 75, thereby triggering
the rejection of H0 in favor of Ha, at the 0.05 significance level (see Fig 15.6).
Conversely, when the hypothesized value, θ0, is to the left of this upper bound,
we will fail to reject H0 at the 0.05 significance level.
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15.4 Concerning Two Normal Population Means

The problem of interest involves two distinct and mutually independent
normal populations, with respective unknown means µ1 and µ2. In general
we are interested in making inference about the difference between these two
means, i.e.,

µ1 − µ2 = δ (15.43)

The typical starting point is the null hypothesis,

H0 : µ1 − µ2 = δ0 (15.44)

when the difference between the two population means is postulated as some
value δ0, and the hypothesis is to be tested against the usual triplet of possible
alternatives:

Lower-tailed Ha : µ1 − µ2 < δ0 (15.45)
Upper-tailed Ha : µ1 − µ2 > δ0 (15.46)

Two-tailed Ha : µ1 − µ2 $= δ0 (15.47)

In particular, specifying δ0 = 0 constitutes a test of equality of the two means;
but δ0 does not necessarily have to be zero, allowing us to test the difference
against any arbitrary postulated value.

As with tests of single population means, this test will be based on the
difference between two random sample means, X̄1 from population 1, and X̄2

from population 2. These tests are therefore known as “two-sample” tests;
and, as usual, the specific test to be employed for any problem depends on
what additional information is available about each population’s standard
deviation.

15.4.1 Population Standard Deviations Known

When the population standard deviations, σ1 and σ2 are known, we recall
(from the discussion in Chapter 14 on interval estimation of the difference of
two normal population means) that the test statistic:

Z =
(X̄1 − X̄2) − δ0√

σ2
1

n1
+ σ2

2
n2

∼ N(0, 1) (15.48)

where n1 and n2 are the sizes of the samples drawn from populations 1 and
2 respectively. This fact arises from the result established in Chapter 14 for
the sampling distribution of D̄ = X̄1 − X̄2 as N(δ, v2), with δ as defined in
Eq (18.10), and

v2 =
σ2

1

n1
+

σ2
2

n2
(15.49)
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TABLE 15.4: Summary of H0 rejection
conditions for the two-sample z-test

For General α For α = 0.05
Testing Against Reject H0 if: Reject H0 if:
Ha : µ1 − µ2 < δ0 z < −zα z < −1.65

Ha : µ1 − µ2 > δ0 z > zα z < 1.65

Ha : µ1 − µ2 $= δ0 z < −zα/2 or z < −1.96 or
z > zα/2 z > 1.96

Tests based on this statistic are known as “two-sample z-tests,” and as with
previous tests, the specific results for testing H0 : µ1−µ2 = δ0 are summarized
in Table 15.4.

Let us illustrate the application of this test with the following example.

Example 15.5: COMPARISON OF SPECIALTY AUXILIARY
BACKUP LAB BATTERY LIFETIMES
A company that manufactures specialty batteries used as auxiliary back-
ups for sensitive laboratory equipments in need of constant power sup-
plies claims that its new prototype, brand A, has a longer lifetime (un-
der constant use) than the industry-leading brand B, and at the same
cost. Using accepted industry protocol, a series of tests carried out in
an independent laboratory produced the following results: For brand A:
sample size, n1 = 40; average lifetime, x̄1 = 647 hrs; with a population
standard deviation given as σ1 = 27 hrs. The corresponding results for
brand B are n2 = 40; x̄2 = 638; σ2 = 31. Determine, at the 5% level, if
there is a significant difference between the observed mean lifetimes.

Solution:
Observe that in this case, δ0 = 0, i.e., the null hypothesis is that the two
means are equal; the alternative is that µ1 > µ2, so that the hypotheses
are formulated as:

H0 : µ1 − µ2 = 0

Ha : µ1 − µ2 > 0 (15.50)

The specific test statistic obtained from the experimental data is:

z =
(647 − 638) − 0√

272

40 + 312

40

= 1.38 (15.51)

For this one-tailed test, the critical value, z0.05, is 1.65; and now, since
the computed z-score is not greater than 1.65, we cannot reject the
null hypothesis. There is therefore insufficient evidence to support the
rejection of H0 in favor of Ha, at the 5% significance level.

Alternatively, we could compute the p-value and obtain:

p = P (Z > 1.38) = 1 − P (Z < 1.38)

= 1 − 0.916 = 0.084 (15.52)
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Once again, since this p-value is greater than 0.05, we cannot reject H0

in favor of Ha, at the 5% significance level. (However, observe that at
the 0.1 significance level, we will reject H0 in favor of Ha, since the

p-value is less than 0.1.)

15.4.2 Population Standard Deviations Unknown

In most practical cases, it is rare that the two population standard devi-
ations are known. Under these circumstances, we are able to identify three
distinct cases requiring different approaches:

1. σ1 and σ2 unknown; large sample sizes n1 and n2;

2. Small sample sizes; σ1 and σ2 unknown, but equal (i.e., σ1 = σ2);

3. Small sample sizes; σ1 and σ2 unknown, and unequal (i.e., σ1 $= σ2).

As usual, under the first set of conditions, the sample standard deviations,
s1 and s2, are considered to be sufficiently good approximations to the re-
spective unknown population parameters; they are then used in place of σ1

and σ2 in carrying out the two-sample z-test as outlined above. Nothing more
need be said about this case. We will concentrate on the remaining two cases
where the sample sizes are considered to be small.

Equal Standard Deviations

When the two population standard deviations are considered as equal, the
test statistic:

T =
(X̄1 − X̄2) − δ0√

S2
p

n1
+ S2

p

n2

∼ t(ν) (15.53)

i.e., its sampling distribution is a t-distribution with ν degrees of freedom,
with

ν = n1 + n2 − 2 (15.54)

Here, Sp is the “pooled” sample standard deviation obtained as the positive
square root of the pooled sample variance—a weighted average of the two
sample variances:

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
(15.55)

a reasonable estimate of the (equal) population variances based on the two
sample variances.

From this test statistic and its sampling distribution, one can now carry
out the “two-sample t-test,” and, once more, the specific results for testing
H0 : µ1 − µ2 = δ0 against various alternatives are summarized in Table 15.5.

The following example illustrates these results.
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TABLE 15.5: Summary of H0

rejection conditions for the two-sample
t-test

For General α
Testing Against Reject H0 if:
Ha : µ1 − µ2 < δ0 t < −tα(ν)

Ha : µ1 − µ2 > δ0 t > tα(ν)

Ha : µ1 − µ2 $= δ0 t < −tα/2(ν) or
t > tα/2(ν)
(ν = n1 + n2 − 2)

Example 15.6: HYPOTHESES TEST COMPARING EFFEC-
TIVENESS OF ENGINEERING TRAINING PROGRAMS
Revisit the problem in Example 15.1 and this time, at the 5% signifi-
cance level, test the claim that Method B is more effective. Assume that
the scores shown in Example 15.1 come from normal populations with
potentially different means, but equal variances.

Solution:
In this case, because the sample size is small for each data set, the ap-
propriate test is a two-sample t-test, with equal variance; the hypotheses
to be tested are:

H0 : µA − µB = 0

Ha : µA − µB < 0 (15.56)

Care must be taken in ensuring that Ha is specified properly. Since the
claim is that Method B is more effective, if the difference in the means
is specified in H0 as shown (with µA first), then the appropriate Ha

is as we have specified. (We are perfectly at liberty to formulate H0

differently, with µB first, in which case the alternative hypothesis must
change to Ha : µB − µA > 0.)

From the sample data, we obtain all the quantities required for com-
puting the test statistic: the sample means, x̄A = 69.0, x̄B = 74.0; the
sample standard deviations, sA = 4.85, sB = 5.40; so that the estimated
pooled standard deviation is obtained as:

sp = 5.13

with ν = 18. To test the observed difference (d = 69.0 − 74.0 = −5.0)
against a hypothesized difference of δ0 = 0 (i.e., equality of the means),
we obtain the t-statistic as:

t = −2.18

which is compared to the critical value for a t-distribution with 18 de-
grees of freedom,

−t0.05(18) = −1.73
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And since t < −t0.05(18), we reject the null hypothesis in favor of the
alternative, and conclude that, at the 5% significance level, the evidence
in the data supports the claim that Method B is more effective.

Note also that the associated p-value, obtained from a t distribution
with 18 degrees of freedom, is:

P (t(18) < −2.18) = 0.021 (15.57)

which, by virtue of being less than 0.05 recommends rejection of H0 in

favor of Ha, at the 5% significance level, as we already concluded above.

Using MINITAB

This just-concluded example illustrates the “mechanics” of how to conduct
a two-sample t-test “manually”; once the mechanics are understood, however,
it is recommended to use computer programs such as MINITAB.

As noted before, once the data sets have been entered into separate
columns “Method A” and “Method B” in a MINITAB worksheet (as was
the case in Example 15.4), the required sequence from the MINITAB drop
down menu is: Stat > Basic Statistics > 2-Sample t, which opens a di-
alog box with self-explanatory options. Once the location of the relevant data
are identified, the “Assume equal variance” box is selected in this case, and
with the “Options” button, one selects the “Alternative” for Ha (“less than,”
if the hypotheses are set up as we have done above), along with the default
confidence level (95.0); one enters the value for hypothesized difference, δ0, in
the “Test difference” box (0 in this case). The resulting MINITAB outputs for
this problem are displayed as follows:

Two-Sample T-Test and CI: Method A, Method B
Two-sample T for Method A vs Method B

N Mean StDev SE Mean
Method A 10 69.00 4.85 1.5
Method B 10 74.00 5.40 1.7

Difference = mu (Method A) - mu (Method B)
Estimate for difference: -5.00
95% upper bound for difference: -1.02
T-Test of difference = 0 (vs <): T-Value = -2.18 P-Value = 0.021 DF
= 18
Both use Pooled StDev = 5.1316

Unequal Standard Deviations

When σ1 $= σ2, things become a bit more complicated, and a detailed
discussion lies outside the intended scope of this book. Suffice it to say that
under these circumstances, the universally recommended test statistic is T̃
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defined as:
T̃ =

(X̄1 − X̄2) − δ0√
S2

1
n1

+ S2
2

n2

, (15.58)

which appears deceptively like Eq (15.53), with the very important difference
that S1 and S2 have been reinstated individually in place of the pooled Sp.
Of course, this expression is also reminiscent of the Z statistic in Eq (15.48),
with S1 and S2 introduced in place of the population variances. However,
unlike the other single variable cases where such a substitution transforms
the standard normal sampling distribution to the t-distribution with the ap-
propriate degrees of freedom, unfortunately, this time, this test statistic only
has an approximate (not exact) t-distribution; and the degrees of freedom, ν,
accompanying this approximate t-distribution is defined by:

ν = ñ12 − 2 (15.59)

with ñ12 defined by the formidable-looking expression

ñ12 =






(
S2

1/n1 + S2
2/n2

)2

(S2
1/n1)2

n1+1 + (S2
2/n2)2

n2+1




 (15.60)

rounded to the nearest integer.
Under these conditions, the specific results for carrying out two-sample t-

tests for testing H0 : µ1−µ2 = δ0 against various alternatives are summarized
in Table 15.5 but with t̃ in place of the corresponding t-values, and using ν
given above in Eqs (15.59) and (15.60) for the degrees of freedom.

Although it is possible to carry out such two-sample t-tests “manually” by
computing the required quantities on our own, it is highly recommended that
such tests be carried out using computer programs such as MINITAB.

Confidence Intervals and Two-Sample Tests

The relationship between confidence intervals for the difference between
two normal population means and the two-sample tests discussed above per-
fectly mirrors the earlier discussion concerning single means of a normal popu-
lation. For the two-sided test, a (1−α)×100% confidence interval estimate for
the difference between the two means that does not contain the hypothesized
mean corresponds to a hypothesis test in which H0 is rejected, at the signif-
icance level of α, in favor of the alternative that the computed difference is
not equal to the hypothesized difference. Note that with a test of equality (in
which case δ0, the hypothesized difference, is 0), rejection of H0 is tantamount
to the (1 − α) × 100% confidence interval for the difference not containing 0.
On the contrary, an estimated (1−α)×100% confidence interval that contains
the hypothesized difference is equivalent to a two-sample test that must fail
to reject H0.

The corresponding arguments for the upper-tailed and lower-tailed tests
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follow precisely as presented earlier. For an upper-tailed test, (Ha : δ > δ0), a
lower bound of the (1−α)×100% confidence interval estimate of the difference,
δ, that is larger than the hypothesized difference, δ0, corresponds to a two-
sample test in which H0 is rejected in favor of Ha, at the significance level
of α. Conversely, a lower bound of the confidence interval estimate of the
difference, δ, that is smaller than the hypothesized difference, δ0, corresponds
to a test that will not reject H0. The reverse is the case for the lower-tailed
test (Ha : δ < δ0): when the upper bound of the (1 − α) × 100% confidence
interval estimate of δ is smaller than δ0, H0 is rejected in favor of Ha. When
the upper bound of the (1 − α) × 100% confidence interval estimate of δ is
larger than δ0, H0 is not rejected.

An Illustrative Example: The Yield Improvement Problem

The solution to the yield improvement problem first posed in Chapter 1,
and revisited at the beginning of this chapter, will finally be completed in
this illustrative example. In addition, the example also illustrates the use of
MINITAB to carry out a two-sample t-test when population variances are not
equal.

The following questions remain to be resolved: Is YA > YB, and if so, is
YA−YB > 2? Having already confirmed that the random variables, YA and YB ,
can be characterized reasonably well with Gaussian distributions, N(µA, σ2

A)
and N(µB , σ2

B), respectively, the supplied data may then be considered as
being from normal distributions with unequal population variances. We will
answer these two questions by carrying out appropriate two-sample t-tests.

Although the answer to the first of the two questions requires testing for
the equality of µA and µB against the alternative that µA > µB, let us begin by
first testing against µA $= µB; this establishes that the two distributions means
are different. Later we will test against the alternative that µA > µB , and
thereby go beyond the mere existence of a difference between the population
means to establish which is larger. Finally, we proceed even one step further
to establish not only which one is larger, but that it is larger by a value that
exceeds a certain postulated value (in this case 2).

For the first test of basic equality, the hypothesized difference is clearly
δ0 = 0, so that:

H0 : µA − µB = 0
Ha : µA $= µB = 0 (15.61)

The procedure for using MINITAB is as follows: upon entering the data into
separate YA and YB columns in a MINITAB worksheet, the required se-
quence from the MINITAB drop down menu is: Stat > Basic Statistics >
2-Sample t. In the opened dialog box, one simply selects the “Samples in dif-
ferent columns” option, identifies the columns corresponding to each data set,
but this time, the “Assume equal variance” box must not be selected. With
the “Options” button one selects the “Alternative” for Ha as “not equal,”
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along with the default confidence level (95.0); in the “Test difference” box,
one enters the value for hypothesized difference, δ0; 0 in this case. The result-
ing MINITAB outputs for this problem are displayed as follows:

Two-Sample T-Test and CI: YA, YB
Two-sample T for YA vs YB

N Mean StDev SE Mean
YA 50 75.52 1.43 0.20
YB 50 72.47 2.76 0.39

Difference = mu (YA) - mu (YB)
Estimate for difference: 3.047
95% CI for difference: (2.169, 3.924)
T-Test of difference = 0 (vs not =): T-Value = 6.92 P-Value = 0.000
DF = 73

Several points are worth noting here:

1. The most important is the p-value which is virtually zero; the implication
is that at the 0.05 significance level, we must reject the null hypothesis
in favor of the alternative: the two population means are in fact dif-
ferent, i.e., the observed difference between the population is not zero.
Note also that the t-statistic value is 6.92, a truly extreme value for a
distribution that is symmetrical about the value 0, and for which the
density value, f(t) essentially vanishes (i.e., f(t) ≈ 0), for values of the
t variate exceeding ±4. The p-value is obtained as P (|T | > 6.92).

2. The estimated sample difference is 3.047, with a 95% confidence interval,
(2.169, 3.924); since this interval does not contain the hypothesized dif-
ference δ0 = 0, the implication is that the test will reject H0, as indeed
we have concluded in point #1 above;

3. Finally, even though there were 50 data entries each for YA and YB, the
degrees of freedom associated with this test is obtained as 73. (See the
expressions in Eqs (15.59) and (15.60) above.)

This first test has therefore established that the means of the YA and YB

populations are different, at the 5% significance level. Next, we wish to test
which of these two different means is larger. To do this, the hypotheses to be
tested are:

H0 : µA − µB = 0
Ha : µA > µB = 0 (15.62)

The resulting outputs from MINITAB are identical to what is shown above
for the first test, with two exceptions:
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(i) the “95% CI for difference” line is replaced with 95% lower bound
for difference: 2.313; and

(ii) the “T-Test of difference = 0 (vs not =)” is replaced with T-Test
of difference = 0 (vs >).

The t-value, p-value, and “DF” remain the same.
Again, with a p-value that is virtually zero, the conclusion is that, at the

5% significance level, the null hypothesis must be rejected in favor of the
alternative, which, this time, is specifically that µA is greater than µB . Note
that the value 2.313, computed from the data as the 95% lower bound for the
difference, is considerably higher than the hypothesized value of 0; i.e., the
hypothesized δ0 = 0 lies well to the left of this lower bound for the difference.
This is consistent with rejecting the null hypothesis in favor of the alternative,
at the 5% significance level.

With the final test, we wish to sharpen the postulated difference a bit
further. This time, we assert that, µA is not only greater than µB; the former
is in fact greater than the latter by a value that exceeds 2. The hypotheses
are set up in this case as follows:

H0 : µA − µB = 2
Ha : µA > µB = 2 (15.63)

This time, in the MINTAB options, the new hypothesized difference is indi-
cated as 2 in the “Test difference” box. The MINITAB results are displayed
as follows:

Two-Sample T-Test and CI: YA, YB
Two-sample T for YA vs YB

N Mean StDev SE Mean
YA 50 75.52 1.43 0.20
YB 50 72.47 2.76 0.39

Difference = mu (YA) - mu (YB)
Estimate for difference: 3.047
95% lower bound for difference: 2.313
T-Test of difference = 2 (vs >): T-Value = 2.38 P-Value = 0.010 DF
= 73

Note that the t-value is now 2.38 (reflecting the new hypothesized value of
δ0 = 2), with the immediate consequence that the p-value is now 0.01; not
surprisingly, everything else remains the same as in the first test. Thus, at the
0.05 significance level, we reject the null hypothesis in favor of the alterna-
tive. Note also that the 95% lower bound for the difference is larger than the
hypothesized difference of 2.

The conclusion is therefore that, with 95% confidence (or alternatively at
a significance level of 0.05), the mean yield obtainable from the challenger
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TABLE 15.6: “Before” and “after” weights for patients on a supervised
weight-loss program

Patient # 1 2 3 4 5 6 7 8 9 10
Before Wt (lbs) 272 319 253 325 236 233 300 260 268 276
After Wt (lbs) 263 313 251 312 227 227 290 251 262 263
Patient # 11 12 13 14 15 16 17 18 19 20
Before Wt (lbs) 215 245 248 364 301 203 197 217 210 223
After Wt (lbs) 206 235 237 350 288 195 193 216 202 214

process A is at least 2 points larger than that obtainable by the incumbent
process B.

15.4.3 Paired Differences

A subtle but important variation on the theme of inference concerning
two normal population means arises when the data naturally occur in pairs, as
with the data shown in Table 15.6. This is a record of the “before” and “after”
weights (in pounds) of twenty patients enrolled in a clinically-supervised 10-
week weight-loss program. Several important characteristics set this problem
apart from the general two-sample problem:

1. For each patient, the random variable “Weight” naturally occurs as an
ordered pair of random variables (X, Y ), with X as the “before” weight,
and Y as the “after” weight;

2. As a result, it is highly unlikely that the two entries per patient will be
totally independent, i.e., the random sample, X1, X2, . . . , Xn, will likely
not be independent of Y1, Y2, . . . , Yn;

3. In addition, the sample sizes for each random sample, X1, X2, . . . , Xn,
and Y1, Y2, . . . , Yn, by definition, will be identical;

4. Finally, it is quite possible that the patient-to-patient variability in each
random variable X or Y (i.e., the variability within each group) may
be much larger than the difference between the groups that we seek to
detect.

These circumstances call for a different approach, especially in light of item
#2 above, which invalidates one of the most crucial assumptions underlying
the two-sample tests: independence of the random samples.

The analysis for this class of problems proceeds as follows. Let (Xi, Yi); i =
1, 2, . . . , n, be an ordered pair of random samples, where X1, X2, . . . , Xn

is from a normal population with mean, µX , and variance, σ2
X ; and

Y1, Y2, . . . , Yn, a random sample from a normal population with mean, µY ,
and variance, σ2

Y . Define the difference D as:

Di = Xi − Yi (15.64)
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then, Di, i = 1, 2, . . . , n, constitutes a random sample of differences with mean
value,

δ = µX − µY (15.65)

The quantities required for the hypothesis test are: the sample average,

D̄ =
∑n

i=1 Di

n
(15.66)

(which is unbiased for δ), and the sample variance of the differences,

S2
D =

∑n
i=1(Di − D̄)2

n − 1
(15.67)

Under these circumstances, the null hypothesis is defined as

H0 : δ = δ0 (15.68)

when δ, the difference between the paired observations, is postulated as some
value δ0. This hypothesis, as usual, is to be tested against the possible alter-
natives

Lower-tailed Ha : δ < δ0 (15.69)
Upper-tailed Ha : δ > δ0 (15.70)

Two-tailed Ha : δ $= δ0 (15.71)

The appropriate test statistic is

T =
D̄ − δ0

SD/
√

n
(15.72)

it possesses a t(n− 1) distribution. When used to carry out what is generally
known as the “paired t-test,” the results are similar to those obtained for
earlier tests, with the specific rejection conditions summarized in Table 15.7.
The next two examples illustrate the importance of distinguishing between a
paired-test and a general two-sample test.

Example 15.7: WEIGHT-LOSS DATA ANALYSIS: PART 1
By treating the weight-loss patient data in Table 15.6 as “before” and
“after” ordered pairs, determine at the 5% level, whether or not the
weight loss program has been effective in assisting patients lose weight.

Solution:
This problem requires determining whether the mean difference between
the “before” and “after” weights for the 20 patients is significantly dif-
ferent from zero. The null and alternative hypotheses are:

H0 : δ = 0

Ha : δ != 0 (15.73)
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TABLE 15.7: Summary of H0

rejection conditions for the paired
t-test

For General α
Testing Against Reject H0 if:
Ha : δ < δ0 t < −tα(ν)

Ha : δ > δ0 t > tα(ν)

Ha : δ $= δ0 t < −tα/2(ν) or
t > tα/2(ν)
(ν = n − 1)

We can compute the twenty “before”-minus-“after” weight differences,
obtain the sample average and sample standard deviation of these dif-
ferences, and then compute the t-statistic from Eq (15.72) for δ0 = 0.
How this t statistic compares against the critical value of t0.025(19) will
determine whether or not to reject the null hypothesis.

We can also use MINITAB directly. After entering the data into two
columns “Before WT” and “After WT”, the sequence: Stat > Basic
Statistics > Paired t opens the usual analysis dialog box: as with
other hypothesis tests, data columns are identified, and with the “Op-
tions” button, the “Alternative” for Ha is selected as “not equal,” along
with 0 for the “Test mean” value, with the default confidence level
(95.0). The resulting MINITAB outputs for this problem are displayed
as follows:

Paired T-Test and CI: Before WT, After WT
Paired T for Before WT - After WT

N Mean StDev SE Mean
Before WT 20 258.2 45.2 10.1
After WT 20 249.9 43.3 9.7
Difference 20 8.400 3.662 0.819

95% CI for mean difference: (6.686, 10.114)
T-Test of mean difference = 0 (vs not = 0): T-Value = 10.26 P-Value
= 0.000

The mean difference (i.e., average weight-loss per patient) is 8.4 lbs, and
the 95% confidence interval (6.686, 10.114), does not contain 0; also, the
p-value is 0 (to three decimal places). The implication is therefore that at
the significance level of 0.05, we reject the null hypothesis and conclude
that the weight-loss program was effective. The average weight loss of 8.4
lbs is therefore significantly different from zero, at the 5% significance
level.

A box plot of the differences between the “before” and “after”

weights is shown in Fig 15.8, which displays graphically that the null
hypothesis should be rejected in favor of the alternative. Note how far
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FIGURE 15.8: Box plot of differences between the “before” and “after” weights,
including a 95% confidence interval for the mean difference, and the hypothesized H0

point, δ0 = 0.

the hypothesized value of 0 is from the 95% confidence interval for the
mean weight difference.

The next example illustrates the consequences of wrongly employing a
two-sample t-test for this natural paired t-test problem.

Example 15.7: WEIGHT-LOSS DATA ANALYSIS: PART 2:
TWO-SAMPLE T-TEST
Revisit the problem in Example 15.6 but this time treat the “before”
and “after” weight data in Table 15.6 as if they were independent sam-
ples from two different normal populations; carry out a 2-sample t-test
and, at the 5% level, determine whether or not the two sample means
are different.

Solution:
First let us be very clear: this is not the right thing to do; but if a
2-sample t-test is carried out on this data set with the hypotheses as:

H0 : µbefore − µafter = 0

Ha : µbefore − µafter != 0 (15.74)

MINITAB produces the following result:

Two-Sample T-Test and CI: Before WT, After WT
Two-sample T for Before WT vs After WT

N Mean StDev SE Mean
Before WT 20 258.2 45.2 10.1
After WT 20 249.9 43.3 9.7
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FIGURE 15.9: Box plot of the “before” and “after” weights including individual data
means. Notice the wide range of each data set.

Difference = mu (Before WT) - mu (After WT)
Estimate for difference: 8.4
95% CI for difference: (-20.0, 36.8)
T-Test of difference = 0 (vs not =): T-Value = 0.60 P-Value =
0.552 DF = 38
Both use Pooled StDev = 44.2957

With a t-value of 0.6 and a p-value of 0.552, this analysis indicates that

there is no evidence to support rejecting the null hypothesis at the sig-
nificance level of 0.05. The estimated difference of the means is 8.4 (the

same as the mean of the differences obtained in Example 15.6); but

because of the large pooled standard deviation, the 95% confidence in-
terval is (−20.0, 36.8), which includes 0. As a result, the null hypothesis

cannot be rejected at the 5% significance level in favor of the alterna-

tive. This, of course, will be the wrong decision (as the previous example
has shown) and should serve as a warning against using the two-sample

t-test improperly for paired data.

It is important to understand the sources of the failure in this last ex-
ample. First, a box plot of the two data sets, shown in Fig 15.9, graphically
illustrates why the two-sample t-test is entirely unable to detect the very real,
and very significant, difference between the “before” and “after” weights. The
variability within the samples is so high that it swamps out the difference be-
tween each pair which is actually significant. But the most important reason
is illustrated in Fig 15.10, which shows a plot of “before” and “after” weights
for each patient versus patient number, from where it is absolutely clear, that
the two sets of weights are almost perfectly correlated. Paired data are often



586 Random Phenomena
!

2018161412108642

380

360

340

320

300

280

260

240

220

200

Patient #

W
e

ig
h

t

Before WT
After WT

Variable

!

FIGURE 15.10: A plot of the “before” and “after” weights for each patient. Note
how one data sequence is almost perfectly correlated with the other; in addition note the
relatively large variability intrinsic in each data set compared to the difference between
each point.

not independent. Observe from the data (and from this graph) that without
exception, every single “before” weight is higher than the corresponding “af-
ter” weight. The issue is therefore not whether there is a weight loss; it is
a question of how much. For this group of patients, however, this difference
cannot be detected in the midst of the large amount of variability within each
group (“before” or “after”).

These are the primary reasons that the two-sample t-test failed miserably
in identifying a differential that is quite significant. (As an exercise, the reader
should obtain a scatter plot of the “before” weight versus the “after” weight
to provide further graphical evidence of just how correlated the two weights
are.)

15.5 Determining β, Power, and Sample Size

Determining β, the Type II error risk, and hence (1−β), the power of any
hypothesis test, depends on whether the test is one- or two-sided. The same
is also true of the complementary problem: the determination of experimental
sample sizes required to achieve a certain pre-specified power. We begin our
discussion of such issues with the one-sided test, specifically the upper-tailed
test, with the null hypothesis as in Eq (15.16) and the alternative in Eq
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(15.18). The results for the lower-tailed, and the two-sided tests, which follow
similarly, will be given without detailed derivations.

15.5.1 β and Power

To determine β (and hence power) for the upper-tailed test, it is not suffi-
cient merely to state that µ > µ0; instead, one must specify a particular value
for the alternative mean, say µa, so that:

Ha : µ = µa > µ0 (15.75)

is the alternative hypothesis. The Type II error risk is therefore the probability
of failing to reject the null hypothesis when in truth the data came from
the alternative distribution with mean µa (where, for the upper-tailed test,
µa > µ0).

The difference between this alternative and the postulated null hypothesis
distribution mean,

δ∗ = µa − µ0 (15.76)

is the margin by which the null hypothesis is falsified in comparison to the
alternative. As one might expect, the magnitude of δ∗ will be a factor in how
easy or difficult it is for the test to detect, amidst all the variability in the
data, a difference between H0 and Ha, and therefore correctly reject H0 when
it is false. (Equivalently, the magnitude of δ∗ will also factor into the risk of
incorrectly failing to reject H0 in favor of a true Ha.)

As shown earlier, if H0 is true, then the distribution of the sample mean,
X̄, is N(µ0, σ2/n), so that the test statistic, Z, in Eq (15.20), possesses a
standard normal distribution; i.e.,

Z =
X̄ − µ0

σ/
√

n
∼ N(0, 1) (15.77)

However, if Ha is true, then in fact the more appropriate distribution for X̄
is N(µa, σ2/n). And now, because E(X̄) = µa under these circumstances, not
µ0 as postulated, the most important implication is that the distributional
characteristics of the computed Z statistic, instead of following the standard
normal distribution, will be:

Z ∼ N

(
δ∗

σ/
√

n
, 1
)

(15.78)

i.e., the standard normal distribution shifted to the right (for this upper-
tailed test) by a factor of (δ∗

√
n)/σ. Thus, as a result of a true differential, δ∗,

between alternative and null hypothesized means, the standardized alternative
distribution will show a “z-shift”

zshift =
δ∗
√

n

σ
(15.79)
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FIGURE 15.11: Null and alternative hypotheses distributions for upper-tailed test
based on n = 25 observations, with population standard deviation σ = 4, where the
true alternative mean, µa, exceeds the hypothesized one by δ∗ = 2.0. The figure shows a
“z-shift” of (δ∗

√
n)/σ = 2.5; and with reference to H0, the critical value z0.05 = 1.65.

The area under the H0 curve to the right of the point z = 1.65 is α = 0.05, the
significance level; the area under the dashed Ha curve to the left of the point z = 1.65
is β.

For example, for a test based on 25 observations, with population standard
deviation σ = 4 where the true alternative mean, µa, exceeds the hypothesized
one by δ∗ = 2.0, the mean value of the standardized alternative distribution,
following Eq (15.78), will be 2.5, and the two distributions will be as shown in
Fig 15.11, with the alternative hypothesis distribution shown with the dashed
line.

In terms of the standard normal variate, z, under H0, the shifted variate
under the alternative hypothesis, Ha, is:

ζ = z − δ∗
√

n

σ
(15.80)

And now, to compute β, we recall that, by definition,

β = P (z < zα|Ha) (15.81)

which, by virtue of the “z-shift” translates to:

β = P

(
z < zα − δ∗

√
n

σ

)
(15.82)

from where we obtain the expression for the power of the test as:

(1 − β) = 1 − P

(
z < zα − δ∗

√
n

σ

)
(15.83)
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Thus, for the illustrative example test given above, based on 25 observa-
tions, with σ = 4 and µa − µ0 = δ∗ = 2.0, the β-risk and power are obtained
as

β = P (z < 1.65 − 2.5) = 0.198
Power = (1 − β) = 0.802 (15.84)

as shown in Fig 15.12.

15.5.2 Sample Size

In the same way in which zα was defined earlier, let zβ be the standard
normal variate such that

P (z > zβ) = β (15.85)

so that, by symmetry,
P (z < −zβ) = β (15.86)

Then, from Eqs (15.82) and (15.86) we obtain:

−zβ = zα − δ∗
√

n

σ
(15.87)

which rearranges to give the important expression,

zα + zβ =
δ∗
√

n

σ
(15.88)

which relates the α- and β-risk variates to the three hypothesis test char-
acteristics: δ∗, the hypothesized mean shift to be detected by the test (the
“signal”); σ, the population standard deviation, a measure of the variability
inherent in the data (the “noise”); and finally, n, the number of experimental
observations to be used to carry out the hypothesis test (the “sample size”).
(Note that these three terms comprise what we earlier referred to as the “z-
shift,” the precise amount by which the standardized Ha distribution has been
shifted away from the H0 distribution; see Fig 15.11.)

This relationship, fundamental to power and sample size analyses, can
also be derived in terms of the unscaled critical value, xC , which marks the
boundary of the rejection region for the unscaled sample mean.

Observe that by definition of the significance level, α, the critical value,
and the Z statistic,

zα =
xC − µ0

σ/
√

n
(15.89)

so that:
xC = zα

σ√
n

+ µ0 (15.90)

By definition of β, under Ha,

β = P

(
z <

xC − µa

σ/
√

n

)
(15.91)
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FIGURE 15.12: β and power values for hypothesis test of Fig 15.11 with Ha ∼
N(2.5, 1). Top: β; Bottom: Power = (1 − β).
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and from the definition of the zβ variate in Eq (15.86), we obtain:

−zβ =
xC − µa

σ/
√

n
(15.92)

and upon substituting Eq (15.90) in for xC , and recalling that µa − µ0 = δ∗,
Eq (15.92) immediately reduces to

−zβ = zα − δ∗
√

n

σ
, or

zα + zβ =
δ∗
√

n

σ
(15.93)

as obtained earlier from the standardized distributions.
Several important characteristics of hypothesis tests are embedded in this

important expression that are worth drawing out explicitly; but first, a gen-
eral statement regarding z-variates and risks. Observe that any tail area, τ ,
decreases as |zτ | increases; similarly, tail area, τ , increases as zτ decreases;
similarly, tail area, τ , increases as |zτ | decreases. We may thus note the fol-
lowing about Eq (15.93):

1. The equation shows that for any particular hypothesis test with fixed
characteristics δ∗, σ, and n, there is a conservation of the sum of the α-
and β-risk variates; if zα increases, zβ must decrease by a commensurate
amount, and vice versa.

2. Consequently, if, in order to reduce the α-risk, zα is increased, zβ will
decrease commensurately to maintain the left-hand side sum constant,
with the result that the β-risk must automatically increase. The reverse
is also true: increasing zβ for the purpose of reducing the β-risk will
result in zα decreasing to match the increase in zβ, so that the α risk
will then increase. Therefore, for a fixed set of test characteristics, the
associated Type I and Type II risks are such that a reduction in one risk
will result in an increase in the other in mutual fashion.

3. The only way to reduce either risk simultaneously (which will require in-
creasing the total sum of the risk variates) is by increasing the “z-shift.”
This is achievable most directly by increasing n, the sample size, since
neither σ, the population standard deviation, nor δ∗, the hypothesized
mean shift to be detected by the test, is usually under the direct control
of the experimenter.

This last point leads directly to the issue of determining how many ex-
perimental samples are required to attain a certain power, given basic test
characteristics. This question is answered by solving Eq (15.88) explicitly for
n to obtain:

n =
[
(zα + zβ)σ

δ∗

]2

(15.94)
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Thus, by specifying the desired α- and β-risks along with the test char-
acteristics, δ∗, the hypothesized mean shift to be detected by the test, and
σ, the population standard deviation, one can use Eq (15.94) to determine
the sample size required to achieve the desired risk levels. In particular, it
is customary to specify the risks as α = 0.05 and β = 0.10, in which case,
zα = z0.05 = 1.645; and zβ = z0.10 = 1.28. Eq (15.94) then reduces to:

n =
(

2.925σ

δ∗

)2

(15.95)

from which, given δ∗ and σ, one can determine n.

Example 15.8: SAMPLE SIZE REQUIRED TO IMPROVE
POWER OF HYPOTHESIS TEST
The upper-tailed hypothesis test illustrated in Fig 15.11 was shown in
Eq (15.84) to have a power of 0.802 (equivalent to a β-risk of 0.182). It
is based on a sample size of n = 25 observations, population standard
deviation σ = 4, and where the true alternative mean µa exceeds the
hypothesized one by δ∗ = 2.0. Determine the sample size required to
improve the power from 0.802 to the customary 0.9.

Solution:
Upon substituting σ = 4; δ∗ = 2 into Eq (15.95), we immediately ob-
tain n = 34.2, which should be rounded up to the nearest integer to
yield 35. This is the required sample size, an increase of 10 additional
observations. To compute the actual power obtained with n = 35 (since
it is technically different from the precise, but impractical, n = 34.2
obtained from Eq (15.95)), we introduce n = 35 in Eq (15.94) and ob-
tain the corresponding zβ as 1.308; from here we may obtain β from
MINITAB’s cumulative probability feature as β = 0.095, and hence

Power = 1 − β = 0.905 (15.96)

is the actual power.

Practical Considerations

In practice, prior to performing the actual hypothesis test, no one knows
whether or not Ha is true compared to H0; it is even less likely that one will
know the precise amount by which µa will exceed the postulated µ0 should
Ha turn out to be true. The implication therefore is that δ∗ is never known
in an objective fashion à-priori. In determining the power of a hypothesis
test, therefore, δ∗ is treated not as “known” but as a design parameter : the
minimum difference we would like to detect, if such a difference exists. Thus,
δ∗ is to be considered properly as the magnitude of the smallest difference we
wish to detect with the hypothesis test.

In a somewhat related vein, the population standard deviation, σ, is rarely
known à priori in many practical cases. Under these circumstances, it has
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TABLE 15.8: Sample size n required to achieve a power of 0.9 for various
values of signal-to-noise ratio, ρSN

ρSN 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.5
n 95.06 53.47 34.22 23.77 17.46 13.37 10.56 8.56 5.94 3.80
n+ 96 53 35 24 18 14 11 9 6 4

often been recommended to use educated guesses, or results from prior ex-
periments under similar circumstances, to provide pragmatic surrogates for
σ. We strongly recommend an alternative approach: casting the problem in
terms of the “signal-to-noise” ratio (SNR):

ρSN =
δ∗

σ
(15.97)

a ratio of the magnitude of the “signal” (difference in the means) to be detected
and the intrinsic “noise” (population standard deviation) in the midst of which
the signal is to be detected. In this case, the general Eq (15.94), and the more
specific Eq (15.95) become:

n =
[
(zα + zβ)

ρSN

]2

n =
(

2.925
ρSN

)2

(15.98)

Without necessarily knowing either δ∗ or σ independently, the experimenter
then makes a sample-size decision by designing for a test to handle a “design”
SNR.

Example 15.9: SAMPLE SIZE TABLE FOR VARIOUS
SIGNAL-TO-NOISE RATIOS: POWER OF 0.9
Obtain a table of sample sizes required to achieve a power of 0.9 for
various signal-to-noise ratios from 0.3 to 1.5.

Solution:
Table 15.8 is generated from Eq (15.98) for the indicated values of the

signal-to-noise ratio, where n+ is the value of the computed n rounded

up to the nearest integer. As expected, as the signal-to-noise ratio im-
proves, the sample size required to achieve a power of 0.9 reduces; fewer

data points are required to detect signals that are large relative to the
standard deviation. Note in particular that for the example considered

in Fig 15.11 and Example 15.8, ρSN = 2/4 = 0.5; from Table 15.8, the

required sample size, 35, is precisely as obtained in Example 15.8.

15.5.3 β and Power for Lower-Tailed and Two-Sided Tests

For the sake of clarity, the preceding discussion was specifically restricted
to the upper-tailed test. Now that we have presented and illustrated the es-
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sential concepts, it is relatively straightforward to extend them to other types
of tests without having to repeat the details.

First, because the sampling distribution for the test statistic employed for
these hypothesis tests is symmetric, it is easy to see that with the lower-tailed
alternative

Ha : µ = µa < µ0 (15.99)

this time, with
δ∗ = µ0 − µa (15.100)

the β risk is obtained as:

β = P

(
z > zα +

δ∗
√

n

σ

)
(15.101)

the equivalent of Eq (15.82), from where the power is obtained as (1 − β).
Again, because of symmetry, it is easy to see that the expression for deter-
mining sample size is precisely the same as derived earlier for the upper tailed
test; i.e.,

n =
[
(zα + zβ)σ

δ∗

]2

All other results therefore follow.
For the two-tailed test, things are somewhat different, of course, but the

same principles apply. The β risk is determined from:

β = P

(
z < zα/2 −

δ∗
√

n

σ

)
− P

(
z < −zα/2 −

δ∗
√

n

σ

)
(15.102)

because of the two-sided rejection region. Unfortunately, as a result of the
additional term in this equation, there is no closed-form solution for n that is
the equivalent of Eq (15.94). When P

(
z < −zα/2 − δ∗√n

σ

)
, β, the approx-

imation,

n ≈
[
(zα/2 + zβ)σ

δ∗

]2

(15.103)

is usually good enough. Of course, given the test characteristics, computer
programs can solve for n precisely in Eq (15.102) without the need to resort
to the approximation shown here.

15.5.4 General Power and Sample Size Considerations

For general power and sample size considerations, it is typical to start by
specifying α and σ; as a result, in either Eq (15.94) for one-tailed tests, or Eq
(15.103) for the two-sided test, this leaves 3 parameters to be determined: δ∗,
n, and zβ. By specifying any two, a value for the third unspecified parameter
that is consistent with the given information can be computed from these
equations.
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In MINITAB the sequence required for carrying out this procedure is: Stat
> Power and Sample Size which produces a drop down menu containing a
collection of hypothesis tests (and experimental designs—see later). Upon se-
lecting the hypothesis test of interest, a dialog box opens, with the instruc-
tion to “Specify values for any two of the following,” with three ap-
propriately labeled spaces for “Sample size(s),” “Difference(s),” and “Power
value(s).” The “Options” button is used to specify the alternative hypothesis
and the α-risk value. The value of the unspecified third parameter is then
computed by MINITAB.

The following example illustrates this procedure.

Example 15.10: POWER AND SAMPLE SIZE DETERMI-
NATION USING MINITAB
Use MINITAB to compute power and sample size for an upper-tailed,
one sample z-test, with σ = 4, designed to detect a difference of 2, at
the significance level of α = 0.05: (1) if n = 25, determine the resulting
power; (2) when the power is desired to be 0.9, determine the required
sample size. (3) With a sample size of n = 35, determine the minimum
difference that can be detected with a power of 0.9.

Solution:
(1) Upon entering the given parameters into the appropriate boxes in
the MINITAB dialog box, and upon choosing the appropriate alterna-
tive hypothesis, the MINITAB result is shown below:

Power and Sample Size
1-Sample Z Test
Testing mean = null (versus > null)
Calculating power for mean = null + difference
Alpha = 0.05 Assumed standard deviation = 4

Sample
Difference Size Power

2 25 0.803765

This computed power value is what we had obtained earlier.
(2) When the power is specified and the sample size removed, the

MINITAB result is:

Power and Sample Size
1-Sample Z Test
Testing mean = null (versus > null)
Calculating power for mean = null + difference
Alpha = 0.05 Assumed standard deviation = 4

Sample Target
Difference Size Power Actual Power

2 35 0.9 0.905440

This is exactly the same sample size value and the same actual power
value we had obtained earlier.
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(3) With n specified as 35 and the difference unspecified, the
MINITAB result is:

Power and Sample Size
1-Sample Z Test

Testing mean = null (versus > null)
Calculating power for mean = null + difference
Alpha = 0.05 Assumed standard deviation = 4

Sample Target
Difference Size Power Difference

2 35 0.9 1.97861

The implication is that any difference greater than 1.98 can be detected
at the desired power. A difference of 2.0 is therefore detectable at a
power that is at least 0.9.

These results are all consistent with what we had obtained earlier.

15.6 Concerning Variances of Normal Populations

The discussions up until now have focused exclusively on hypothesis tests
concerning the means of normal populations. But if we recall, for example,
the earlier statements made regarding, say, the yield of process A, that YA ∼
N(75.5, 1.52), we see that in this statement is a companion assertion about the
associated variance. To confirm or refute this statement completely requires
testing the validity of the assertion about the variance also.

There are two classes of tests concerning variances of normal population:
the first concerns testing the variance obtained from a sample against a pos-
tulated population variance (as is the case here with YA); the second concerns
testing two (independent) normal populations for equality of their variances.
We shall now deal with each case.

15.6.1 Single Variance

When the variance of a sample is to be tested against a postulated value,
σ2

0 , the null hypothesis is:
H0 : σ2 = σ2

0 (15.104)

Under the assumption that the sample in question came from a normal pop-
ulation, then the test statistic:

C2 =
(n − 1)S2

σ2
0

(15.105)
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TABLE 15.9: Summary of H0

rejection conditions for the χ2-test

For General α
Testing Against Reject H0 if:
Ha : σ2 < σ2

0 c2 < χ2
1−α(n − 1)

Ha : σ2 > σ2
0 c2 > χ2

α(n − 1)

Ha : σ2 $= σ2
0 c2 < χ2

1−α/2(n − 1)
or
c2 > χ2

α/2(n − 1)

has a χ2(n − 1) distribution, if H0 is true. As a result, this test is known as
a “Chi-squared” test; and the rejection criteria for the usual triplet of alter-
natives is shown in Table 15.9. The reader should note the lack of symmetry
in the boundaries of these rejection regions when compared with the sym-
metric boundaries for the corresponding z- and t-tests. This, of course, is a
consequence of the asymmetry of the χ2(n − 1) distribution. For example,
for one-sided tests based on 10 samples from a normal distribution, the null
hypothesis distributions for C2 is shown in Fig 15.13.

The next example is used to illustrate a two-sided test.

Example 15.11: VARIANCE OF “PROCESS A” YIELD
Formulate and test an appropriate hypothesis, at the significance level
of 0.05, regarding the variance of the yield obtainable from process A
implied by the assertion that the sample data presented in Chapter 1
for YA is from a normal population with the distribution N(75.5, 1.52).

Solution:
The hypothesis to be tested is that σ2

A = 1.52 against the alternative
that it is not; i.e.,

H0 : σ2
A = 1.52

Ha : σ2
A != 1.52 (15.106)

The sample variance computed from the supplied data is s2
A = 2.05, so

that the specific value for the χ2 test statistic is:

c2 =
49 × 2.05

2.25
= 44.63 (15.107)

The rejection region for this two-sided test, with α = 0.05, is shown
in Fig 15.14, for a χ2(49) distribution. The boundaries of the rejection
region are obtained from the usual cumulative probabilities; the left
boundary is obtained by finding χ2

1−α/2 such that

P (c2 > χ2
1−α/2(49)) = 0.975

or P (c2 < χ2
1−α/2(49)) = 0.025

i.e., χ2
1−α/2 = 31.6 (15.108)
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FIGURE 15.13: Rejection regions for one-sided tests of a single variance of a normal
population, at a significance level of α = 0.05, based on n = 10 samples. The distribution
is χ2(9); Top: for Ha : σ2 > σ2

0 , indicating rejection of H0 if c2 > χ2
α(9) = 16.9; Bottom:

for Ha : σ2 < σ2
0 , indicating rejection of H0 if c2 < χ2

1−α(9) = 3.33.
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FIGURE 15.14: Rejection regions for the two-sided tests concerning the variance of
the process A yield data H0 : σ2

A = 1.52, based on n = 50 samples, at a significance
level of α = 0.05. The distribution is χ2(49), with the rejection region shaded; because
the test statistic, c2 = 44.63, falls outside of the rejection region, we do not reject H0.

and the right boundary from:

P (c2 > χ2
α/2(49)) = 0.025

or P (c2 < χ2
α/2(49)) = 0.975

i.e., χ2
α/2 = 70.2 (15.109)

Since the value for c2 above does not fall into this rejection region, we
do not reject the null hypothesis.

As before, MINITAB could be used directly to carry out this test.
The self-explanatory procedure follows along the same lines as those
discussed extensively above.

The conclusion: at the 5% significance level, we cannot reject the

null hypothesis concerning σ2
A.

15.6.2 Two Variances

When two variances from mutually independent normal populations are
to be compared, the null hypothesis is:

H0 : σ2
1 = σ2

2 (15.110)

If the samples (sizes n1 and n2 respectively) come from independent normal
distributions, then the test statistic:

F =
S2

1

S2
2

(15.111)
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TABLE 15.10: Summary of H0

rejection conditions for the F -test

For General α
Testing Against Reject H0 if:
Ha : σ2

1 < σ2
2 f < F1−α(ν1, ν2)

Ha : σ2
1 > σ2

2 f > Fα(ν1, ν2)

Ha : σ2
1 $= σ2

2 f < F1−α/2(ν1, ν2)
or
f > Fα/2(ν1, ν2)

has an F (ν1, ν2) distribution, where ν1 = (n1 − 1) and ν2 = (n2 − 1), if
H0 is true. Such tests are therefore known as “F -tests.” As with other tests,
the rejection regions are determined from the F -distribution with appropriate
degrees-of-freedom pairs on the basis of the desired significance level, α. These
are shown in Table 15.10.

It is often helpful in carrying out F -tests to recall the following property
of the F -distribution:

F1−α(ν1, ν2) =
1

Fα(ν2, ν1)
(15.112)

an easy enough relationship to prove directly from the definition of the F -
statistic in Eq (15.111). This relationship makes it possible to reduce the
number of entries in old-fashioned F -tables. As we have repeatedly advocated
in this chapter, however, it is most advisable to use computer programs for
carrying out such tests.

Example 15.12: COMPARING VARIANCES OF YIELDS
FROM PROCESSES A AND B
From the data supplied in Chapter 1 on the yields obtained from the two
chemical processes A and B, test a hypothesis on the potential equality
of these variances, at the 5% significance level.

Solution:
The hypothesis to be tested is that σ2

A = σ2
B against the alternative

that it is not; i.e.,

H0 : σ2
A = σ2

B

Ha : σ2
A != σ2

B (15.113)

From the supplied data, we obtain s2
A = 2.05, and s2

B = 7.62, so that
the specific value for the F -test statistic is obtained as:

f =
2.05
7.62

= 0.27 (15.114)

The rejection region for this two-sided F -test, with α = 0.05, is shown in
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FIGURE 15.15: Rejection regions for the two-sided tests of the equality of the vari-
ances of the process A and process B yield data, i.e., H0 : σ2

A = σ2
B , at a significance

level of α = 0.05, based on n = 50 samples each. The distribution is F (49, 49), with
the rejection region shaded; since the test statistic, f = 0.27, falls within the rejection
region to the left, we reject H0 in favor of Ha.

Fig 15.15, for an F (49, 49) distribution, with boundaries at f = 0.567
to the left and 1.76 to the right, obtained as usual from cumulative
probabilities. (Note that the value of f at one boundary is the reciprocal
of the value at the other boundary.) Since the specific test value, 0.27,
falls in the left side of the rejection region, we must therefore reject the
null hypothesis in favor of the alternative that these two variances are
unequal.

The self-explanatory procedure for carrying out the test in

MINITAB generates results that include a p-value of 0.000, in agree-
ment with the conclusion above to reject the null hypothesis at the 5%

significance level.

The F -test is particularly useful for ascertaining whether or not the assump-
tion of equality of variances is valid before performing a two-sample t-test. If
the null hypothesis regarding the equality assumption is rejected, then one
must not use the “equal variance” option of the test. If one is unable to reject
the null hypothesis, one may proceed to use the “equal variance” option. As
discussed in subsequent chapters, the F -test is also at the heart of ANOVA
(ANalysis Of VAriance), a methodology that is central to much of statis-
tical design of experiments and the systematic analysis of the resulting data
statistical tests involving several means, and even regression analysis.

Finally, we note that the F -test is quite sensitive to the normality assump-
tion: if this assumption is invalid, the test results will be unreliable. Note that
the assumption of normality is not about the mean of the data but about
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the raw data set itself. One must therefore be careful to ensure that this nor-
mality assumption is reasonable before carrying out an F -test. If the data is
from non-normal distributions, most computer programs provide alternatives
(based on non-parametric methods).

15.7 Concerning Proportions

As noted at the beginning of this chapter, a statistical hypothesis, in the
most fundamental sense, is an assertion or statement about one or more pop-
ulations; and the hypothesis test provides an objective means of ascertaining
the truth or falsity of such a statement. So far, our discussions have centered
essentially around normal populations because a vast majority of practical
problems are of this form, or can be safely approximated as such. However,
not all problems of practical importance involve sampling from normal pop-
ulations; and the next section will broach this topic from a more general
perspective. For now, we want to consider first a particular important class
of problems involving sampling from a non-Gaussian population: hypotheses
concerning proportions.

The general theoretical characteristics of problems of this kind were stud-
ied extensively in Chapter 8. Out of a total number of n samples examined
for a particular attribute, X is the total number of (discrete) observations
sharing the attribute in question; X/n is therefore the observed sample pro-
portion sharing the attribute. Theoretically, the random variable, X , is known
to follow the binomial distribution, characterized by the parameter p, the theo-
retical population proportion sharing the attribute (also known as the “proba-
bility of success”). Statements about such proportions are therefore statistical
hypotheses concerning samples from binomial populations. Market/opinion
surveys (such as the example used to open Chapter 14) where the proportion
preferring a certain brand is of interest, and manufacturing processes where
the concern is the proportion of defective products, provide the prototypical
examples of problems of this nature. Hypotheses about the probability of suc-
cessful embryo implantation in in-vitro fertilization (discussed in Chapter 7),
or any other such binomial process probability, also fall into this category.

We deal first with hypotheses concerning single population proportions,
and then hypotheses concerning two proportions. The underlying principles
remain the same as with other tests: find the appropriate test statistic and its
sampling distribution, and, given a specific significance level, use these to make
probabilistic statements that will allow the determination of the appropriate
rejection region.
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15.7.1 Single Population Proportion

The problem of interest involves testing a hypothesis concerning a single
binomial population proportion, p, given a sample of n items from which one
observes X “successes” (the same as the detection of the attribute in question);
the null hypothesis is:

H0 : p = p0 (15.115)

with p0 as the specific value postulated for the population proportion. The
usual three possible alternative hypotheses are:

Ha : p < p0 (15.116)

Ha : p > p0 (15.117)

Ha : p $= p0 (15.118)

To determine an appropriate test statistic and its sampling distribution,
we need to recall several characteristics of the binomial random variable from
Chapter 8. First, the estimator, Π, defined as:

Π =
X

n
(15.119)

the mean number of successes, is unbiased for the binomial population pa-
rameter; the mean of the sampling distribution for Π is therefore p. Next, the
variance of Π is σ2

X/n2, where

σ2
X = npq = np(1 − p) (15.120)

is the variance of the binomial random variable, X . Hence,

σ2
Π =

p(1 − p)
n

(15.121)

Large Sample Approximations

From the Central Limit Theorem we know that, in the limit as n → ∞, the
sampling distribution of the mean of any population (including the binomial)
tends to the normal distribution. The implication is that the statistic, Z,
defined as:

Z =
X
n − p

√
p(1 − p)/n

(15.122)

has an approximate standard normal, N(0, 1), distribution for large n.
The test statistic for carrying out the hypothesis test in Eq (15.115) versus

any of the three alternatives is therefore:

Z =
Π − p0√

p0(1 − p0)/n
(15.123)
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TABLE 15.11: Summary of H0 rejection
conditions for the single-proportion z-test

For General α For α = 0.05
Testing Against Reject H0 if: Reject H0 if:
Ha : p < p0 z < −zα z < −1.65

Ha : p > p0 z > zα z < 1.65

Ha : p $= p0 z < −zα/2 z < −1.96
or or
z > zα/2 z > 1.96

a test statistic with precisely the same properties as those used for the stan-
dard z-test. The rejection conditions are identical to those shown in Table
15.2, which, when modified appropriately for the one-proportion test, is as
shown in Table 15.11.

Since this test is predicated upon the sample being “sufficiently large,” it
is important to ensure that this is indeed the case. A generally agreed upon
objective criterion for ascertaining the validity of this approximation is that
the interval

I0 = p0 ± 3
√

[p0(1 − p0)]/n (15.124)

does not include 0 or 1. The next example illustrates these concepts.

Example 15.13: EXAM TYPE PREFERENCE OF UNDER-
GRADUATE CHEMICAL ENGINEERING STUDENTS
In the opening sections of Chapter 14, we reported the result of an
opinion poll of 100 undergraduate chemical engineering students in
the United States: 75 of the students prefer “closed-book” exams to
“opened-book” ones. At the 5% significance level, test the hypothesis
that the true proportion preferring “closed-book” exams is in fact 0.8,
against the alternative that it is not.

Solution:
If the sample size is confirmed to be large enough, then this is
a single proportion test which employs the z-statistic. The interval
p0 ± 3

√
[p0(1 − p0)]/n in this case is 0.8 ± 0.12, or (0.68, 0.92), which

does not include 0 or 1; the sample size is therefore considered to be
sufficiently large.

The hypothesis to be tested is therefore the two-sided

H0 : p = 0.8

Ha : p != 0.8; (15.125)

the z-statistic in this case is:

z =
0.75 − 0.8√

(0.8 × 0.2)/100
= −1.25 (15.126)
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Since this value does not lie in the two-sided rejection region for α =

0.05, we do not reject the null hypothesis.

MINITAB could be used to tackle this example problem directly. The
self-explanatory sequence (when one chooses the "use test and interval
based on normal distribution" option) produces the following result:

Test and CI for One Proportion
Test of p = 0.8 vs p not = 0.8
Sample X N Sample p 95% CI Z-Value P-Value
1 75 100 0.750000 (0.665131, 0.834869) -1.25 0.211

Using the normal approximation.

As with similar tests discussed earlier, we see here that the 95% confidence
interval for the parameter, p, contains the postulated p0 = 0.8; the associated
p-value for the test (an unfortunate and unavoidable notational clumsiness
that we trust will not confuse the reader unduly1) is 0.211, so that we do not
reject H0 at the 5% significance level.

Exact Tests

Even though it is customary to invoke the normal approximation in deal-
ing with tests for single proportions, this is in fact not necessary. The reason
is quite simple: if X ∼ Bi(n, p), then Π = X/n has a Bi(n, p/n) distribution.
This fact can be used to compute the probability that Π = p0, or any other
value—providing the means for determining the boundaries of the various re-
jection regions (given desired tail area probabilities), just as with the standard
normal distribution, or any other standardized test distribution. Computer
programs such as MINITAB provide options for obtaining exact p-values for
the single proportion test that are based on exact binomial distributions.

When MINITAB is used to carry out the test in Example 15.13 above,
this time without invoking the normal approximation option, the result is as
follows:

Test and CI for One Proportion
Test of p = 0.8 vs p not = 0.8

Exact
Sample X N Sample p 95% CI P-Value
1 75 100 0.750000 (0.653448, 0.831220) 0.260

The 95% confidence interval, which is now based on a binomial distribu-
tion, not a normal approximation, is now slightly different; the p-value is also
now slightly different, but the conclusion remains the same.

1The latter p of the “p-value” should not be confused with the binomial “probability of
success” parameter.
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15.7.2 Two Population Proportions

In comparing two population proportions, p1 and p2, as with the 2-sample
tests of means from normal populations, the null hypothesis is:

H0 : Π1 − Π2 = δ0 (15.127)

where Π1 = X1/n1 and Π2 = X2/n2 are, respectively, the random propor-
tions of “successes” obtained from population 1 and population 2, based on
samples of respective sizes n1 and n2. For example, Π1 could be the fraction of
defective chips in a sample of n1 chips manufactured at one facility whose true
proportion of defectives is p1, while Π2 is the defective fraction contained in
a sample from a different facility. The difference between the two population
proportions is postulated as some value δ0 that need not be zero.

As usual, the hypothesis is to be tested against the possible alternatives:

Lower-tailed Ha : Π1 − Π2 < δ0 (15.128)
Upper-tailed Ha : Π1 − Π2 > δ0 (15.129)

Two-tailed Ha : Π1 − Π2 $= δ0 (15.130)

As before, δ0 = 0 constitutes a test of equality of the two proportions.
To obtain an appropriate test statistic and its sampling distribution, we

begin by defining:
DΠ = Π1 − Π2 (15.131)

We know in general that

E(DΠ) = µDΠ = p1 − p2 (15.132)

σDΠ =

√(
p1q1

n1

)
+
(

p2q2

n2

)
(15.133)

But now, if the sample sizes n1 and n2 are large, then it can be shown that

DΠ ∼ N(µDΠ , σ2
DΠ

) (15.134)

again allowing us to invoke the normal approximation (for large sample sizes).
This immediately implies that the following is an appropriate test statistic to
use for this two-proportion test:

Z =
(Π1 − Π2) − δ0√(

p1q1
n1

)
+
(

p2q2
n2

) ∼ N(0, 1) (15.135)

Since population values, p1 and p2, are seldom available in practice, it is
customary to substitute sample estimates,

p̂1 =
x1

n1
; and p̂2 =

x2

n2
(15.136)
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Finally, since this test statistic possesses a standard normal distribution, the
rejection regions are precisely the same as those in Table 15.4.

In the special case when δ0 = 0, which is equivalent to a test of equality of
the proportions, the most important consequence is that if the null hypothesis
is true, then p1 = p2 = p, which is then estimated by the “pooled” proportion:

p̂ =
x1 + x2

n1 + n2
(15.137)

As a result, the standard deviation of the difference in proportions, σDΠ ,
becomes:

σDΠ =

√(
p1q1

n1

)
+
(

p2q2

n2

)
≈

√

p̂q̂

(
1
n1

+
1
n2

)
(15.138)

so that the test statistic in Eq (15.135) is modified to

Z =
(Π1 − Π2)√
p̂q̂

(
1

n1
+ 1

n2

) ∼ N(0, 1) (15.139)

The rejection regions are the same as in the general case.

Example 15.14: REGIONAL PREFERENCE FOR PEPSI
To confirm persistent rumors that the preference for PEPSI on engi-
neering college campuses is higher in the Northeast of the United States
than on comparable campuses in the Southeast, a survey was carried out
on 125 engineering students chosen at random on the MIT campus in
Cambridge, MA, and the same number of engineering students selected
at random at Georgia Tech in Atlanta, GA. Each student was asked
to indicate a preference for PEPSI versus other soft drinks, with the
following results: 44 of the 125 at MIT indicate preference for PEPSI
versus 26 at GA Tech. At the 5% level, determine whether the North-
east proportion, p̂1 = 0.352, is essentially the same as the Southeast
proportion, p̂2 = 0.208, against the alternative that they are different.

Solution:
The hypotheses to be tested are:

H0 : Π1 − Π2 = 0

Ha : Π1 − Π2 != 0 (15.140)

and from the given data, the test statistic computed from Eq (15.139)
is z = 2.54. Since this number is greater than 1.96, and therefore lies in
the rejection region of the two-sided test, we reject the null hypothesis
in favor of the alternative. Using MINITAB to carry out this test, se-
lecting the "use pooled estimate of p for test," produces the fol-
lowing result:
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Test and CI for Two Proportions
Sample X N Sample p
1 44 125 0.352000
2 26 125 0.208000

Difference = p (1) - p (2)
Estimate for difference: 0.144
95% CI for difference: (0.0341256, 0.253874)
Test for difference = 0 (vs not = 0): Z = 2.54 P-Value = 0.011

Note that the 95% confidence interval around the estimated differ-
ence of 0.144 does not include zero; the p-value associated with the test

is 0.011 which is less than 0.05; hence, we reject the null hypothesis at
the 5% significance level.

As an exercise, the reader should extend this example by testing δ0 = 0.02
against the alternative that the difference is greater than 0.02.

15.8 Concerning Non-Gaussian Populations

The discussion in the previous section has opened up the issue of testing
hypotheses about non-Gaussian populations, and has provided a strategy for
handling such problems in general. The central issue is finding an appropriate
test statistic and its sampling distribution, as was done for the binomial dis-
tribution. This cause is advanced greatly by the relationship between interval
estimates and hypothesis tests (discussed earlier in Section 15.3.3) and by the
discussion at the end of Chapter 14 on interval estimates for non-Gaussian
distributions.

15.8.1 Large Sample Test for Means

First, if the statistical hypothesis is about the mean of a non-Gaussian pop-
ulation, so long as the sample size, n, used to compute the sample average,
X̄, is reasonably large (e.g., n > 30 or so), then, regardless of the underlying
distribution, we known that the statistic Z = (X̄ − µ)/σX̄ possesses an ap-
proximate standard normal distribution—an approximation that improves as
n → ∞. Thus, hypotheses about the means of non-Gaussian populations that
are based on large sample sizes are essentially the same as z-tests.

Example 15.15: HYPOTHESIS TEST ON MEAN OF INCLU-
SIONS DATA
If the data in Table 1.2 is considered a random sample of 60 observations
of the number of inclusions found on glass sheets produced in the man-
ufacturing process discussed in Chapter 1, test at the 5% significance
level, the hypothesis that this data came from a Poisson population with
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mean λ = 1, against the alternative that λ is not 1.

Solution:
The hypotheses to be tested are:

H0 : λ = 1

Ha : λ != 1 (15.141)

While the data is from a Poisson population, the sample size is large;
hence, the test statistic:

Z =
X̄ − λ0

σ/
√

60
(15.142)

where σ is the standard deviation of the raw data (so that σ/
√

60 is the
standard deviation of the sample average), essentially has a standard
normal distribution.

From the supplied data, we obtain the sample average λ̂ = x̄ = 1.02,

with the sample standard deviation, s = 1.1, which, because of the large
sample, will be considered to be a reasonable approximation of σ. The

test statistic is therefore obtained as z = 0.141. Since this value is not in

the two-sided rejection region |z| > 1.96 for α = 0.05, we do not reject
the null hypothesis. We therefore conclude that there is no evidence to

contradict the statement that X ∼ P(1), i.e., the inclusions data is from

a Poisson population with mean number of inclusions = 1.

It is now important to recall the results in Example 14.13 where the 95%
confidence interval estimate for the mean of the inclusions data was obtained
as:

λ = 1.02 ± 1.96(1.1/
√

60) = 1.02 ± 0.28 (15.143)

i.e., 0.74 < λ < 1.30. Note that this interval contains the hypothesized value
λ = 1.0, indicating that we cannot reject the null hypothesis.

We can now use this result to answer the following question raised in Chap-
ter 1 as a result of the potentially “disturbing” data obtained from the quality
control lab apparently indicating too many glass sheets with too many inclu-
sions: if the process was designed to produce glass sheets with a mean number
of inclusions λ∗ = 1 per m2, is there evidence in this sample data that the
process has changed, that the number of observed “inclusions” is significantly
different from what one can reasonably expect from the process when operating
as designed?

From the results of this example, the answer is, No: at the 5% significance
level, there no evidence that the process has deviated from its design target.

15.8.2 Small Sample Tests

When the sample size on which the sample average is based is small, or
when we are dealing with aspects of the population other than the mean (say
the variance), we are left with only one option: go back to “first principles,”
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derive the sampling distribution for the appropriate statistic and use it to
carry out the required test. One can use the sampling distribution to determine
α×100% rejection regions, or the complementary region, the (1 − α)×100%
confidence interval estimates for the appropriate parameter.

For tests involving single parameters, it makes no difference which of these
two approaches we choose; for tests involving two parameters, however, it is
more straightforward to compute confidence intervals for the parameters in
question and then use these for the hypothesis test. The reason is that for tests
involving two parameters, confidence intervals can be computed directly from
the individual sampling distributions; on the other hand, computing rejection
regions for the difference between these two parameters technically requires an
additional step of deriving yet another sampling distribution for the difference.
And the sampling distribution of the difference between two random variables
may not always be easy to derive. Having discussed earlier in this chapter the
equivalence between confidence intervals and hypothesis tests, we now note
that for non-Gaussian problems, one might as well just base the hypotheses
tests on (1−α)×100% confidence intervals and avoid the additional hassle of
having to derive distributions for differences. Let us illustrate this concept with
a problem involving the exponential random variable discussed in Chapter 14.

In Example 14.3, we presented a problem involving an exponential random
variable, the waiting time (in days) until the occurrence of a recordable safety
incident in a certain company’s manufacturing site. The safety performance
data for the first and second years were presented, from which point estimates
of the unknown population parameter, β, were determined from the sample
averages, x̄1 = 30.1 days, for Year 1 and x̄2 = 32.9 days for Year 2; the sample
size in each case is n = 10, which is considered small.

To test the two-sided hypothesis that these two safety performance param-
eters (Year 1 versus Year 2) are the same, versus the alternative that they are
significantly different (at the 5% significance level), we proceed as follows: we
first obtain the sampling distribution for X̄1 and X̄2 given that X ∼ E(β); we
then use these to obtain 95% confidence interval estimates for the population
means βi for Year i; if these intervals overlap, then at the 5% significance
level, we cannot reject the null hypothesis that these means are the same; if
the intervals do not overlap, we reject the null hypothesis.

Much of this, of course, was already accomplished in Example 14.14:
we showed that X̄i has a gamma distribution, more specifically, X̄i/βi ∼
γ(n, 1/n), from where we obtain 95% confidence intervals estimates for βi from
sample data. In particular, for n = 10, we obtained from the Gamma(10,0.1)
distribution that:

P

(
0.48 <

X̄

β
< 1.71

)
= 0.95 (15.144)

which, upon introducing x̄1 = 30.1, and x̄2 = 32.9, produces, upon careful
rearrangement, the 95% confidence interval estimates for the Year 1 and Year
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2 parameters respectively as:

17.6 < β1 < 62.71 (15.145)
19.24 < β2 < 68.54 (15.146)

These intervals may now be used to answer a wide array of questions
regarding hypotheses concerning two parameters, even questions concerning
a single parameter. For instance,

1. For the two-parameter null hypothesis, H0 : β1 = β2, versus Ha : β1 $=
β2, because the 95% confidence intervals overlap considerably, we find
no evidence to reject H0 at the 5% significance level.

2. In addition, the single parameter null hypothesis, H0 : β1 = 40, versus
Ha : β1 $= 40, cannot be rejected at the 5% significance level because the
postulated value is contained in the 95% confidence interval for β1; on
the contrary, the null hypothesis H0 : β1 = 15, versus Ha : β1 $= 15 will
be rejected at the 5% significance level because the hypothesized value
falls outside of the 95% confidence interval (i.e., falls in the rejection
region).

3. Similarly, the null hypothesis H0 : β2 = 40, versus Ha : β2 $= 40, cannot
be rejected at the 5% significance level because the postulated value is
contained in the 95% confidence interval for β2; on the other hand, the
null hypothesis H0 : β2 = 17, versus Ha : β2 $= 17 will be rejected at the
5% significance level because the hypothesized value falls outside of the
95% confidence interval (i.e., it falls in the rejection region).

The principles illustrated here can be applied to any non-Gaussian popula-
tion provided the sampling distribution of the statistic in question can be
determined.

Another technique for dealing with populations characterized by any gen-
eral pdf (Gaussian or not), and based on the maximum likelihood principle
discussed in Chapter 14 for estimating unknown population parameters, is
discussed next in its own separate section.

15.9 Likelihood Ratio Tests

In its broadest sense, a likelihood ratio (LR) test is a technique for assessing
how well a simpler, “restricted” version of a probability model compares to its
more complex, unrestricted version in explaining observed data. Within the
context of this current chapter, however, the discussion here will be limited to
testing hypotheses about the parameters, θ, of a population characterized by
the pdf f(x, θ). Even though based on fundamentally different premises, some
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of the most popular tests considered above (the z- and t-tests, for example)
are equivalent to LR tests under recognizable conditions.

15.9.1 General Principles

Let X be a random variable with the pdf f(x, θ), where the population
parameter vector θ ∈ Θ; i.e., Θ represents the set of possible values that the
parameter vector can take. Given a random sample, X1, X2, . . . , Xn, estima-
tion theory, as discussed in Chapter 14, is concerned with using such sample
information to determine reasonable estimates for θ. In particular, we recall
that the maximum likelihood (ML) principle requires choosing the estimate,
θ̂ML, as the value of θ that maximizes the likelihood function:

L(θ) = f1(x1, θ)f2(x2, θ) · · · fn(xn, θ) (15.147)

the joint pdf of the random sample, treated as a function of the unknown
population parameter.

The same random sample and the same ML principle can be used to test
the null hypotheses

H0 : θ ∈ Θ0 (15.148)

stated in a more general fashion in which θ is restricted to a certain range
of values, Θ0 (a subset of Θ), over which H0 is hypothesized to be valid.
For example, to test a hypothesis about the mean of X by postulating that
X ∼ N(75, 1.52), in this current context, Θ, the full set of possible parameter
vales, is defined as follows:

Θ = {(θ1, θ2) : −∞ < θ1 = µ < ∞; θ2 = σ2 = 1.52} (15.149)

since the variance is given and the only unknown parameter is the mean; Θ0,
the restricted parameter set range over which H0 is conjectured to be valid,
is defined as:

Θ0 = {(θ1, θ2) : θ1 = µ0 = 75; θ2 = σ2 = 1.52} (15.150)

The null hypothesis in Eq (15.148) is to be tested against the alternative:

Ha : θ ∈ Θa (15.151)

again stated in a general fashion in which the parameter set, Θa, is (a) disjoint
from Θ0, and (b) also complementary to it, in the sense that

Θ = Θ0 ∪ Θa (15.152)

For example, the two-sided alternative to the hypothesis above regarding X ∼
N(75, 1.52) translates to:

Θa = {(θ1, θ2) : θ1 = µ0 $= 75; θ2 = σ2 = 1.52} (15.153)
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Note that the union of this set with Θ0 in Eq (15.150) is the full parameter
set range, Θ in Eq (15.149).

Now, define the largest likelihood under H0 as

L∗(Θ0) = max
θ∈Θ0

L(θ) (15.154)

and the unrestricted maximum likelihood value as:

L∗(Θ) = max
θ∈Θ0∪Θa

L(θ) (15.155)

Then the ratio:
Λ =

L∗(Θ0)
L∗(Θ)

(15.156)

is known as the likelihood ratio; it possesses some characteristics that make it
attractive for carrying out general hypothesis tests. But first, we note that by
definition, L∗(Θ) is the maximum value achieved by the likelihood function
when θ = θ̂ML. Also, Λ is a random variable (it depends on the random
sample, X1, X2, . . . , Xn); this is why it is sometimes called the likelihood ratio
test statistic. When specific data values, x1, x2, . . . , xn, are introduced into Eq
(15.156), the result is a specific value, λ, for the likelihood ratio such that
0 ≤ λ ≤ 1, for the following reasons:

1. λ ≥ 0. This is because each likelihood function contributing to the ratio
is a pdf (joint pdfs, but pdfs nonetheless), and each legitimate pdf is
such that f(x, θ) > 0;

2. λ ≤ 1. This is because Θ0 ⊂ Θ; consequently, since L∗(Θ) is the largest
achievable value of the likelihood function in the entire unrestricted set
Θ, the largest likelihood value achieved in the subset Θ0, L∗(Θ0), will
be less than, or at best equal to, L∗(Θ).

Thus, Λ is a random variable defined on the unit interval (0,1) whose pdf,
f(λ|θ0) (determined by f(x, θ)), can be used, in principle, to test H0 in Eq
(15.148) versus Ha in Eq (15.151). It should not come as a surprise that,
in general, the form of f(λ|θ0) can be quite complicated. However there are
certain general principles regarding the use of Λ for hypothesis testing:

1. If a specific sample x1, x2, . . . , xn, generates a value of λ close to zero, the
implication is that the observation is highly unlikely to have occurred
had H0 been true relative to the alternative;

2. Conversely, if λ is close to 1, then the likelihood of the observed data,
x1, x2, . . . , xn, occurring if H0 is true is just about as high as the unre-
stricted likelihood that θ can take any value in the entire unrestricted
parameter space Θ;

3. Thus, small values of λ provide evidence against the validity of H0;
larger values provide evidence in support.
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How “small” λ has to be to trigger rejection of H0 is formally determined
in the usual fashion: using the distribution for Λ, the pdf f(λ|θ0), obtain a
critical value, λc, such that P (Λ < λc) = α, i.e.,

P (Λ < λc) =
∫ λc

0
f(λ|θ0) = α (15.157)

Any value of λ less than this critical value will trigger rejection of H0.
Likelihood ratio tests are very general; they can be used even for cases

involving structurally different H0 and Ha probability distributions, or for
random variables that are correlated. While the form of the pdf for Λ that is
appropriate for each case may be quite complicated, in general, it is always
possible to perform the required computations numerically using computer
programs. Nevertheless, there are many special cases for which closed-form
analytical expressions can be derived directly either for f(λ|θ0), the pdf of Λ
itself, or else for the pdf of a monotonic function of Λ. See Pottmann et al.,
(2005),2 for an application of the likelihood ratio test to an industrial sensor
data analysis problem.

15.9.2 Special Cases

Normal Population; Known Variance

Consider first the case where a random variable X ∼ N(µ, σ2), has known
variance, but an unknown mean; and let X1, X2, . . . , Xn be a random sample
from this population. From a specific sample data set, x1, x2, . . . , xn, we wish
to test H0 : µ = µ0 against the alternative, Ha : µ $= µ0.

Observe that in this case, with θ = (θ1, θ2) = (µ, σ2), the parameter spaces
of interest are:

Θ0 = {(θ1, θ2) : θ1 = µ0; θ2 = σ2} (15.158)

and

Θ = Θ0 ∪ Θa = {(θ1, θ2) : −∞ < θ1 = µ < ∞; θ2 = σ2} (15.159)

Since f(x, θ) is Gaussian, the likelihood function, given the data, is

L(µ, σ) =
n∏

i=1

1
σ
√

2π
exp

{
−(xi − µ)2

2σ2

}

=
(

1
2π

)n/2 1
σn

exp
{
−
∑n

i=1(xi − µ)2

2σ2

}
(15.160)

This function is maximized (when σ2 is known) by the maximum likelihood

2Pottmann, M., B. A. Ogunnaike, and J. S. Schwaber. (2005). “Development and Imple-
mentation of a High-Performance Sensor System for an Industrial Polymer Reactor,” Ind.
Eng. Chem. Res., 44, 2606–2620.
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estimator for µ, the sample average, X̄ ; thus, the unrestricted maximum value,
L∗(Θ), is obtained by introducing X̄ for µ in Eq (15.160); i.e.,

L∗(Θ) =
(

1
2π

)n/2 1
σn

exp
{
−
∑n

i=1(xi − X̄)2

2σ2

}
(15.161)

On the other hand, the likelihood function, restricted to θ ∈ Θ0 (i.e., µ = µ0)
is obtained by introducing µ0 for µ in Eq (15.160). Because, in terms of µ,
this function is now a constant, its maximum (in terms of µ) is given by:

L∗(Θ0) =
(

1
2π

)n/2 1
σn

exp
{
−
∑n

i=1(xi − µ0)2

2σ2

}
(15.162)

From here, the likelihood ratio statistic is obtained as:

Λ =
exp

{
−
∑n

i=1(xi−µ0)2

2σ2

}

exp
{

−
∑n

i=1(xi−X̄)2

2σ2

} (15.163)

Upon rewriting (xi − µ0)2 as [(xi − X̄) − (X̄ − µ0)]2 so that:

n∑

i=1

(xi − µ0)2 =
n∑

i=1

(xi − X̄)2 + n(X̄ − µ0)2 (15.164)

and upon further simplification, the result is:

Λ = exp
{
−n(X̄ − µ0)2

2σ2

}
(15.165)

To proceed from here, we need the pdf for the random variable, Λ; but rather
than confront this challenge directly, we observe that:

−2 lnΛ =
(

X̄ − µ0

σ/
√

n

)2

= Z2 (15.166)

where Z, of course, is the familiar z-test statistic

Z =
(

X̄ − µ0

σ/
√

n

)
(15.167)

with a standard normal distribution, N(0, 1). Thus the random variable,
Ψ = −2 lnΛ, therefore has a χ2(1) distribution. From here it is now a
straightforward exercise to obtain the rejection region in terms of not Λ, but
Ψ = −2 lnΛ (or Z2). For a significance level of α = 0.05, we obtain from tail
area probabilities of the χ2(1) distribution that

P (Z2 ≥ 3.84) = 0.05 (15.168)



616 Random Phenomena

so that the null hypothesis is rejected when:

n(X̄ − µ0)2

σ2
> 3.84 (15.169)

Upon taking square roots, being careful to retain both positive as well as
negative values, we obtain the familiar rejection conditions for the z-test:

√
n(X̄ − µ0)

σ
< −1.96 or

√
n(X̄ − µ0)

σ
> 1.96 (15.170)

The LR test under these conditions is therefore exactly the same as the z-test.

Normal Population; Unknown Variance

When the population variance is unknown for the test discussed above,
some things change slightly. First, the parameter spaces become:

Θ0 = {(θ1, θ2) : θ1 = µ0; θ2 = σ2 > 0} (15.171)

along with,

Θ = Θ0 ∪ Θa = {(θ1, θ2) : −∞ < θ1 = µ < ∞; θ2 = σ2 > 0} (15.172)

The likelihood function remains the same:

L(µ, σ) =
(

1
2π

)n/2 1
σn

exp
{
−
∑n

i=1(xi − µ)2

2σ2

}

but this time both parameters are unknown, even though the hypothesis test is
on µ alone. As a result, the function is maximized by the maximum likelihood
estimators for both µ, and σ2. As obtained in Chapter 14, these are the sample
average, X̄, and,

σ̂2 =
∑n

i=1(x1 − X̄)2

n
respectively.

The unrestricted maximum value, L∗(Θ), in this case is obtained by in-
troducing these ML estimators for the respective unknown parameters in Eq
(15.160) and rearranging to obtain:

L∗(Θ) =
{

n

2π
∑n

i=1(xi − X̄)2

}n/2

e−n/2 (15.173)

When the parameters are restricted to θ ∈ Θ0, this time, the likelihood func-
tion is maximized, after substituting µ = µ0, by the MLE for σ2, so that the
largest likelihood value is obtained as:

L∗(Θ0) =
{

n

2π
∑n

i=1(xi − µ0)2

}n/2

e−n/2 (15.174)



Hypothesis Testing 617

Thus, the likelihood ratio statistic becomes:

Λ =
{∑n

i=1(xi − X̄)2∑n
i=1(xi − µ0)2

}n/2

(15.175)

And upon employing the sum-of-squares identity in Eq (15.164), and simpli-
fying, we obtain:

Λ =





1

1 + n(X̄−µ0)2∑n
i=1(xi−X̄)2






n/2

(15.176)

If we now introduce the sample variance S2 =
∑n

i=1(xi − X̄)2/(n − 1), this
expression is easily rearranged to obtain:

Λ =

{
1

1 + 1
n−1

n(X̄−µ0)2

S2

}n/2

(15.177)

As before, to proceed from here, we need to obtain the pdf for the random
variable, Λ. However, once again, we recognize a familiar statistic embedded
in Eq (15.177), i.e.,

T 2 =
(

X̄ − µ0

S/
√

n

)2

(15.178)

where T has the student’s t-distribution with ν = n − 1 degrees of freedom.
The implication therefore is that:

Λ2/n =
1

1 + T 2/ν
(15.179)

From here we observe that because Λ2/n (and hence Λ) is a strictly mono-
tonically decreasing function of T 2 in Eq (15.179), then the rejection region
λ < λc for which say P (Λ < λc) = α, is exactly equivalent to a rejection
region T 2 > t2c , for which,

P (T 2 > t2c) = α (15.180)

Once more, upon taking square roots, retaining both positive as well as neg-
ative values, we obtain the familiar rejection conditions for the t-test:

(X̄ − µ0)
S/

√
n

< −tα/2(ν) or

(X̄ − µ0)
S/

√
n

> tα/2(ν) (15.181)

which, of course, is the one-sample, two-sided t-test for a normal population
with unknown variance.

Similar results can be obtained for tests concerning the variance of a single
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normal population (yielding the χ2-test) or concerning two variances from
independent normal populations, yielding the F -test.

The point, however, is that having shown that the LR tests in these well-
known special cases reduce to tests with which we are already familiar, we
have the confidence that in the more complicated cases, where the population
pdfs are non-Gaussian and closed-form expressions for Λ cannot be obtained
as easily, the results (mostly determined numerically) can be trusted.

15.9.3 Asymptotic Distribution for Λ

As noted repeatedly above, it is often impossible to obtain closed-form pdfs
for the likelihood ratio test statistic, Λ, or for appropriate functions thereof.
Nevertheless, for large samples, there exists an asymptotic distribution:

Asymptotic Distribution Result for LR Test Statistic: The
distribution of the random variable Ψ = −2 lnΛ tends asymp-
totically to a χ2(ν) distribution with ν degrees of freedom, with
ν = Np(Θ) − Np(Θ0) where Np() is the number of independent
parameters in the parameter space in question, i.e., the number of
parameters in Θ exceeds those in Θ0 by ν.

Observe, for example, that the distribution of Ψ = −2 lnΛ in the first
special case (Gaussian distribution with known variance) is exactly χ2(1): Θ
contains one unknown parameter, µ, while Θ0 contains no unknown parameter
since µ = µ0.

This asymptotic result is exactly equivalent to the large sample approxi-
mation to the sampling distribution of means of arbitrary populations. Note
that in the second special case (Gaussian distribution with unknown variance),
Θ contains two unknown parameter, µ and σ2, while Θ0 contains only one
unknown parameter, σ2. The asymptotic distribution of Ψ = −2 lnΛ will then
also be χ2(1), in precisely the same sense in which t(ν) → N(0, 1).

15.10 Discussion

This chapter should not end without bringing to the reader’s attention
some of the criticisms of certain aspects of hypothesis testing. The primary is-
sues have to do not so much with the mathematical foundations of the method-
ology as with the implementation and interpretation of the results in practice.
Of several controversial issues, the following are three we wish to highlight:
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1. Point null hypothesis and statistical-versus-practical significance: When
the null hypothesis about a population parameter is that θ = θ0, where
θ0 is a point on the real line, such a literal mathematical statement, can
almost always be proven false with computations carried to a sufficient
number of decimal places. For example, if θ0 = 75.5, a large enough
sample that generates x̄ = 75.52 (a routine possibility even when the
population parameter is indeed 75.5) will lead to the rejection of H0, to
two decimal places. However, in actual practice (engineering or science),
is the distinction between two real numbers 75.5 and 75.52 truly of
importance? That is, is the statement 75.5 $= 75.52, which is true in the
strictest, literal mathematical sense, meaningful in practice? Sometimes
yes, sometime no; but the point is that such null hypotheses can almost
always be falsified, raising the question: what then does rejecting H0

really mean?

2. Borderline p-values and variability: Even when the p-value is used to
determine whether or not to reject H0, it is still customary to relate the
computed p-value to some value of α, typically 0.05. But what happens
for p = 0.06, or p = 0.04? Furthermore, an important fact that often
goes unnoticed is that were we to repeat the experiment in question,
the new data set will almost always lead to results that are “different”
from those obtained earlier; and consequently the new p-value will also
be different from that obtained earlier. One cannot therefore rule out
the possibility of a “borderline” p-value “switching sides” purely as a
result of intrinsic variability in the data.

3. Probabilistic interpretations: From a more technical perspective, if δ
represents the observed discrepancy between the observed postulated
population parameter and the value determined from data (a realization
of the random variable, ∆), the p-value (or else the actual significance
level of the test) is defined as P (∆ ≥ δ|H0); i.e., the probability of
observing the computed difference or something more extreme if the null
hypothesis is true. In fact, the probability we should be interested in is
the reverse: P (H0|∆ ≥ δ), i.e., the probability that the null hypothesis
is true given the evidence in the data, which truly measures how much
the observed data supports the proposed statement of H0. These two
conditional probabilities are generally not the same.

In light of these issues (and others we have not discussed here), how should one
approach hypothesis testing in practice? First, statistical significance should
not be the only factor in drawing conclusions from experimental results—the
nature of the problem at hand should be taken into consideration as well.
The yield from process A may in fact not be precisely 75.5% (after all, the
probability that a random variable will take on a precise value on the real
line is exactly zero), but 75.52% is sufficiently close that the difference is of
no practical consequence. Secondly, one should be careful in basing the entire
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decision about experimental results on a single hypothesis test, especially
with p-values at the border of the traditional α = 0.05. A single statistical
hypothesis test of data obtained in a single study is just that: it can hardly be
considered as having definitively “confirmed” something. Thirdly, decisions
based on confidence intervals around the estimated population parameters
tend to be less confusing and are more likely to provide the desired solution
more directly.

Finally, the reader should be aware of the existence of other recently pro-
posed alternatives to conventional hypothesis testing, e.g., Jones and Tukey
(2000),3 or Killeen (2005).4 These techniques are designed to ameliorate some
of the problems discussed above, but any discussions on them, even of the
most cursory type, lie outside of the intended scope of this chapter. Although
not yet as popular as the classical techniques discussed here, they are worth
exploring by the curious reader.

In the meantime, the key results of this chapter may be found in Table
15.12 at the very end of the chapter.

15.11 Summary and Conclusions

If the heart of statistics is inference—drawing conclusions about popula-
tions from information in a sample—then this chapter and Chapter 14 jointly
constitute the heart of Part IV of this book. Following the procedures dis-
cussed in Chapter 14 for determining population parameters from sample
data, we have focused primarily in this chapter on procedures by which one
makes and tests the validity of assertive statements about these population
parameters. Thus, with some perspective, we may now observe the following:
in order to characterize a population fully using the information contained
in a finite sample drawn from it, (a) the results of Chapter 13 enable us to
characterize the variability in the sample, so that (b) the unknown parameters
may be estimated with a prescribed degree of confidence using the techniques
in Chapter 14; and (c) what these estimated parameters tell us about the true
population characteristics is then framed in the form of hypotheses that are
subsequently tested using the techniques presented in this chapter. Specifi-
cally, the null hypothesis, H0, is stated as the status quo characteristic; this is
then tested against an appropriate alternative that we are willing to entertain
should there be sufficient evidence in the sample data against the validity of
the null hypothesis—each null hypothesis and the specific competing alterna-
tive having been jointly designed to answer the specific question of interest.

3Jones, L. V., and J. W. Tukey. (2000), “A Sensible Formulation of the Significance
Test,” Psych. Methods, 5 (4), 411–414

4P.R. Killeen (2005), “An Alternative to Null-Hypothesis Significance Tests,” Psychol
Sci, 16(5), 345–353.
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This has been a long chapter, and perhaps justifiably so, considering the
sheer number of topics covered; but since hypotheses tests can be classified
into a relatively small number of categories, the key results can be summa-
rized briefly as we have done in Table 15.12 (found at the very end of the
chapter). There are tests for population means (for single populations or two
populations; with population variance known, or not known; with large sam-
ples or small); there are also tests for (normal) population variances (single
variances or two); and then there are tests for proportions (one or two). In
each case, once the appropriate test statistic is determined, with slight vari-
ations depending on specific circumstances, the principles are all the same.
With fixed significance levels, α, the H0 rejection regions are determined and
are used straightforwardly to reach conclusions about each test. Alternatively,
the p-value (also known as the observed significance level) is easily computed
and used to reach conclusions. It bears restating that in carrying out the re-
quired computations not only in this chapter but in the book as a whole, we
have consistently advocated the use of computer programs such as MINITAB.
These programs are so widely available now that there is practically no need
to make reference any longer to old-fashioned statistical tables. As a result, we
have left out all but the most cursory references to any statistical tables, and
instead included specific illustrations of how to use MINITAB (as an example
software package).

The discussions of power and sample size considerations is important, both
as a pre-experimentation design tool and as a post-analysis tool for ascertain-
ing just how much stock one can realistically put in the result of a just-
concluded test. Sadly, such considerations are usually given short-shrift by
most students; this should not be the case. It is also easy to develop the
mistaken notion that statistical inference is only concerned with Gaussian
populations. Once more, as in Chapter 14, it is true that the general results
we have presented have been limited to normal populations. This is due to
the stubborn individuality of non-Gaussian distributions and the remarkable
versatility of the Gaussian distribution both in representing truly Gaussian
populations (of course), but also as a reasonable approximation to the sam-
pling distribution of the means of most non-Gaussian populations. Neverthe-
less, the discussion in Section 15.8 and the overview of likelihood ratio tests
in Section 15.9 should serve to remind the reader that there is statistical in-
ference life beyond samples from normal populations. A few of the exercises
and application problems at the end of the chapter also buttress this point.

There is a sense in which the completion of this chapter can justifiably be
considered as a pivotal point in the journey that began with the illustrative
examples of Chapter 1. These problems, posed long ago in that introductory
chapter, have now been fully solved in this chapter; and, in a very real sense,
many practical problems can now be solved using only the techniques discussed
up until this point. But this chapter is actually a convenient launching point
for the rest of the discussion in this book, not a stopping point. For example, we
have only discussed how to compare at most two population means; when the
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problem calls for the simultaneous comparison of more than two population
means, the appropriate technique, ANOVA, is yet to be discussed. Although
based on the F -test, to which we were introduced in this chapter, there is
much more to the approach, as we shall see later, particularly in Chapter 19.
Furthermore, ANOVA is only a part—albeit a foundational part—of Chapter
19, a chapter devoted to the design of experiments, the third pillar of statistics,
which is concerned with ensuring that the samples used for statistical inference
are as information rich as possible.

Immediately following this chapter, Chapter 16 (Regression Analysis) deals
with estimation of a different kind, when the population parameters of inter-
est are not constant as they have been thus far, but functions of another
variable; naturally, much of the results of Chapter 14 and this current chapter
are employed in dealing with such problems. Chapter 17 (Probability Model
Validation) builds directly on the hypothesis testing results of this chapter in
presenting techniques for explicitly validating postulated probability models;
Chapter 18 (Nonparametric Methods) presents “distribution free” versions of
many of the hypothesis tests discussed in this current chapter—a useful set of
tools to have when one is unsure about the validity of the probability distribu-
tional assumptions (mostly the normality assumption) upon which classical
tests are based. Even the remaining chapters beyond Chapter 19 (on case
studies and special topics) all draw heavily from this chapter. A good grasp
of the material in this chapter will therefore facilitate comprehension of the
upcoming discussions in the remainder of the book.

REVIEW QUESTIONS

1. What is a statistical hypothesis?

2. What differentiates a simple hypothesis from a composite one?

3. What is H0, the null hypothesis, and what is Ha, the alternative hypothesis?

4. What is the difference between a two-sided and a one-sided hypothesis?

5. What is a test of a statistical hypothesis?

6. How is the US legal system illustrative of hypothesis testing?

7. What is a test statistic?

8. What is a critical/rejection region?
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9. What is the definition of the significance level of a hypothesis test?

10. What are the types of errors to which hypothesis tests are susceptible, and what
are their legal counterparts?

11. What is the α-risk, and what is the β-risk?

12. What is the power of a hypothesis test, and how is it related to the β-risk?

13. What is the sensitivity of a test as opposed to the specificity of a test?

14. How are the performance measures, sensitivity and specificity, related to the
α-risk and the β-risk?

15. What is the p-value, and why is it referred to as the observed significance level?

16. What is the general procedure for carrying out hypothesis testing?

17. What test statistic is used for hypotheses concerning the single mean of a normal
population when the variance is known?

18. What is a z-test?

19. What is an “upper-tailed” test as opposed to a “lower-tailed” test?

20. What is the “one-sample” z-test?

21. What test statistic is used for hypotheses concerning the single mean of a normal
population when the variance is unknown?

22. What is the “one-sample” t-test, and what differentiates it from the “one-
sample” z-test?

23. How are confidence intervals related to hypothesis tests?

24. What test statistic is used for hypotheses concerning two normal population
means when the variances are known?

25. What test statistic is used for hypotheses concerning two normal population
means when the variances are unknown but equal?

26. What test statistic is used for hypotheses concerning two normal population
means when the variances are unknown but unequal?

27. Is the distribution of the t-statistic used for the two-sample t-test with unknown
and unequal variances an exact t-distribution?

28. What is a paired t-test, and what are the important characteristics that set the
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problem apart from the general two-sample t-test?

29. In determining power and sample size, what is the “z-shift”?

30. In determining power and sample size, what are the three hypothesis test char-
acteristic parameters making up the “z-shift”? What is the equation relating them
to the α- and β-risks?

31. How can the α-risk be reduced without simultaneously increasing the β-risk?

32. What are some practical considerations discussed in this chapter regarding the
determination of the power of a hypothesis test and sample size?

33. For general power and sample size determination problems, it is typical to specify
which two problem characteristics, leaving which three parameters to be determined?

34. What is the test concerning the single variance of a normal population variance
called?

35. What test statistic is used for hypotheses concerning the single variance of a
normal population?

36. What test statistic is used for hypotheses concerning two variances from mutu-
ally independent normal populations?

37. What is the F -test?

38. The F -test is quite sensitive to which assumption?

39. What test statistic is used in the large sample approximation test concerning a
single population proportion?

40. What is the objective criterion for ascertaining the validity of the large sample
assumption in tests concerning a single population proportion?

41. What is involved in exact tests concerning a single population proportion?

42. What test statistic is used for hypotheses concerning two population propor-
tions?

43. What is the central issue in testing hypotheses about non-Gaussian populations?

44. How does sample size influence how hypotheses about non-Gaussian populations
are tested?

45. What options are available when testing hypotheses about non-Gaussian popu-
lations with small samples?
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46. What are likelihood ratio tests?

47. What is the likelihood ratio test statistic?

48. Why is the likelihood ratio parameter λ such that 0 < λ < 1? What does a
value close to zero indicate? And what does a value close to 1 indicate?

49. Under what condition does the likelihood ratio test become identical to the fa-
miliar z-test?

50. Under what condition does the likelihood ratio test become identical to the fa-
miliar t-test?

51. What is the asymptotic distribution result for the likelihood ratio statistic?

52. What are some criticisms of hypothesis testing highlighted in this chapter?

53. In light of some of the criticisms discussed in this chapter, what recommendations
have been proposed for approaching hypothesis testing in practice?

EXERCISES

Section 15.2

15.1 The target “mooney viscosity” of the elastomer produced in a commercial pro-
cess is 44.0; if the average “mooney viscosity” of product samples acquired from
the process hourly and analyzed in the quality control laboratory exceeds or falls
below this target, the process is deemed “out of control” and in need of corrective
control action. Formulate the decision-making about the process performance as a
hypothesis test, stating the null and the alternative hypotheses.

15.2 A manufacturer of energy-saving light bulbs wants to establish that the lifetime
of its new brand exceeds the specification of 1000 hours. State the appropriate null
and alternative hypotheses.

15.3 A pharmaceutical company wishes to show that its newly developed acne med-
ication reduces teenage acne by an average of 55% in the first week of usage. What
are the null and alternative hypotheses?

15.4 The owner of a fleet of taxi cabs wants to determine if there is a difference in
the lifetime of two different brands of car batteries used in the fleet of cabs. State
the appropriate null and alternative hypotheses.

15.5 The safety coordinator of a manufacturing facility wishes to demonstrate that
the mean time (in days) between safety incidents has deteriorated from the tradi-
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The mathematical facts worthy of being studied
are those which, by their analogy with other facts

are capable of leading us to the knowledge of a
mathematical law just as experimental facts lead us

to the knowledge of a physical law.

Henri Poicaré (1854–1912)

It is often the case in many practical problems that the variability observed in
a random variable, Y , consists of more than just the purely randomly varying
phenomena that have occupied our attention up till now. For this new class
of problems, an underlying functional relationship exists between Y and an
independent variable, x (deliberately written in the lower case for reasons that
will soon become clear), with a purely random component superimposed on
this otherwise deterministic component. This chapter is devoted to dealing
with problems of this kind. The values observed for the random variable Y
depend on the values of the (deterministic) variable, x, and, were it not for
the presence of the purely random component, Y would have been perfectly
predictable given x. Regression analysis is concerned with obtaining, from
data, the best estimate of the relationship between Y and x.

Although apparently different from what we have dealt with up until now,
we will see that regression analysis in fact builds directly upon many of the
results obtained thus far, especially estimation and hypothesis testing.

16.1 Introductory Concepts

Consider the data in Table 16.1 showing the boiling point (in ◦C) of 8
hydrocarbons in a homologous series, along with n, the number of carbon
atoms in each molecule. A scatter plot of boiling point versus n is shown in
Fig 16.1, where we notice right away that as the number of carbon atoms in
this homologous series increases, so does the boiling point of the hydrocar-
bon compound. In fact, the implied relationship between these two variables
appears to be so strong that one is immediately inclined to conclude that it
must be possible to predict the boiling point of compounds in this series on
the basis of the number of carbon atoms. There is therefore no doubt that
there is some sort of a functional relationship between n and boiling point. If
determined “correctly,” such a relationship will provide, among other things,
a simple way to capture the extensive data on such “physical properties” of
compounds in this particular homologous series.
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TABLE 16.1: Boiling points of a series of
hydrocarbons

Hydrocarbon n, Number of Boiling Point
Compound Carbon Atoms ◦C
Methane 1 -162
Ethane 2 -88
Propane 3 -42
n-Butane 4 1
n-Pentane 5 36
n-Hexane 6 69
n-Heptane 7 98
n-Octane 8 126
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FIGURE 16.1: Boiling point of hydrocarbons in Table 16.1 as a function of the number
of carbon atoms in the compound.
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16.1.1 Dependent and Independent Variables

Many cases such as the one illustrated above arise in science and engineer-
ing where the value taken by one variable appears to depend on the value
taken by another. Not surprisingly, it is customary to refer the variable whose
value depends on the value of another as the dependent variable, while the
other variable is known as the independent variable. It is often desired to cap-
ture the relationship between these two variables in some mathematical form.
However, because of measurement errors and other sources of variability, this
exercise requires the use of probabilistic and statistical techniques. Under these
circumstances, the independent variable is considered as a fixed, deterministic
quantity that is not subject to random variability. This is perfectly exempli-
fied in n, the number of carbon atoms in the hydrocarbon compounds of Table
16.1; it is a known quantity not subject to random variability. The dependent
variable, on the other hand, is the random variable, subject to a wide vari-
ety of potential sources of random variability, including, but not limited to
measurement uncertainties. The dependent variable is therefore represented
as the random variable, Y , while the independent variable is represented as
the deterministic variable, x, represented in the lower case to underscore its
deterministic nature.

The variability observed in the random variable, Y , is typically con-
sidered to consist of two distinct components, i.e., for each observation,
Yi, i = 1, 2, . . . , n:

Yi = g(xi; θ) + εi (16.1)

where g(xi; θ) is the deterministic component, a functional relationship, with
θ as a set of unknown parameters, and εi is the random component. The deter-
ministic mathematical relationship between these two variables is a “model”
of how the independent x (also known as the “predictor”) affects the the
predictable part of the dependent Y , sometimes known as the “response.”

In some cases, the functional form of g(xi) is known from fundamental
scientific principles. For example, if Y is the distance (in cm) traveled in time
ti seconds by a particle launched with an initial velocity, u (cm/sec), and
traveling at a constant acceleration a (cm/sec2), then we know that

g(ti; u, a) = uti +
1
2
at2i (16.2)

with θ = (u, a) as the parameters.
In most cases, however, there is no such fundamental scientific principle to

suggest an appropriate form for g(xi; θ); simple forms (typically polynomials)
are postulated and validated with data, as we show subsequently. The result
in this case is known as an “empirical” model because it is strictly dependent
on data and not on some known fundamental scientific principle.

Regression analysis is primarily concerned with the following tasks:

• Obtaining the “best estimates” θ̂ for the model parameters, θ;
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• Characterizing the random sequence εi; and,

• Making inference about the parameter estimates, θ̂.

The classical treatment is based on “least squares estimation” which we will
discuss briefly now, before using it in the context of regression.

16.1.2 The Principle of Least Squares

Consider the case where the random sample, Y1, Y2, . . . , Yn, is drawn from
a population characterized by a single, constant parameter, θ, the population
mean. The random variable Y may then be written as:

Yi = θ + εi (16.3)

where the observed random variability is due to random component εi. Fur-
thermore, let the variance of Y be σ2. Then from Eq (16.3), we obtain:

E[Yi] = θ + E[εi] (16.4)

and since, by definition, E[Yi] = θ, this implies that E[εi] = 0. Furthermore,

V ar(Yi) = V ar(εi) = σ2 (16.5)

since θ is a constant. Thus, from the fact that Y has a distribution (unspec-
ified) with mean θ and variance σ2 implies that in Eq (16.3), the random
“error” term, εi has zero mean and variance σ2.

To estimate θ from the given random sample, it seems reasonable to choose
a value that is “as close as possible” to all the observed data. This concept
may be represented mathematically as:

min
θ

S(θ) =
n∑

i=1

(Yi − θ)2 (16.6)

The usual calculus approach to this optimization problem leads to:

∂S

∂θ

∣∣∣∣
θ=θ̂

= −2
n∑

i=1

(Yi − θ̂) = 0 (16.7)

which, when solved, produces the result:

θ̂ =
∑n

i=1 Yi

n
(16.8)

A second derivative with respect to θ yields

∂2S

∂θ2
= 2n > 0 (16.9)
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so that indeed S(θ) achieves a minimum for θ = θ̂ in Eq (16.8).
The quantity θ̂ in Eq (16.8) is referred to as a least-squares estimator for θ

in Eq (16.3), for the obvious reason that the value produced by this estimator
achieves the minimum for the sum-of-squared deviation implied in Eq (16.6).
It should not be lost on the reader that this estimator is also precisely the
same as the familiar sample average.

The problems we have dealt with up until now may be represented in the
form shown in Eq (16.3). In that context, the probability models we developed
earlier may now be interpreted as models for εi, the random variation around
the constant random variable mean. This allows us to put the upcoming dis-
cussion on the regression problem in context of the earlier discussions.

Finally, we note that the principle of least-squares also affords us the flex-
ibility to treat each observation, Yi, differently in how it contributes to the
estimation of θ. This is done by applying appropriate weights Wi to Eq (16.3)
to obtain:

WiYi = Wiθ + Wiεi (16.10)
Consequently, for example, more reliable observations can be assigned larger
weights than less reliable ones. Upon using the same calculus techniques, the
least-squares estimate in this case can be shown to be:

θ̂ω =
∑n

i=1 W 2
i Yi∑n

i=1 W 2
i

=
n∑

i=1

ωiYi (16.11)

(see Exercise 16.2) where

ωi =
W 2

i∑n
i=1 W 2

i

(16.12)

Note that 0 < ωi < 1. The result in Eq (16.11) is therefore an appropri-
ately weighted average—a generalization of Eq (16.8) where ωi = 1/n. This
variation on the least-squares approach is known appropriately as “weighted
least-squares”; we shall encounter it later in this chapter.

16.2 Simple Linear Regression

16.2.1 One-Parameter Model

As a direct extension of Eq (16.3), let the relationship between the random
variable Y and the independent (deterministic) variable, x, be:

Y = θx + ε (16.13)

where the random error, ε, has zero mean and constant variance, σ2. Then,
E(Y |x), the conditional expectation of Y given a specific value for x is:

µY |x = E(Y |x) = θx (16.14)
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recognizable as the equation of a straight line with slope θ and zero intercept.
It is also known as the “one-parameter” regression model, a classic example
of which is the famous Ohm’s law in physics: the relationship between the
voltage, V , across a resistor with unknown resistance, R, and the current I
flowing through the resistive element, i.e.,

V = IR (16.15)

From data yi; i = 1, 2, . . . , n, actual values of the random variable, Yi,
observed for corresponding values of xi, the problem at hand is to obtain an
estimate of the characterizing parameter θ. Using the method of least-squares
outlined above requires minimizing the sum-of-squares function:

S(θ) =
n∑

i=1

(yi − θxi)2 (16.16)

from where ∂S/∂θ = 0 yields:

−2
n∑

i=1

xi(yi − θxi) = 0 (16.17)

which is solved for θ to obtain:

θ̂ =
∑n

i=1 xiyi∑n
i=1 x2

i

(16.18)

This is the expression for the slope of the “best” (i.e., least-squares) straight
line (with zero intercept) through the points (xi, yi).

16.2.2 Two-Parameter Model

More general is the two-parameter model,

Y = θ0 + θ1x + ε (16.19)

indicating a functional relationship, g(x; θ), that is a straight line with slope
θ1 and potentially non-zero intercept θ0 as the parameters, i.e.,

θ =
[

θ0

θ1

]
(16.20)

along with E(ε) = 0; V ar(ε) = σ2. In this case, the conditional expectation
of Y given a specific value for x is given by:

µY |x = E(Y |x) = θ0 + θ1x (16.21)

In this particular case, regression analysis is primarily concerned with obtain-
ing the best estimates for θ̂ = (θ̂0, θ̂1); characterizing the random sequence εi;
and, making inference about the parameter estimates, θ̂ = (θ̂0, θ̂1).
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FIGURE 16.2: The true regression line and the zero mean random error εi.

Primary Model Assumption

In this case, the true but unknown regression line is represented by Eq
(16.21), with data scattered around it. The fact that E(ε) = 0, indicates that
the data scatters “evenly” around the true line; more precisely, the data varies
randomly around a mean value that is the function of x defined by the true
but unknown regression line in Eq (16.21). This is illustrated in Fig 16.2.

It is typical to assume that each εi, the random component of the model, is
mutually independent of the others and follows a Gaussian distribution with
zero mean and variance σ2, i.e., εi ∼ N(0, σ2). The implication in this par-
ticular case is therefore that each data point, (xi, yi), comes from a Gaussian
distribution whose mean is dependent on the value of x, and falls on the true
regression line, as illustrated in Fig 16.3. Equivalently, the true regression line
passes through the mean of the series of Gaussian distributions having the
same variance. The two main assumptions underlying regression analysis may
now be summarized as follows:

1. εi forms an independent random sequence, with zero mean and variance
σ2 that is constant for all x;

2. εi ∼ N(0, σ2) so that Yi ∼ (θ0 + θ1x, σ2)

Ordinary Least Squares (OLS) Estimates

Obtaining the least-squares estimates of the intercept, θ0, and slope, θ1,
from data (xi, yi) involves minimizing the sum-of-squares function,

S(θ0, θ1) =
n∑

i=1

[yi − (θ1xi + θ0)]2 (16.22)
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x1 x2 x3 x4 x5 x6

y

x

Y|x = x + 

!
!

FIGURE 16.3: The Gaussian assumption regarding variability around the true regres-
sion line giving rise to ε ∼ N(0, σ2). The 6 points represent the data at x1, x2, . . . , x6;
the solid straight line is the true regression line which passes through the mean of the
sequence of the indicated Gaussian distributions.

where the usual first derivatives of the calculus approach yield:

∂S

∂θ0
= 2

n∑

i=1

[yi − (θ1xi + θ0)] = 0 (16.23)

∂S

∂θ1
= −2

n∑

i=1

xi[yi − (θ1xi + θ0)] = 0 (16.24)

These expressions rearrange to give:

θ1

n∑

i=1

xi + θ0n =
n∑

i=1

yi (16.25)

θ1

n∑

i=1

x2
i + θ0

n∑

i=1

xi =
n∑

i=1

xiyi (16.26)

collectively known as the “normal equations,” to be solved simultaneously to
produce the least squares estimates, θ̂0, and θ̂1.

Before solving these equations explicitly, we wish to direct the reader’s
attention to a pattern underlying the emergence of the normal equations.
Beginning with the original two-parameter model equation:

yi = θ1xi + θ0 + εi

a summation across each term yields:

n∑

i=1

yi = θ1

n∑

i=1

xi + θ0n (16.27)

where the last term involving εi has vanished upon the assumption that n is
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sufficiently large so that because E(εi) = 0, the sum will be close to zero (a
point worth keeping in mind to remind the reader that the result of solving
the normal equations provide estimates, not “precise” values).

Also, multiplying the model equation by xi and summing yields:
n∑

i=1

yixi = θ1

n∑

i=1

x2
i + θ0

n∑

i=1

xi (16.28)

where once again the last term involving εi has vanished because of indepen-
dence with xi; and the assumption once again that n is sufficiently large that
the sum will be close to zero. Note that these two equations are identical to
the normal equations; more importantly, as derived by summation from the
original model they are the sample equivalents of the following expectations:

E(Y ) = θ1E(x) + θ0 (16.29)
E(Y x) = θ1E(x2) + θ0E(x) (16.30)

which should help put the emergence of the normal equations into perspective.
Returning to the task of computing least-squares estimates of the two

model parameters, let us define the following terms:

Sxx =
n∑

i=1

(xi − x̄)2 (16.31)

Syy =
n∑

i=1

(yi − ȳ)2 (16.32)

Sxy =
n∑

i=1

(xi − x̄)(yi − ȳ) (16.33)

where ȳ = (
∑n

i=1 yi)/n and x̄ = (
∑n

i=1 xi)/n represent the usual averages.
When expanded out and consolidated, these equations yield:

nSxx = n
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2

(16.34)

nSyy = n
n∑

i=1

y2
i −

(
n∑

i=1

yi

)2

(16.35)

nSxy = n
n∑

i=1

xiyi −
(

n∑

i=1

xi

)(
n∑

i=1

yi

)
(16.36)

These terms, clearly related to sample variances and covariances, allow us to
solve Eqs (16.25) and (16.26) simultaneously to obtain the results:

θ̂1 =
Sxy

Sxx
(16.37)

θ̂0 = ȳ − θ̂1x̄ (16.38)
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Nowadays, such computations implied in this derivation are no longer car-
ried out by hand, of course, but by computer programs; the foregoing dis-
cussion is therefore intended to acquaint the reader with the principles and
mechanics underlying the numbers produced by the statistical software pack-
ages.

Maximum Likelihood Estimates

Under the Gaussian assumption, the regression equation, written in the
more general form,

Y = η(x, θ) + ε, (16.39)

implies that the observations Y1, Y2, . . . , Yn come from a Gaussian distribu-
tion with mean η and variance, σ2; i.e., Y ∼ N(η(x, θ), σ2). If the data can
be considered as a random sample from this distribution, then the method of
maximum likelihood presented in Chapter 14 may be used to estimate η(x, θ)
and σ2 in precisely the same manner in which estimates of the N(µ, σ2) popu-
lation parameters were determined in Section 14.3.2. The only difference this
time is that the population mean, η(x, θ), is no longer constant, but a func-
tion of x. It can be shown (see Exercise 16.5) that when the variance σ2 is
constant, the maximum likelihood estimate for θ in the one-parameter model,

η(x, θ) = θx (16.40)

and the maximum likelihood estimates for (θ0, θ1) in the two-parameter model,

η(x, θ) = θ0 + θ1x (16.41)

are each identical to the corresponding least squares estimates obtained in
Eq (16.18) and in Eqs (16.38) and (16.37) respectively. It can also be shown
(see Exercise 16.6) that when the variance, σ2

i , associated with each observa-
tion, Yi, i = 1, 2, . . . , n, differs from observation to observation, the maximum
likelihood estimates for the parameters θ in the first case, and for (θ0, θ1) in
the second case, are the same as the corresponding weighted least squares
estimates, with weights related to the reciprocal of σi.

Actual Regression Line and Residuals

In the same manner in which the true (constant) mean, µ, of a Gaussian
distribution producing the random sample X1, X2, . . . , Xn, is not known, only
estimated by the sample average X̄ , the true regression line is also never known
but estimated. When the least-squares estimates θ̂0 and θ̂1 are introduced into
the original model, the result is the estimated observation ŷ defined by:

ŷ = θ̂0 + θ̂1x (16.42)

This is not the same as the true theoretical µY |x in Eq (16.21) because, in
general θ̂0 $= θ0 and θ̂1 $= θ1; ŷi is the two-parameter model’s best estimate
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TABLE 16.2:
Density (in gm/cc) and
weight percent of ethanol
in ethanol-water mixture

Density Wt %
(g/cc) Ethanol
0.99823 0
0.98938 5
0.98187 10
0.97514 15
0.96864 20
0.96168 25
0.95382 30
0.94494 35

(or prediction) of the true but unknown value of the observation yi (unknown
because of the additional random effect, εi). If we now define as ei, the error
between the actual observation and the estimated value, i.e.,

ei = yi − ŷi (16.43)

this term is known as the residual error or simply the “residual”; it is our best
estimate of the unknown εi, just as ŷ = θ̂0 + θ̂1x is our best estimate of the
true regression line µY |x = E(Y |x) = θ1x + θ0.

As discussed shortly (Section 16.2.10), the nature of the sequence of resid-
uals provides a great deal of information about how well the model represents
the observations.

Example 16.1: DENSITY OF ETHANOL-WATER MIX-
TURE
An experimental investigation into how the density of an ethanol-water
mixture varies with weight percent of ethanol in the mixture yielded
the result shown in Table 16.2. Postulate a linear two-parameter model
as in Eq (16.19), and use the supplied data to obtain least-squares esti-
mates of the slope and intercept, and also the residuals. Plot the data
versus the model and comment on the fit.

Solution:
Given this data set, just about any software package, from Excel to
MATLAB and MINITAB, will produce the following estimates:

θ̂1 = −0.001471; θ̂0 = 0.9975 (16.44)

so that, if y is the density and x is the wt % of ethanol, the regression
model fit to this data is given as:

ŷ = −0.001471x + 0.9975 (16.45)

The model fit to the data is shown in Fig 16.4; and for the given values
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data. The additional terms included in the graph—S, R-Sq, and R-Sq(adj)—are dis-
cussed later.

of x, the estimated ŷ, and the residuals, e, are shown in Table 16.3.
Visually, the model seems to fit quite well. This model allows us to pre-
dict solution density for any given weight percent of ethanol within the
experimental data range but not actually part of the data. For example,
for x = 7.5, Eq (16.45) estimates ŷ = 0.98647. How the residuals are
analyzed is discussed in Section 16.2.10.

Expressions such as the one obtained in this example, Eq (16.45), are some-
times known as calibration curves. Such curves are used to calibrate measure-
ment devices such as thermocouples, where the raw instrument output (say
millivolts) is converted to the actual desired measurement (say temperature in
◦C) based on expressions such as the one obtained here. Such expressions are

TABLE 16.3: Density and weight percent of ethanol in
ethanol-water mixture: model fit and residual errors

Density (g/cc) Wt % Ethanol Estimated Residual
y x Density, ŷ Errors, e

0.99823 0 0.997500 0.000730
0.98938 5 0.990145 -0.000765
0.98187 10 0.982790 -0.000920
0.97514 15 0.975435 -0.000295
0.96864 20 0.968080 0.000560
0.96168 25 0.960725 0.000955
0.95382 30 0.953370 0.000450
0.94494 35 0.946015 -0.001075
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typically generated from standardized experiments where data on instrument
output are gathered for various objects with known temperature.

16.2.3 Properties of OLS Estimators

When experiments are repeated for the same fixed values xi, as a typical
consequence of random variation, the corresponding value observed for Yi will
differ each time. The resulting estimates provided in Eqs (16.37) and (16.38)
therefore will also change slightly each time. In typical fashion, therefore, the
specific parameter estimates θ̂0 and θ̂1 are properly considered as realizations
of the respective estimators Θ0 and Θ1, random variables that depend on the
random sample Y1, Y2, . . . , Yn. It will be desirable to investigate the theoretical
properties of these estimators defined by:

Θ1 =
Sxy

Sxx
(16.46)

Θ0 = Ȳ − Θ1x̄ (16.47)

Let us begin with the expected values of these estimators. From here, we
observe that

E(Θ1) = E

(
Sxy

Sxx

)
(16.48)

which, from the definitions given above, becomes:

E(Θ1) =
1

Sxx
E

[
n∑

i=1

Yi(xi − x̄)

]
(16.49)

(because
∑n

i=1 Ȳ (xi − x̄) = 0, since Ȳ is a constant); and upon introducing
Eq (16.19) in for Yi, we obtain:

E(Θ1) =
1

Sxx
E

[
n∑

i=1

(θ1xi + θ0 + εi)(xi − x̄)

]
(16.50)

A term-by-term expansion and subsequent simplification results in

E(Θ1) =
1

Sxx
E

[
θ1

n∑

i=1

(xi − x̄)

]
(16.51)

because
∑n

i=1(xi − x̄) = 0 and E[
∑n

i=1 εi(xi − x̄)] = 0 since E(εi) = 0. Hence,
Eq (16.51) simplifies to

E(Θ1) =
1

Sxx
θ1Sxx = θ1 (16.52)

indicating that Θ1 is an unbiased estimator of θ1, the true slope.
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Similarly, from Eq (16.47), we obtain:

E(Θ0) = E(Ȳ − Θ1x̄) = E(Ȳ ) − E(Θ1)x̄ (16.53)

which by virtue of Eq (16.51) simplifies to:

E(Θ0) = θ1x̄ + θ0 − θ1x̄ = θ0 (16.54)

so that Θ0 is also an unbiased estimator for θ0, the true intercept.
In similar fashion, by definition of the variance of a random variable, it is

straightforward to show that:

V ar(Θ1) = σ2
Θ1

=
σ2

Sxx
(16.55)

V ar(Θ0) = σ2
Θ0

= σ2

(
1
n

+
x̄2

Sxx

)
(16.56)

where σ2 is the variance of the random component, ε. Consequently, the stan-
dard error of each estimate, the positive square root of the variance, is given
by:

SE(Θ1) =
σ√
Sxx

(16.57)

SE(Θ0) = σ

√(
1
n

+
x̄2

Sxx

)
(16.58)

16.2.4 Confidence Intervals

As with all estimation problems, the point estimates obtained above for
the regression parameters, θ0 and θ1, by themselves are insufficient in making
decisions about their true, but unknown values; we must add a measure of
how precise these estimates are. Obtaining interval estimates is one option; and
such interval estimates are determined for regression parameters essentially by
the same procedure as that presented in Chapter 14 for population parameters.
This, of course, requires sampling distributions.

Slope and Intercept Parameters

Under the Gaussian distributional assumption for ε, with the implication
that the sample Y1, Y2, . . . , Yn, possesses the distribution N(θ0 +θ1x, σ2), and
from the results obtained above about the characteristics of the estimates, it
can be shown that the random variables Θ1 and Θ0, respectively the slope and
the intercept, are distributed as Θ1 ∼ N(θ1, σ2

Θ1
) and Θ0 ∼ N(θ0, σ2

Θ0
) with

the variances as shown in Eqs (16.55) and (16.56), provided the data variance,
σ2, is known. However, this variance is not known and must be estimated from
data. This is done as follows for this particular problem.
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Consider residual errors, ei, our best estimates of εi; define the residual
error sum of squares as

SSE =
n∑

i=1

(yi − ŷi)2 (16.59)

=
n∑

i=1

[yi − (θ̂1xi + θ̂0)]2

=
n∑

i=1

[(yi − ȳ) − θ̂1(xi − x̄)]2 (16.60)

which, upon expansion and simplification reduces to:

SSE = Syy − θ̂1Sxy (16.61)

It can be shown that
E(SSE) = (n − 2)σ2 (16.62)

as a result, the mean squared error, s2
e, defined as:

s2
e =

SSE

(n − 2)
=

∑n
i=1(yi − ŷ1)2

n − 2
(16.63)

is an unbiased estimate of σ2.
Now, as with previous statistical inference problems concerning normal

populations with unknown σ, by substituting s2
e, the mean residual sum-of-

squares, for σ2, we have the following results: the statistics T1 and T0 defined
as:

T1 =
Θ1 − θ1

se/
√

Sxx
(16.64)

and
T0 =

Θ0 − θ0

se

√(
1
n + x̄2

Sxx

) (16.65)

each possess t-distribution with ν = n− 2 degrees of freedom. The immediate
implications are therefore that

θ1 = θ̂1 ± tα/2(n − 2)
se√
Sxx

(16.66)

θ0 = θ̂0 ± tα/2(n − 2)se

√(
1
n

+
x̄2

Sxx

)
(16.67)

constitute (1−α)× 100% confidence intervals around the slope and intercept
estimates, respectively.
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Example 16.2: CONFIDENCE INTERVAL ESTIMATES FOR
THE SLOPE AND INTERCEPT OF ETHANOL-WATER
MIXTURE DENSITY REGRESSION MODEL
Obtain 95% confidence interval estimates for the slope and intercept of
the regression model obtained in Example 16.1 for the ethanol-water
mixture density data.

Solution:
In carrying out the regression in Example 16.1 with MINITAB, part
of the computer program output is the set of standard errors. In this
case, SE(Θ1) = 0.00002708 for the slope, and SE(Θ0) = 0.000566 for
the intercept. These could also be computed by hand (although not
recommended). Since the data set consists of 8 data points, we obtain
the required t0.025(6) = 2.447 from the cumulative probability feature.
The required 95% confidence intervals are therefore obtained as follows:

θ1 = −0.001471 ± 0.00006607 (16.68)

θ0 = 0.9975 ± 0.001385 (16.69)

Note that none of these two intervals includes 0.

Regression Line

The actual regression line fit (see for example Fig 16.4), an estimate of the
true but unknown regression line, is obtained by introducing into Eq (16.21),
the estimates for the slope and intercept parameters to give

µ̂Y |x = θ̂1x + θ̂0 (16.70)

For any specific value x = x∗, the value

µ̂Y |x∗ = θ̂1x
∗ + θ̂0 (16.71)

is the estimate of the actual response of Y at this point (akin to the sample
average estimate of a true but unknown population mean).

In the same manner in which we obtained confidence intervals for sample
averages, we can also obtain a confidence interval for µ̂Y |x∗ . It can be shown
from Eq (16.71) (and Eq (16.56)) that the associated variance is:

V ar(µ̂Y |x∗) = σ2

[
1
n

+
(x∗ − x̄)2

Sxx

]
(16.72)

and because of the normality of the random variables Θ0 and Θ1, then if σ is
known, µ̂Y |x∗ has a normal distribution with mean (θ̂1x∗ + θ̂0) and variance
shown in Eq (16.72). With σ unknown, substituting se for it, as in the previous
section, leads to the result that the specific statistic,

tRL =
(µ̂Y |x∗ − µY |x∗)

se

√[
1
n + (x∗−x̄)2

Sxx

] (16.73)
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data (solid line) along with the 95% confidence interval (dashed line). The confidence
interval is narrowest at x = x̄ and widens for values further away from x̄.

has a t-distribution with ν = (n − 2) degrees of freedom. As a result, the
(1 − α) × 100% confidence interval on the regression line (mean response) at
x = x∗, is:

µ̂Y |x∗ = (θ̂1x
∗ + θ̂0) ± tα/2(n − 2)se

√[
1
n

+
(x∗ − x̄)2

Sxx

]
(16.74)

When this confidence interval is computed for all values of x of interest, the
result is a confidence interval around the entire regression line. Again, as most
statistical analysis software packages have the capability to compute and plot
this confidence interval along with the regression line, the primary objective
of this discussion is to provide the reader with a fundamental understanding
of the theoretical bases for these computer outputs. For example, the 95%
confidence interval for the density versus weight percent ethanol problem in
Examples 16.1 and 16.2 is shown in Fig 16.5.

By virtue of the (x∗ − x̄)2 term in Eq (16.74), a signature characteristic of
these confidence intervals is that they are narrowest when x∗ = x̄ and widen
for values further away from x̄.

16.2.5 Hypothesis Testing

For this class of problems, the hypothesis of concern is whether or not
there is a real (and significant) linear functional relationship between x and
Y ; i.e., whether the slope parameter, θ1 = 0, in which case the variation in
Y is purely random around a constant mean value θ0 (which may or may
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not be zero). This translates to the following hypotheses regarding the slope
parameter:

H0 : θ1 = 0
Ha : θ1 $= 0 (16.75)

And from the preceding discussion regarding confidence intervals, the appro-
priate test statistic for this test, from Eq (16.64), is:

t1 =
θ̂1

se/
√

Sxx
(16.76)

since the postulated value for the unknown θ1 is 0; and the decision to reject
or not reject H0 follows the standard two-sided t-test criteria; i.e., at the
significance level α, H0 is rejected when

t1 < −tα/2(n − 2), or t1 > tα/2(n − 2) (16.77)

As with previous results, these conditions are identical to the (1− α)× 100%
confidence interval on θ1 not containing zero. When there is sufficient reason
to reject H0, the estimated regression coefficient is said to be “significant,” by
which we mean that it is significantly different from zero, at the significance
level α.

There is nothing to prevent testing hypotheses also about the intercept
parameter, θ0, whether or not its value is significantly different from zero.
The principles are precisely as indicated above for the slope parameter; the
hypotheses are,

H0 : θ0 = 0
Ha : θ0 $= 0 (16.78)

in this case, with the test statistic (from Eq (16.65)):

t0 =
θ̂0

se

√(
1
n + x̄2

Sxx

) (16.79)

and the rejection criteria,

t0 < −tα/2(n − 2), or t0 > tα/2(n − 2) (16.80)

In addition to computing estimates of the regression coefficient and the
associated standard errors, most computer programs will also compute the
t-statistics and the associated p-values for each of the two coefficients.

Let us illustrate with the following example.
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TABLE 16.4: Cranial circumference and finger lengths for 16
individuals

Cranial 58.5 54.2 57.2 52.7 55.1 60.7 57.2 58.8
Circum (cm)
Finger 7.6 7.9 8.4 7.7 8.6 8.6 7.9 8.2
Length (cm)
Cranial 56.2 60.7 53.5 60.7 56.3 58.1 56.6 57.7
Circum (cm)
Finger 7.7 8.1 8.1 7.9 8.1 8.2 7.8 7.9
Length (cm)

Example 16.3: CRANIAL CIRCUMFERENCE AND FIN-
GER LENGTH
A once-popular exercise in the late 19th and early 20th centuries in-
volved attempts at finding mathematical expressions that will allow one
to predict, for a population of humans, some physical human attribute
on the basis of a different one. The data in Table 16.4 shows the result of
a classic example of such an exercise where the cranial circumference (in
cms) and the length of the longest finger (in cms) of 16 individuals were
determined. Postulate a linear two-parameter model as in Eq (16.19),
obtain least-squares estimates of the slope and intercept, and test hy-
potheses that these parameters are not significantly different from zero.
Plot the data versus the model fit and comment on the results.

Solution:
If Y is the cranial circumference and x, the finger length, using
MINITAB to analyze this data set produces the following results:

Regression Analysis: Cranial Circ(cm) versus Finger Length(cm)
The regression equation is
Cranial Circ(cm) = 43.0 + 1.76 Finger Length(cm)

Predictor Coef SE Coef T P
Constant 43.00 17.11 2.51 0.025
Finger Length 1.757 2.126 0.83 0.422

S = 2.49655 R-Sq = 4.7% R-Sq(adj) = 0.0%

Thus, the regression equation is obtained as

ŷ = 1.76x + 43.0 (16.81)

and the model fit to the data is shown in Fig 16.6. (Again, we defer
until the appropriate place, any comment on the terms included in the
last line of the MINITAB output.)

It is important to note how, rather than clustering tightly around the
regression line, the data shows instead a significant amount of scatter,
which, at least visually, calls into question the postulated dependence
of cranial circumference on finger length. This question is settled con-
cretely by the computed T statistics for the model parameters and the
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data. Note how the data points are widely scattered around the fitted regression line.
(The additional terms included in the graph—S, R-Sq, and R-Sq(adj)—are discussed
later.)

associated p-values. The p-value of 0.025 associated with the constant
(intercept parameter, θ0) indicates that we must reject the null hypoth-
esis that θ0 = 0 in favor of the alternative that the estimated value,
43.0, is significantly different from zero, at the 5% significance level.
On the other hand, the corresponding p-value associated with the θ1,
the coefficient of x, the finger length (i.e., the regression line slope), is
0.422, indicating that there is no evidence to reject the null hypothesis.
Thus, at the 5% significance level, θ1 is not significantly different from
zero and we therefore conclude that there is no discernible relationship
between cranial circumference and finger length.

Thus, the implication of the significance of the constant term, and
non-significance of the coefficient of the finger length is two-fold: (i)

that cranial circumference does not depend on finger length (at least

for the 16 individuals in this study), so that the observed variability is
purely random, with no systematic component that can be explained

by finger length; and consequently, (ii) that the cranial circumference is

best characterized for this population of individuals by the mean value
(43.0 cm), a value that is significantly different from zero (as one would

certainly expect!)

This last example illustrates an important point about regression analysis:
one can always fit any postulated model to any given set of data; the real
question is: how “useful” is this model? In other words, to what extent is
the implied relationship between x and Y representative of the real informa-
tion contained in the data? These are very important questions that will be
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answered systematically in the upcoming sections. For now, we note that at
the most basic level, the hypothesis tests discussed here provide an objective
assessment of the implied relationship, whether it is “real” or it is merely an
artifact of random variability. Anytime we are unable to reject the null hypoth-
esis on the slope parameter, the estimated value, and hence the model itself,
are “not significant”; i.e., the real parameter value cannot be distinguished
from zero.

16.2.6 Prediction and Prediction Intervals

A model whose parameters are confirmed as “significant” is useful for at
least two things:

1. Estimating Mean Responses:
For a given value x = x∗, the fitted regression line provides a means of
estimating the expected value of the response, Y |x∗; i.e.,

E(Y |x∗) = θ̂1x
∗ + θ̂0 (16.82)

This is to be understood as the “least-squares” surrogate of the average
of a number of replicate responses obtained when the experiment is
repeated for the same fixed value x = x∗.

2. Predicting a New Response:
Here, the objective is slightly different: for a given x = x∗, we wish to
predict the response observed from a single experiment performed at the
specified value. Not surprisingly, the fitted regression line provides the
best prediction, ŷ(x∗) as

ŷ(x∗) = θ̂1x
∗ + θ̂0 (16.83)

which is precisely the same as Eq (16.82). The difference lies not in the
value themselves but in the precision associated with each value.

When the regression line is used as an estimator of mean (or expected) re-
sponse, the precision associated with the estimate was given in the form of the
variance shown in Eq (16.72), from which we developed the confidence interval
around the regression line. When the regression line is used as a prediction of
a yet-to-be-observed value Y (x∗), however, the prediction error is given by:

Ep = Y (x∗) − Ŷ (x∗) (16.84)

which, under the normality assumption, possesses the distribution N(0, σ2
Ep

),
with the variance obtained from Eq (16.84) as

σ2
Ep

= V ar[Y (x∗)] + V ar[Ŷ (x∗)]

= σ2 + σ2

[
1
n

+
(x∗ − x̄)2

Sxx

]

= σ2

[
1 +

1
n

+
(x∗ − x̄)2

Sxx

]
(16.85)
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where, we recall, σ2 as the variance of the random error component, ε.
This expression differs from the expression in Eq (16.72) by the presence

of the additional term, 1, making σ2
Ep

> V ar(µ̂Y |x∗) always. This mathemat-
ical fact is a consequence of the phenomenological fact that the prediction
error is a combination of the variability inherent in determining the observed
value, Y (x∗), and the regression model error associated with Ŷ (x∗), this latter
quantity being the only error associated with using the regression model as
an estimator of mean response.

We may now use Eq (16.85) to obtain the (1−α)×100% prediction interval
for y(x∗) by substituting the data estimate, se, for the unknown standard
deviation, σ, and from the resulting t-distribution characteristics, i.e.,

y(x∗) = ŷ(x∗) ± tα/2(n − 2)se

√[
1 +

1
n

+
(x∗ − x̄)2

Sxx

]
(16.86)

As with the confidence intervals around the regression line, these prediction
intervals are narrowest when x∗ = x̄ and widen for values further away from
x̄, but they are consistently wider than the confidence intervals.

Example 16.4: HIGHWAY GASOLINE MILEAGE AND EN-
GINE CAPACITY FOR TWO-SEATER AUTOMOBILES
From the data shown in Table 12.5 (Chapter 12) on gasoline mileage for
a collection of two-seater cars, postulate a linear two-parameter model
for highway mileage (y) as a function of the engine capacity, x; obtain
least-squares estimates of the parameters for all the cars, leaving out the
Chevrolet Corvette and the Dodge Viper data (these cars were identi-
fied Chapter 12 as different from the others in the class because of the
material used for their bodies). Show a plot of the fitted regression line,
the 95% confidence interval, and the 95% prediction interval.

Solution:
Using MINITAB for this problem produces the following results:

Regression Analysis: MPGHighway versus EngCapacity
The regression equation is
MPGHighway = 33.2 - 2.74 EngCapacity

Predictor Coef SE Coef T P
Constant 33.155 1.110 29.88 0.000
EngCapacity -2.7387 0.2665 -10.28 0.000

S = 1.95167 R-Sq = 86.8% R-Sq(adj) = 86.0%

Thus, with highway mpg as y, and engine capacity as x, the fitted
regression line equation is

ŷ = −2.74x + 33.2 (16.87)

and, since the p-values associated with each parameter are both zero
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data of Table 12.5 (leaving out the two “inconsistent” data points) along with the 95%
confidence interval (long dashed line) and the 95% prediction interval (short dashed
line). (Again, the additional terms—S, R-Sq, and R-Sq(adj)—are discussed later.)

to three decimal places, we conclude that these parameters are “signifi-
cant.” The implication is that for every liter increase in engine capacity,
the average two-seater car is expected to lose about 2 and 3/4 miles per
gallon on the highway. (As before, we defer until later any comment on
the terms in the last line of the MINTAB output.)

The model fit to the data is shown in Fig 16.7 along with the required
95% confidence interval (CI) and the 95% prediction interval (PI). Note

how much wider the PI is than the CI at every value of x.

16.2.7 Coefficient of Determination and the F-Test

Beyond hypotheses tests to determine the significance of individual esti-
mated parameters, other techniques exist for assessing the overall effectiveness
of the regression model, based on measures of how much of the total variability
in the data has been captured (or explained) by the model.

Orthogonal Decomposition of Variability

The total variability present in the data, represented by
∑n

i=1(yi − ȳ)2,
and defined as Syy in Eq (16.32), may be rearranged as follows, merely by
adding and subtracting ŷi:

Syy =
n∑

i=1

(yi − ȳ)2 =
n∑

i=1

[(yi − ŷi) − (ȳ − ŷi)]2 (16.88)
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Upon expanding and simplifying (see Exercise 16.9), one obtains the very
important expression:

n∑

i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2 +
n∑

i=1

(yi − ŷi)2

or Syy = SSR + SSE (16.89)

where we have recalled that the second term on the RHS of the equation is
the residual error sum of squares defined in Eq (16.59), and have introduced
the term SSR to represent the regression sum of squares,

SSR =
n∑

i=1

(ŷi − ȳ)2 (16.90)

a measure of the variability represented in the regression line’s estimate of the
mean response. The expression in Eq (16.89) represents a decomposition of
the total variability in the data into two components: the variability captured
by the regression model, SSR, and what is left in the residual error, SSE .
In fact, we had actually encountered this expression earlier, in Eq (16.61),
where what we now refer to as SSR had earlier been presented as θ̂1Sxy. If
the data vector is represented as y, the corresponding vector of regression
model estimates as ŷ, and the vector of residual errors between these two as
e = y − ŷ, then observe that

(y − ȳ) = (ŷ − ȳ) + e (16.91)

But from the definition of vector Euclidian norms,

||(y − ȳ)||2 = Syy (16.92)
||(ŷ − ȳ)||2 = SSR (16.93)

||e||2 = SSE (16.94)

with the very important implication that, as a result of the vector representa-
tion in Eq (16.91), the expression in Eq (16.89) is an orthogonal decomposition
of the data variance vector reminiscent of Pythagoras’ Theorem. (If the vector
sum in Eq (16.91) holds simultaneously as the corresponding sums of squares
expression in Eq (16.89), then the vector (ŷ − ȳ) must be orthogonal to the
vector e.)

Eq (16.89) is in fact known as the analysis of variance (ANOVA) identity;
and it plays a central role in statistical inference that transcends the restricted
role observed here in regression analysis. We shall have cause to revisit this
subject in our discussion of the design of experiments in upcoming chapters.
For now, we use it to assess the effectiveness of the overall regression model (as
a single entity purporting to represent the information contained in the data),
first in the form of the coefficient of determination, and later as the basis for
an F -test of significance. This latter exercise will constitute a preview of an
upcoming, more general discussion of ANOVA.
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R2, The Coefficient of Determination

Let us now consider the ratio defined as:

R2 =
SSR

Syy
(16.95)

which represents the proportion of the total data variability (around the mean
ȳ) that has been captured by the regression model; its complement,

1 − R2 = SSE/Syy (16.96)

is the portion left unexplained by the regression model. Observe that 0 ≤ R2 ≤
1, and that if a model adequately captures the relevant information contained
in a data set, what will be left unexplained as random variation should be
comparatively small, so that the R2 value will be close to 1. Conversely, a value
close to zero indicates a model that is inadequate in capturing the important
variability present in the data. R2 is therefore known as the coefficient of
determination; it is a direct measure of the quality of fit provided by the
regression model.

Although not directly relevant yet at this point (where we are still dis-
cussing the classical two-parameter model), it is possible to improve a model
fit by introducing additional parameters. Under such circumstances, the im-
provement in R2 may come at the expense of over-fitting (as discussed more
fully later). A somewhat more judicious assessment of model adequacy re-
quires adjusting the value of R2 to reflect the number of parameters that have
been used by the model to capture the variability.

By recasting the expression in Eq (16.95) in the equivalent form:

R2 = 1 − SSE

Syy
(16.97)

rather than base the metric on the indicated absolute sums of squares, consider
using the mean sums of squares instead. In other words, instead of the total
residual error sum of squares, SSE, we employ instead the mean residual error
sum of squares, SSE/(n−p), where p is the number of parameters in the model
and n is the total number of experimental data points; also instead of the total
data sum of squares, Syy, we employ instead the data variance Syy/(n − 1).
The resulting quantity, known as R2

adj, and defined as:

R2
adj = 1 − SSE/(n − p)

Syy/(n − 1)
(16.98)

is similar to the coefficient of determination, R2, but it is adjusted for the
the number of parameters contained in the model. It penalizes models that
achieve decent values of R2 via the use of an excessive number of parameters.
Relatively high values of R2 and R2

adj that are also comparable in magnitude
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indicate a model that is quite adequate: the variability in the data has been
captured adequately without using an excessive number of parameters.

All software packages that carry out regression analysis routinely compute
R2 and R2

adj , sometimes presented not as fractions (as indicated above), but
multiplied by 100%. In fact, all the examples and fitted regression line plots
encountered thus far in this chapter have shown these values (in percentage
form) but we had to defer commenting on them until now. We are only now
in a position for such a discussion.

In Figs 16.4, 16.5, 16.6, and 16.7, the value shown for S is the square root
of the mean residual sum of squares, i.e.,

√
SSE/(n − 2), an estimate of the

unknown data standard deviation, σ; this is accompanied by values for R2 and
R2

adj. Thus, in the density versus ethanol weight percent regression model (Fig
16.4), both R2 and R2

adj are reported as 99.8%, indicating a model that appears
to have explained virtually all the variability in the data, with very little left
by way of the residual error (as indicated by the very small value of S). The
exact opposite is the case with the cranial circumference versus finger length
regression model: R2 is an incredibly low 4.7% and the R2

adj vanishes entirely (a
“perfect” 0.00%), indicating that (a) the model has explained very little of the
variability in the data, and (b) when penalized for the parameters employed
in achieving even the less that 5% variability captured, the inadequacy of the
model is seen to be total. The residual data standard deviation, S, is almost
2.5. With the highway gas mileage versus engine capacity regression model,
the R2 value is reasonably high at 86.8%, with an adjusted value of 86% that
is essentially unchanged; the residual standard of S = 1.95 is also reasonable.
The indication is that while there is still some unexplained variability left,
the regression model captures a significant amount of the variability in the
data and provides a reasonable mathematical explanation of the information
contained in the data.

F-Test for Significance of Regression

Let us return to the ANOVA expression in Eq (16.89):

n∑

i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2 +
n∑

i=1

(yi − ŷi)2

i.e., Syy = SSR + SSE

and note the following:

1. The total sum of squares, Syy =
∑n

i=1(yi − ȳ)2, has (n − 1) degrees of
freedom; the error sum of squares, SSE =

∑n
i=1(yi − ŷi)2, has (n − 2)

degrees of freedom, and the regression sum of squares, SSR =
∑n

i=1(ŷi−
ȳ)2, has 1 degree of freedom.

2. One informal way to confirm this fact is as follows: (i) of the n indepen-
dent units of information in the raw data, yi; i = 1, 2, . . . , n, 1 “degree
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of freedom” is “tied up” in obtaining the average, ȳ, so that (yi − ȳ)
will have (n− 1) degrees of freedom left (i.e., there are now only (n− 1)
independent quantities in (yi − ȳ)); (ii) similarly, 2 “degrees of freedom”
are “tied up” in obtaining the response estimate ŷ (via the two param-
eters, θ̂0 and θ̂1), so that (yi − ŷi) has (n − 2) degrees of freedom left;
and finally (iii) while ŷi “ties up” 2 degrees of freedom, ȳ “ties up” 1, so
that (ŷi − ȳ) has 1 degree of freedom left.

3. The implication is therefore that, in addition to representing a decom-
position of variability, since it is also true that

(n − 1) = 1 + (n − 2) (16.99)

Eq (16.89) also represents a concurrent decomposition of the degrees of
freedom associated with each sum of squares.

Finally, from the following results (given without proof; e.g., Eq (16.62)),

E(SSE) = (n − 2)σ2

E(SSR) = θ̂2
1Sxx + σ2 (16.100)

we arrive at the following conclusions: Under the null hypothesis H0 : θ1 = 0,
these two equations suggest SSE/(n − 2) and SSR/1 (respectively the error
mean square, MSE, and the regression mean square, MSR) as two separate
and distinct estimators of σ2. Furthermore, under the normality assumption
for yi, then the statistic

F =
SSR/1

SSE/(n − 2)
(16.101)

will possess an F (ν1, ν2) distribution, with ν1 = 1, and ν2 = (n − 2), if H0 is
true that θ1 = 0. However, if H0 is not true, then the numerator in Eq (16.101)
will be inflated by the term θ̂2

1Sxx as indicated in Eq (16.100). Hence, at the
significance level of α, we reject H0 (that the regression as a whole is not
significant), when the actual computed statistic

f > fα(ν1, ν2) (16.102)

where fα(ν1, ν2) is the usual F (ν1, ν2)-distribution variate with upper tail area
α. Equivalently, one computes the p-value associated with the computed f , as

p = P (F ≥ f) (16.103)

and reject or fail to reject the null hypothesis on the basis of the actual p-value.
These results are typically presented in what is referred to as an ANOVA

table as shown in Table 16.5. They are used to carry out F -tests for the
significance of the entire regression model as a single entity; if the resulting
p-value is low, we reject the null hypothesis and conclude that the regression is
significant, i.e., the relationship implied by the regression model is meaningful.
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TABLE 16.5: ANOVA table for testing significance
of regression

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F p
Regression SSR 1 MSR

MSR
MSE

Error SSE (n − 2) MSE

Total Syy (n − 1)

Alternatively, if the p-value exceeds a pre-specified threshold (say, 0.05), we
fail to reject the null hypothesis and conclude that the regression model is not
significant—that the implied relationship is purely random.

All computer programs that perform regression analysis produce such
ANOVA tables. For example, the MINITAB output for Example 16.4 above
(involving the regression model relating engine capacity to the highway mpg
rating) includes the following ANOVA table.

Analysis of Variance
Source DF SS MS F P
Regression 1 402.17 402.17 105.58 0.000
Residual Error 16 60.94 3.81
Total 17 463.11

The indicated p-value of 0.000 implies that we must reject the null hypothesis
and conclude that the regression model is “significant.”

On the other hand, the ANOVA table produced by MINITAB for the cra-
nial circumference versus finger length regression problem of Example 16.3 is
as shown below:

Analysis of Variance
Source DF SS MS F P
Regression 1 4.259 4.259 0.68 0.422
Residual Error 14 87.259 6.233
Total 15 91.517

In this case, the p-value associated with the F -test is so high (0.422) that we
reject the null hypothesis and conclude that the regression is not significant.

Of course, these conclusions agree perfectly with our earlier conclusions
concerning each of these problems.

In general, we tend to de-emphasize these ANOVA-based F -tests for sig-
nificance of the regression. This is for the simple reason that they are coarse
tests of the overall regression model, adding little or nothing to the individual
t-tests presented earlier for each parameter. These individual parameter tests
are preferred because they are finer-grained.
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From this point on, we will no longer refer to these ANOVA tests of sig-
nificance for regression. Nevertheless, these same concepts take center stage
in Chapter 19 where they are central to analysis of designed experiments.

16.2.8 Relation to the Correlation Coefficient

In Chapter 5, we defined the correlation coefficient between two jointly
distributed random variables X and Y as:

ρ =
E[XY ]
σXσY

(16.104)

The sample version, obtained from data, known as the Pearson product mo-
ment correlation coefficient, is:

r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

(16.105)

If we now recall the expressions in Eqs (16.31)–(16.33), we immediately obtain,
in the context of regression analysis:

r =
Sxy√

Sxx

√
Syy

(16.106)

And now, in terms of the slope parameter estimate, we obtain from Eq (16.37),
first that

r = θ̂1

√
Sxx√
Syy

(16.107)

an expression we shall return to shortly. For now, let us return to the expres-
sion for R2 in Eq (16.97); if we introduce Eq (16.61) for SSE , we obtain

R2 = 1 − Syy − θ̂1Sxy

Syy
= θ̂1

Sxy

Syy
(16.108)

Upon introducing Eq (16.37) for θ̂1, we obtain the result that:

R2 =
(Sxy)2

SxxSyy
(16.109)

which, when compared with Eq (16.106) establishes the important result that
R2, the coefficient of determination, is the square of the sample correlation
coefficient, r; i.e.,

R2 = r2 (16.110)
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16.2.9 Mean-Centered Model

As obtained previously, the estimated observation from the regression
model is given by

ŷ = θ̂0 + θ̂1x (16.111)

and, from a rearrangement of Eq (16.38) used to estimate θ̂0, we obtain

ȳ = θ̂0 + θ̂1x̄ (16.112)

If we now subtract the latter equation from the former, we obtain:

(ŷ − ȳ) = θ̂1(x − x̄) (16.113)

which is a “mean-centered” version of the regression model.
If we now rearrange Eq (16.107) to express θ̂1 in terms of r and introduce

it into Eq (16.113), we obtain:

(ŷ − ȳ) = r

(
sy

sx

)
(x − x̄) (16.114)

where sy =
√

Syy/(n − 1) and sx =
√

Sxx/(n − 1) are respectively sample
estimates of the data standard deviation for y and for x. Alternatively, Eq
(16.114) could equivalently be written as

(ŷ − ȳ) =

√

R2

(
Syy

Sxx

)
(x − x̄) (16.115)

This equation provides the clearest indication of the impact of R2 on how
“strongly” the mean-centered value of the predictor, x, is connected by
the model to—and hence can be used to estimate—the mean-centered re-
sponse. Observe that in the density and ethanol weight percent example, with
R2 = 0.998, the connection between the predictor and response estimate is
particularly strong; with the cranial circumference–finger length example, the
connection is extremely weak, and the best estimate of the response (cranial
circumference) for any value of the predictor (finger length) is essentially the
mean value, ȳ.

16.2.10 Residual Analysis

While the statistical significance of the estimated parameters gives us some
information about the usefulness of a model, and while the R2 and R2

adj values
provide a measure of how much of the data’s variability has been captured
by the overall model, how well the model represents the data is most directly
determined from the difference between the actual observation, yi, and the
model estimate, ŷi, i.e., ei = yi− ŷi, i = 1, 2, . . . , n. These quantities, identified
earlier as residual errors (or simply as “residuals”), provide n different samples
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of how closely the model matches the data. If the model’s representation of the
data is adequate, the residuals should be nothing but purely random variation.
Any departure from pure random variation in the residuals is an indication
of some form or the other of model inadequacy. Residual analysis therefore
allows us to do the following:

1. Check model assumptions, specifically that ε ∼ N(0, σ2), with σ2 con-
stant;

2. Identify any “left over” systematic structural discrepancies between the
model and data; and

3. Identify which data points might be inconsistent with the others in the
set.

By formulation, the least-squares estimation technique always produces a
model for which

∑n
i=1 ei = 0, making the desired zero mean characteristics of

the model error sequence a non-issue. Residual analysis is therefore concerned
mostly with the following activities:

1. Formal and informal tests of normality of ei;

2. Graphical/visual evaluation of residual patterns;

3. Graphical/visual and numerical evaluation of individual residual mag-
nitude.

Other than formal normality tests (which involve techniques discussed in the
next chapter) residual analysis is more of an art involving various graphical
plots. When there is sufficient data, histograms of the residuals provide great
visual clues regarding normality quite apart from what formal tests show. In
many cases, however, available data is usually modest. Regardless of the data
size, plots of the residuals themselves versus the fitted value, ŷ, or versus data
order, or versus x, are not only capable of indicating model adequacy, they
also provide clues about the nature of the implied model inadequacy.

It is often recommended that residual plots be based not on the residual
themselves, but on the standardized residual,

e∗i =
ei

se
(16.116)

where, se, as we recall, is the estimate of σ, the data standard deviation. This
is because if the residuals are truly normally distributed, then −2 < e∗i < 2
for approximately 95% of the standardized residuals; and some 99% should lie
between −3 and 3. As a general rule-of-thumb, therefore, |e∗i | > 3 indicates a
value that is considered a potential “outlier” because it is inconsistent with
the others.

When a model appears inadequate, the recommendation is to look for clues
within the residuals for what to do next. The following examples illustrate
residual analysis for practical problems in engineering.
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TABLE 16.6: Thermal
conductivity measurements at various
temperatures for a metal

k (W/m-◦C) Temperature (◦C)
93.228 100
92.563 150
99.409 200
101.590 250
111.535 300
115.874 350
119.390 400
126.615 450

Example 16.5: TEMPERATURE DEPENDENCE OF THER-
MAL CONDUCTIVITY
To characterize how the thermal conductivity, k (W/m-◦C), of a metal
varies with temperature, 8 independent experiments were performed at
the temperatures, T ◦C, shown in Table 16.6 along with the measured
thermal conductivities. A two-parameter model as in Eq 16.19 has been
postulated for the relationship between k and T . Obtain a least-squares
estimate of the parameters and evaluate the model fit to the data.

Solution:
We use MINITAB and obtain the following results:

Regression Analysis: k versus Temperature
The regression equation is
k = 79.6 + 0.102 Temperature

Predictor Coef SE Coef T P
Constant 79.555 2.192 36.29 0.000
Temperature 0.101710 0.007359 13.82 0.000

S = 2.38470 R-Sq = 97.0% R-Sq(adj) = 96.4%

Therefore, as before, representing the thermal conductivity as y, and
temperature as x, the fitted regression line equation is

ŷ = 0.102x + 79.6 (16.117)

The p-values associated with each parameter is zero, implying that both
parameters are significantly different from zero. The estimate of the data
standard deviation is shown as S; and the R2 and R2

adj values indicate
that the model captures a reasonable amount of the variability in the
data.

The actual model fit to the data is shown in the top panel of Fig
16.8 while the standardized residuals versus fitted value, ŷi, is shown
in the bottom panel. With only 8 data points, there are not enough
residuals for a histogram plot. Nevertheless, upon visual examination
of the residual plots, there appears to be no discernible pattern, nor is
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there any reason to believe that the residuals are anything but purely
random. Note that no standardized residual value exceeds ±2.

The model is therefore considered to provide a reasonable repre-

sentation of how the thermal conductivity of this metal varies with
temperature.

The next example illustrates a practical circumstance where the residuals
not only expose the inadequacy of a linear regression model, but also provide
clues concerning how to rectify the inadequacy.

Example 16.6: BOILING POINT OF HYDROCARBONS
It has been proposed to represent with a linear two-parameter model,
the relationship between the number of carbon atoms in the hydrocar-
bon compounds listed in Table 16.1 and the respective boiling points.
Evaluate a least-squares fit of this model to the data.

Solution:
Using MINITAB produces the following results for this problem:

Regression Analysis: Boiling Point versus n
The regression equation is
Boiling Point = - 172.8 + 39.45 n

Predictor Coef SE Coef T P
Constant -172.79 13.26 -13.03 0.000
n 39.452 2.625 15.03 0.000

S = 17.0142 R-Sq = 97.4 % R-Sq(adj) = 97.0%

Therefore, as before, the fitted regression line equation is

ŷ = 39.45x − 172.8 (16.118)

with the hydrocarbon compound boiling point as y, and the number of
carbon atoms it contains as x.

We notice, once again, that for this model, the parameter values are
all significantly different from zero because the p-values are zero in each
case; furthermore, the R2 and R2

adj values are quite good. The error
standard deviation is obtained as S = 17.0142. By themselves, nothing
in these results seem out of place; one might even be tempted by the
excellent R2 and R2

adj values to declare that this is a very good model.
However, the model fit to the data, shown in the top panel of Fig 16.9,
tells a different story; and the normalized residuals versus fitted value,
ŷi, shown in the bottom panel, is particularly revealing. The model fit
shows a straight line model that very consistently overestimates BP at
the extremes and underestimates it in the middle. The standardized
residual versus model fit quantifies this under- and over-estimation and
shows a clear “left over” quadratic structure.

The implication clearly is that while approximately 97% of the rela-
tionship between n, the number of carbon atoms, and the hydrocarbon
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FIGURE 16.8: Modeling the temperature dependence of thermal conductivity. Top:
fitted straight line to the thermal conductivity (k) versus temperature (T ◦C) data in
Table 16.6; Bottom: standardized residuals versus fitted value, ŷi.
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BP has been captured by a linear relationship, there remains an unex-
plained, possibly quadratic, component that is clearly discernible. The
suggestion: consider a revised model of the type

Y = θ0 + θ1x + θ2x
2 (16.119)

Such a model is a bit more complicated, but the residual structure seems

to suggest that the additional term is warranted. How to obtain a model
of this kind is discussed shortly.

We revisit the problem illustrated in this example after completing a discussion
of more complicated regression models in the upcoming sections.

16.3 “Intrinsically” Linear Regression

16.3.1 Linearity in Regression Models

In estimating the vector of parameters θ contained in the general regression
model,

Y = g(x; θ) + ε

it is important to clarify what the term “linear” in linear regression refers to.
While it is true that the model:

Y = θ0 + θ1x + ε

is a linear equation because it represents a straight line relationship between Y
and x, what is actually of relevance in regression analysis is that this functional
form is linear with respect to the unknown parameter vector θ = (θ0, θ1). It
must be kept in mind in regression, that x is known and given; the parameters
θ are the unknowns to be determined by the regression exercise.

Thus, what is of importance in determining whether a regression problem
is linear or not is the functional form of g(x; θ) with respect to the vector of
parameters θ, not with respect to x. For example, if the regression model is
given as

Y = θ1x
n + ε, (16.120)

clearly this is a nonlinear function of x; however, so long as n is known, for
any given value of x, xn is also known, say xn = z; this equation is therefore
exactly equivalent to

Y = θ1z + ε, (16.121)

which is clearly linear. Thus, even though nonlinear in x, Eq (16.120) never-
theless represents a linear regression problem because the model equation is
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FIGURE 16.9: Modeling the dependence of the boiling points (BP) of hydrocarbon
compounds in Table 16.1 on the number of carbon atoms in the compound. Top: fit-
ted straight line of BP versus n, the number of carbon atoms; Bottom: standardized
residuals versus fitted value ŷi. Notice the distinctive quadratic structure “left over”
in the residuals exposing the linear model’s over-estimation at the extremes and the
under-estimation in the middle.
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linear in the unknown parameter θ. On the other hand, the model represent-
ing how the concentration C(t) of a reactant undergoing a first order kinetic
reaction in a batch reactor changes with time,

C(t) = θ0e
−θ1t (16.122)

with time, t, as the independent variable, along with θ0 and θ1 respectively as
the unknown initial concentration and kinetic reaction rate constant, repre-
sents a truly nonlinear regression model. This is because one of the unknown
parameters, θ1, enters the model nonlinearly; the model is linear in the other
parameter θ0.

As far as regression is concerned, therefore, whether the problem at hand
is linear or nonlinear, depends on whether the parameter sensitivity function,

Sθi =
∂g

∂θi
(16.123)

is a function of θi or not. For linear regression problems Sθi is independent
of θi for all i; the defining characteristics of nonlinear regression is that Sθi

depends on θi for at least one i.

Example 16.7: LINEAR VERSUS NONLINEAR REGRES-
SION PROBLEMS
Which of the following three models presents a linear or nonlinear re-
gression problem in estimating the indicated unknown parameters, θi?

(1) Y = θ0 + θ1x + θ2x
2 + θ3x

3 + ε (16.124)

(2) Y = θ1θ2
x + ε (16.125)

(3) Y = θ1e
x1 + θ2 lnx2 +

θ3

x3
+ ε (16.126)

Solution:
Model (1) presents a linear regression problem because each of the sen-
sitivities, Sθ0 = 1; Sθ1 = x; Sθ2 = x2; and Sθ3 = x3, is free of the
unknown parameter on which it is based, i.e., Sθi is not a function of
θi for i = 0, 1, 2, 3. In fact, all the sensitivities are entirely free of all
parameters.

Model (2) on the other hand presents a nonlinear regression problem:
Sθ1 = θ2

x does not depend on θ1, but

Sθ2 = θ1xθ2
x−1 (16.127)

depends on θ2. Thus, while this model is linear in θ1 (because the sen-
sitivity to θ1 does not depend on θ1), it is nonlinear in θ2; therefore, it
presents a nonlinear regression problem.

Model (3) presents a linear regression problem: Sθ1 = ex1 ; Sθ2 =

lnx2, are both entirely free of unknown parameters.
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16.3.2 Variable Transformations

A restricted class of truly nonlinear regression models may be converted
to linear models via appropriate variable transformations; linear regression
analysis can then be carried out in terms of the transformed variables. For
example, observe that even though the reactant concentration model in Eq
(16.122) has been identified as nonlinear in the parameters, a logarithmic
transformation results in:

ln C(t) = ln θ0 − θ1t (16.128)

In this case, observe that if we now let Y = lnC(t), and let θ∗0 = ln θ0, then
Eq (16.128) represents a linear regression model.

Such cases abound in chemical engineering. For example, the equilibrium
vapor mole fraction, y, as a function of liquid mole fraction, x, of a compound
with relative volatility α is given by the expression:

y =
αx

1 + (α − 1)x
(16.129)

It is an easy exercise to show that by inverting this equation, we obtain:

1
y

= θ
1
x

+ (1 − θ) (16.130)

so that 1/y versus 1/x produces a linear regression problem.
Such models are said to be “intrinsically” linear because while nonlinear in

their original variables, they are linear in a different set of transformed vari-
ables; the task is to find the required transformation. Nevertheless, the careful
reader would have noticed something missing from these model equations: we
have carefully avoided introducing the error terms, ε. This is for the simple
reason that in virtually all cases, if the error term is additive, then even the
obvious transformations are no longer possible. For example, if each actual
concentration measurement, C(ti), observed at time ti has associated with it
the additive error term εi, then Eq (16.122) must be rewritten as

C(ti) = θ0e
−θ1ti + εi (16.131)

and the logarithmic transformation is no longer possible.
Under such circumstances, most “practitioners” will suspend the addition

of the error term until after the function has been appropriately transformed;
i.e., instead of writing the model as in Eq (16.131), it would be written as:

ln C(ti) = ln θ0 − θ1ti + εi (16.132)

But this implies that the error is multiplicative in the original variable. It is
important, before taking such a step, to take time to consider whether such a
multiplicative error structure is reasonable or not.
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Thus, in employing transformations to deal with these so-called intrinsi-
cally linear models, the most important issue lies in determining the proper
error structure. Such transformations should be used with care; alternatively,
the parameter estimates obtained from such an exercise should be consid-
ered as approximations that may require further refinement by using more
advanced nonlinear regression techniques. Notwithstanding, many engineer-
ing problems involving models of this kind have benefited from the sort of
linearizing transformations discussed here.

16.4 Multiple Linear Regression

In many cases, the response variable Y depends on several independent
variables, x1, x2, . . . , xm. Under these circumstances, the simplest possible re-
gression model is:

Y = θ0 + θ1x1 + θ2x2 + · · · + θmxm + ε (16.133)

with m independent predictor variables, xi; i = 1, 2, . . . , m, and m+1 unknown
parameters, θ = (θ0, θ1, . . . , θm), the “regression coefficients.” Eq (16.133)
represents a multiple linear regression model. An example is when Y , the
conversion obtained from a catalytic process depends on the temperature, x1,
and pressure, x2, at which the reactor is operated, according to:

Y = θ0 + θ1x1 + θ2x2 + ε (16.134)

Just as the expected value of the response in Eq (16.19) represents a straight
line, the expected value in Eq (16.133) represents an m-dimensional hyper-
plane.

However, there is no reason to restrict the model to the form in Eq (16.133).
With more than one independent variable, it is possible for the response vari-
able to depend on higher order powers of, as well as interactions between,
some of the variables; for example, a better representation of the relationship
between yield and temperature and pressure might be:

Y = θ0 + θ1x1 + θ2x2 + θ11x
2
1 + θ22x

2
2 + θ12x1x2 + ε (16.135)

Such models as these are often specifically referred to as “response surface”
models and we shall have cause to revisit them later on in upcoming chapters.
For now, we note that in general, most multiple regression models are, for the
most part, justified as approximations to the more general expression,

Y = g(x1, x2, . . . , xm; θ) + ε (16.136)

where neither the true form of g(x1, x2, . . . , xm; θ), nor the parameters, θ
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are known. If g(.) is analytic, then by taking a Taylor series expansion and
truncating after a pre-specified number of terms, the result will be a multiple
regression model. The multiple regression function is therefore often justified
as a Taylor series approximation of an unknown, and perhaps more complex,
function. For example, Eq (16.135) arises when the Taylor expansion only goes
up to the second order.

Regardless of what form the regression model takes, keep in mind that so
long as the values of the independent variables are known, all such models can
always be recast in the form shown in Eq (16.133). For example, even though
there are two actual predictor variables x1 and x2 in the model in Eq (16.135),
if we define “new” variables x3 = x2

1; x4 = x2
2; x5 = x1x2, then Eq (16.135)

immediately becomes like Eq (16.133) with m = 5. Thus, it is without loss
of generality that we consider Eq (16.133) as the general multiple regression
model.

Observe that the model in Eq (16.133) is a direct generalization of the two-
parameter model in Eq (16.19); we should therefore expect the procedure for
estimating the increased number of parameters to be similar to the procedure
discussed earlier. While this is true in principle, the analysis is made more
tractable by using matrix methods, as we now show.

16.4.1 General Least Squares

Obtaining estimates of the m parameters, θi, i = 1, 2, . . . , m, from data
(yi; x1i, x2i, . . . , xmi) via the least-squares technique involves minimizing the
sum-of-squares function,

S(θ) =
n∑

i=1

[yi − (θ0 + θ1x1i + θ2x2i + · · · + θmxmi)]2 (16.137)

The technique calls for taking derivatives with respect to each parameter, set-
ting the derivative to zero and solving the resultant equations for the unknown
parameters, i.e.,

∂S

∂θ0
= −2

n∑

i=1

[yi − (θ0 + θ1x1i + θ2x2i + · · · + θmxmi)] = 0 (16.138)

and for 1 ≤ j ≤ m,

∂S

∂θj
= −2

n∑

i=1

xji[yi − (θ0 + θ1x1i + θ2x2i + · · · + θmxmi)] = 0 (16.139)
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These expressions rearrange to give the general linear regression normal equa-
tions:

n∑

i=1

yi = θ0n + θ1

n∑

i=1

x1i + θ2

n∑

i=1

x2i + · · · + θm

n∑

i=1

xmi

n∑

i=1

yix1i = θ0

n∑

i=1

x1i + θ1

n∑

i=1

x2
1i + θ2

n∑

i=1

x2ix1i + · · · + θm

n∑

i=1

xmix1i

n∑

i=1

yixji = θ0

n∑

i=1

xji + θ1

n∑

i=1

x1ixji + θ2

n∑

i=1

x2ixji + · · · + θm

n∑

i=1

xmixji

m+1 linear equations to be solved simultaneously to produce the least-squares
estimates for the m + 1 unknown parameters. Even with a modest number of
parameters, such problems are best solved using matrices.

16.4.2 Matrix Methods

For specific data sets, (yi; x1i, x2i, . . . , xmi); i = 1, 2, . . . , n, the multiple
regression model equation in Eq (16.133) may be written as,





y1

y2
...

yn




=





1 x11 x12 · · · x1m

1 x21 xx2 · · · x2m
...

...
...

...
...

1 xn1 xn2 · · · xnm









θ0

θ1
...

θm




+





ε1
ε2
...

εn




(16.140)

which may be consolidated into the explicit matrix form,

y = Xθ + ε (16.141)

where y is the n-dimensional vector of response observations, with X as the
n × m matrix of values of the predictor variables used to generate the n
observed responses; θ is the m-dimensional vector of unknown parameters, and
ε is the n-dimensional vector of random errors associated with the response
observations. Obtaining the least-squares estimate of the parameter vector
involves the same principle of minimizing the sum of squares, which, this time
is given by

S(θ) = (y − Xθ)T (y − Xθ) (16.142)

where the superscript, T , represents the vector or matrix transpose. Taking
derivatives with respect to the parameter vector θ and setting the result to
zero yields:

∂S

∂θ
= −2XT (y − Xθ) = 0 (16.143)

resulting finally in the matrix form of the normal equations:

XT y = XTXθ (16.144)
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(compare with series of equations shown earlier). This matrix equation is
easily solved for the unknown parameter vector to produce the least-squares
solution:

θ̂ =
(
XTX

)−1
XTy (16.145)

Properties of the Estimates

To characterize the estimates, we begin by introducing Eq (16.141) into
Eq (16.145) for y to obtain:

θ̂ =
(
XTX

)−1
XT (Xθ + ε)

= θ +
(
XTX

)−1
XT ε (16.146)

We may now use this expression to obtain the mean and variance of these
estimates as follows. First, by taking expectations, we obtain:

E(θ̂) = θ +
(
XT X

)−1
XT E(ε)

= θ (16.147)

because X is known and E(ε) = 0. Thus, the least-squares estimate θ̂ as given
in Eq (16.145) is unbiased for θ. As for the co-variance of the estimates, first,
by definition, E(εεT ) = Σ is the random error covariance matrix; then from
the assumption that each εi is independent, and identically distributed, with
the same variance, σ2, we have that

Σ = σ2I (16.148)

where σ2 is the variance associated with each random error, and I is the
identity matrix. As a result,

V ar(θ̂) = E
[
(θ̂ − θ)(θ̂ − θ)T

]
(16.149)

which, from Eq (16.146) becomes

V ar(θ̂) = E

[(
XTX

)−1
XT εεT X

(
XTX

)−1
]

=
(
XTX

)−1
XT E(εεT )X

(
XT X

)−1

=
(
XTX

)−1
XT σ2IX

(
XTX

)−1

=
(
XTX

)−1
σ2 (16.150)
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Thus, the covariance matrix of the estimates, Σθ̂ is given by

Σθ̂ =
(
XTX

)−1
σ2 (16.151)

As usual, σ2 must be estimated from data. With ŷ, the model estimate of
the response data vector y now given by:

ŷ = Xθ̂ (16.152)

the residual error vector, e, is therefore defined as:

e = y − ŷ (16.153)

so that the residual error sum-of-squares will be given by

SSE = eT e (16.154)

It can be shown that with p = m + 1 as the number of estimated parameters,
the mean error sum-of-squares

se =
eT e
n − p

(16.155)

is an unbiased estimate of σ.
Thus, following the typical normality assumption on the random error

component of the regression model, we now conclude that the least-squares
estimate vector, θ̂, has a multivariate normal distribution, MV N(θ,Σθ̂), with
the covariance matrix as given in Eq (16.151). This fact is used to test hy-
potheses regarding the significance or otherwise of the parameters in precisely
the same manner as before. The t-statistic arises directly from substituting
data estimate se for σ in Eq (16.151).

Thus, when cast in matrix form, the multiple regression problem is seen
to be merely a higher dimensional form of the earlier simple linear regression
problem; the model equations are structurally similar:

y = Xθ + ε

y = θx + ε

as are the least-squares solutions:

θ̂ =
(
XTX

)−1
XTy

θ̂ =
∑n

i=1 xiyi∑n
i=1 x2

i

or θ̂ =
Sxy

Sxx
(16.156)
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The computations for multiple regression problems become rapidly more com-
plex, but all the results obtained earlier for the simpler regression problem
transfer virtually intact, including hypothesis tests of significance for the pa-
rameters, the values for the coefficient of determination, R2 (and its “adjusted”
variant, R2

adj) for assessing the model adequacy in capturing the data informa-
tion. Fortunately, these computations are routinely carried out by computer
software packages. Nevertheless, the reader is reminded that the availability
of these computer programs has relieved us only of the computational burden;
the task of understanding what these computations are based upon remains
very much an important responsibility of the practitioner.

Residuals Analysis

The residuals in multiple linear regression are given by Eq (16.153). Ob-
taining the standardized version of residuals in this case requires the intro-
duction of a new matrix, H, the so-called “hat matrix.” Introducing the least-
squares estimate into the expression for the vector of model estimates in Eq
(16.152) yields:

ŷ = X
(
XT X

)−1
XTy = Hy (16.157)

where
H = X

(
XTX

)−1
XT (16.158)

is called the “hat” matrix because it relates the actual observations vector,
y, to the vector of model fits, ŷ. This matrix has some unique characteristics:
for example, it is an idempotent matrix, meaning that

HH = H (16.159)

The residual vector, e = y − ŷ, may therefore be represented as:

e = y − ŷ = (I − H)y (16.160)

((I−H) is also idempotent). If hii represents the diagonal elements of H, the
standardized residuals are obtained for multiple regression problems as:

e∗i =
ei

se
√

1 − hii
(16.161)

These standardized residuals are the exact equivalents of the ones shown in
Eq (16.116) for the simple linear regression case.

The next example illustrates an application of these results.

Example 16.8: QUANTIFYING TEMPERATURE AND
PRESSURE EFFECTS ON YIELD
In an attempt to quantify the effect of temperature and pressure on the
yield obtained from a laboratory scale catalytic process, the data shown
in Table 16.7 was obtained from a series of designed experiments where
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FIGURE 16.10: Catalytic process yield data of Table 16.7.

temperature was varied over a relatively narrow range, from 85◦C to
100 ◦C, and pressure from 1.25 atmospheres to 2 atmospheres. If yield
is y, temperature is x1, and pressure is x2, obtain a regression model of
the type in Eq (16.135) and evaluate the model fit.

Solution:
A 3-dimensional scatter plot of the data is shown in Fig 16.10, where it
appears as if the data truly fall on a plane.

The results from an analysis carried out using MINITAB is as fol-
lows:

Regression Analysis: Yield versus Temp, Pressure
The regression equation is
75.9 + 0.0757 Temp + 3.21 Pressure

Predictor Coef SE Coef T P
Constant 75.866 2.924 25.95 0.000
Temp 0.07574 0.02977 2.54 0.017
Pressure 3.2120 0.5955 5.39 0.000

S = 0.941538 R-Sq = 55.1 % R-Sq(adj) = 52.0%

Thus, the fitted regression line equation is, in this case

ŷ = 75.9 + 0.0757x1 + 3.21x2 (16.162)

The p-values associated with all the parameters indicate significance;
the estimate of the error standard deviation is as shown (0.94) with
the R2 and R2

adj values indicating that the model explanation of the
variation in the data is only modest.

The fitted plane represented by Eq (16.162) and the standardized
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TABLE 16.7: Laboratory experimental
data on yield obtained from a catalytic
process at various temperatures and pressures

Yield (%) Temp (◦C) Pressure (Atm)
86.8284 85 1.25
87.4136 90 1.25
86.2096 95 1.25
87.8780 100 1.25
86.9892 85 1.50
86.8632 90 1.50
86.8389 95 1.50
88.0432 100 1.50
86.8420 85 1.75
89.3775 90 1.75
87.6432 95 1.75
90.0723 100 1.75
88.8353 85 2.00
88.4265 90 2.00
90.1930 95 2.00
89.0571 100 2.00
85.9974 85 1.25
86.1209 90 1.25
85.8819 95 1.25
88.4381 100 1.25
87.8307 85 1.50
89.2073 90 1.50
87.2984 95 1.50
88.5071 100 1.50
90.1824 85 1.75
86.8078 90 1.75
89.1249 95 1.75
88.7684 100 1.75
88.2137 85 2.00
88.2571 90 2.00
89.9551 95 2.00
90.8301 100 2.00
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residual errors are shown in Fig 16.11. There is nothing unusual about

the residuals but the relatively modest values of R2 and R2
adj seem to

suggest that the true model might be somewhat more complicated than

the one we have postulated and fitted here; it could also mean that there

is significant noise associated with the measurement, or both.

16.4.3 Some Important Special Cases

Weighted Least Squares

For a wide variety of reasons, ranging from xi variables with values that
are orders of magnitude apart (e.g., if x1 is temperature in the 100s of degrees,
while x2 is mole fraction, naturally scaled between 0 and 1), to measurement
errors with non-constant variance-covariance structures, it is often necessary
to modify the basic multiple linear regression problem by placing more or less
weight on different observations. Under these circumstances, the regression
model equation in Eq (16.141) is modified to:

Wy = WXθ + Wε (16.163)

where W is an appropriately chosen (n × n) weighting matrix. Note that
the pre-multiplication in Eq (16.163) has not changed the model itself; it
merely allows a re-scaling of the X matrix and/or the error vector. However,
the introduction of the weights does affect the solution to the least-squares
optimization problem. It can be shown that in this case, the sum-of-squares

S(θ) = (Wy − WXθ)T (Wy − WXθ) (16.164)

is minimized by

θ̂WLS =
(
XTWTWX

)−1
XT WT Wy (16.165)

This is known as the weighted least-squares (WLS) estimate, and it is easy to
establish that regardless of the choice of W,

E
(
θ̂WLS

)
= θ (16.166)

so that this is also an unbiased estimate of θ.
In cases where the motivation for introducing weights arises from the struc-

ture of the error covariance matrix, Σ, it is recommended that W be chosen
such that

WT W = Σ−1 (16.167)
Under these circumstances, the covariance matrix of the WLS estimate can
be shown to be given by:

Σθ̂WLS
=
(
XTΣ−1X

)−1
(16.168)

making it comparable to Eq (16.151). All regression packages provide an op-
tion for carrying out WLS instead of ordinary least squares.
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FIGURE 16.11: Catalytic process yield data of Table 16.1. Top: fitted plane of yield
as a function of temperature and pressure; Bottom: standardized residuals versus fitted
value ŷi. Nothing appears unusual about these residuals.
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Constrained Least Squares

Occasionally, one encounters regression problems in engineering where the
model parameters are subject to a set of linear equality constraints. For ex-
ample, in a blending problem where the unknown parameters, θ1, θ2, and θ3

to be estimated from experimental data, are the mole fractions of the three
component materials, clearly

θ1 + θ2 + θ3 = 1 (16.169)

In general such linear constraints are of the form:

Lθ = v (16.170)

When subject to such constraints, obtaining the least-squares estimate of the
parameters in the Eq (16.141) model now requires attaching these constraint
equations to the original problem of minimizing the sum-of-squares function
S(θ). It can be shown that when the standard tools of Lagrange multipliers
are used to solve this constrained optimization problem, the solution is:

θ̂CLS = θ̂ +
(
XTX

)−1
LT

[
L
(
XTX

)−1
LT

]−1

(v − Lθ̂) (16.171)

the constrained least-squares (CLS) estimate, where θ̂ is the normal, uncon-
strained least-squares estimate in Eq (16.145).

If we define a “gain” matrix:

Γ =
(
XTX

)−1
LT

[
L
(
XTX

)−1
LT

]−1

(16.172)

then Eq (16.171) may be rearranged to:

θ̂CLS = θ̂ + Γ(v − Lθ̂) (16.173)
or θ̂CLS = Γv + (I − ΓL)θ̂ (16.174)

where the former (as in Eq (16.171)) emphasizes how the constraints provide a
correction to the unconstrained estimate, and the latter emphasizes that θ̂CLS

provides a compromise between unconstrained estimates and the constraints.

Ridge Regression

The ordinary least-squares estimate, θ̂, given in Eq (16.145), will be un-
acceptable for “ill-conditioned” problems for which XT X is nearly singular
typically because the determinant, |XT X| ≈ 0. This will occur, for example,
when there is near-linear dependence in some of the predictor variables, xi, or
when some of the xi variables are orders of magnitude different from others,



Regression Analysis 693

and the problem has not been re-scaled accordingly. The problem created by
ill-conditioning manifests in the form of overly inflated values for the elements
of the matrix inverse (XT X)−1 as a result of the vanishingly small deter-
minant. Consequently, the norm of the estimate vector, θ̂, will be too large,
and the uncertainty associated with the estimates (see Eq (16.151)) will be
unacceptably large.

One solution is to augment the original model equation as follows:



y
· · ·
0



 =




X
· · ·
kI



θ + ε (16.175)

or,
y∗ = X∗θ + ε (16.176)

where 0 is an m-dimensional vector of zeros, k is a constant, and I is the
identity matrix. Instead of minimizing the original sum of squares function,
minimizing the sum of squares based on the augmented Eq (16.176) results in
the so-called ridge regression estimate:

θ̂RR = (XTX + k2I)−1XTy (16.177)

As is evident from Eq (16.175), the purpose of the augmentation is to use
the constant k to force the estimated parameters to be close to 0, preventing
over-inflation. As the value chosen for k increases, the conditioning of the
matrix (XT X + k2I) improves, reducing the otherwise inflated estimates θ̂.
However, this improvement is achieved at the expense of introducing bias into
the resulting estimate vector. Still, even though θ̂RR is biased, its variance is
much better than that of the original θ̂. (See Hoerl (1962)1 and Hoerl and
Kennard (1970a,2 1970b3).) Selecting an appropriate value of k is an art. (See
Marquardt (1970).4)

16.4.4 Recursive Least Squares

Problem Formulation

A case often arises in engineering where the experimental data used to esti-
mate parameters in the model in Eq (16.141) are available sequentially. After
accumulating a set of n observations, yi; i = 1, 2, . . . , n, and, subsequently

1Hoerl, A.E. (1962). “Application of ridge analysis to regression problems,” Chem. Eng.
Prog. 55, 54–59.

2Hoerl A.E., and R.W. Kennard. (1970). “Ridge regression. Biased estimation for
nonorthogonal problems,” Technometrics, 12, 55–67.

3Hoerl A.E., and R.W. Kennard. (1970). “Ridge regression. Applications to nonorthog-
onal problems,” Technometrics, 12, 69–82.

4Marquardt, D.W. (1970). “Generalized inverses, Ridge regression, Biased linear estima-
tion, and Nonlinear estimation,” Technometrics, 12, 591–612.
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using this n-dimensional data vector, yn, to obtain the parameter estimates
as:

θ̂n =
(
XTX

)−1
XTyn (16.178)

suppose that a new, single observation yn+1 then becomes available. This new
data can be combined with past information to obtain an updated estimate
that reflects the additional information about the parameter contained in the
data, information represented by:

yn+1 = xT
n+1θ + εn+1 (16.179)

where xT
n+1 is the m-dimensional vector of the independent predictor variables

used to generate this new (n + 1)th observation, and εn+1 is the associated
random error component.

In principle, we can append this new information to the old to obtain:



yn

· · ·
yn+1



 =




X
· · ·

xT
n+1



θ +




εn

· · ·
εn+1



 (16.180)

or, more compactly,
yn+1 = Xn+1θ + εn+1 (16.181)

so that the new X matrix, Xn+1, is now an (n + 1) × m matrix, with the
data vector yn+1 now of dimension (n + 1). From here, we can use these
new matrices and vectors to obtain the new least-squares estimate directly, as
before, to give:

θ̂n+1 =
(
XT

n+1Xn+1

)−1
XT

n+1yn+1 (16.182)

Again, in principle, we can repeat this exercise each time a new observation
becomes available. However, such a strategy requires that we recompute the
estimates from scratch every time as if for the first time. While it is true that
the indicated computational burden is routinely borne nowadays by comput-
ers, the fact that the information is available recursively raises a fundamental
question: instead of having to recompute the estimate θ̂n+1 all over again as
in Eq (16.182) every time new information is available, is it possible to de-
termine it by judiciously updating θ̂n directly with the new information? The
answer is provided by the recursive least-squares technique whereby θ̂n+1 is
obtained recursively as a function of θ̂n.

Recursive Least-Squares Estimation

We begin by obtaining the least-squares estimate, θ̂n+1, directly from the
partitioned matrices in Eq (16.180), giving the result

θ̂n+1 =
[
XTX + xn+1xT

n+1

]−1 [
XTyn + xn+1yn+1

]
(16.183)
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Now, let us define

Pn+1 =
[
XT X + xn+1xT

n+1

]−1
(16.184)

so that by analogy with Eq (16.178),

Pn =
(
XT X

)−1
; (16.185)

then,
P−1

n+1 = XTX + xn+1xT
n+1

From here, on the one hand, by simple rearrangement,

XTX = P−1
n+1 − xn+1xT

n+1 (16.186)

and on the other, using Eq (16.185),

P−1
n+1 = P−1

n + xn+1xT
n+1 (16.187)

Now, as a result of Eq (16.184), the least-squares estimate in Eq (16.183)
may be written as:

θ̂n+1 = Pn+1

[
XTyn + xn+1yn+1

]

= Pn+1XTyn + Pn+1xn+1yn+1 (16.188)

Returning briefly to Eq (16.178) from which

(XTX)θ̂n = XTyn,

upon introducing Eq (16.186), we obtain
(
P−1

n+1 − xn+1xT
n+1

)
θ̂n = XTyn (16.189)

Introducing this into Eq (16.188) yields

θ̂n+1 = Pn+1

(
P−1

n+1 − xn+1xT
n+1

)
θ̂n + Pn+1xn+1yn+1

or, θ̂n+1 = θ̂n + Pn+1xn+1

(
yn+1 − xT

n+1θ̂n

)
(16.190)

This last equation is the required recursive expression for determining θ̂n+1

from θ̂n and new response data, yn+1, generated with the new values xT
n+1

for the predictor variables. The “gain matrix,” Pn+1, is itself generated re-
cursively from Eq (16.187). And now, several points are worth noting:

1. The matrix Pn is related to the covariance matrix of the estimate, θ̂n

(see Eq (16.151)), so that Eq (16.187) represents the recursive evolution
of the covariance of the estimates as n increases;
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2. The term in parentheses in Eq (16.190) resembles a correction term,
the discrepancy between the actual observed response, yn+1, and an à-
priori value predicted for it (before the new data is available) using the
previous estimate, θ̂n, and the new predictor variables, xT

n+1;

3. This recursive procedure allows us to begin with an initial estimate, θ̂0,
along with a corresponding (scaled) covariance matrix, P0, and proceed
recursively to estimate the true value of the parameters one data point at
a time, using Eq (16.187) first to obtain an updated covariance matrix,
and Eq (16.190) to update the parameter estimate;

4. Readers familiar with Kalman filtering in dynamical systems theory will
immediately recognize the structural similarity between the combination
of Eqs (16.187) and (16.190) and the discrete Kalman filter.

16.5 Polynomial Regression

16.5.1 General Considerations

A special case of multiple linear regression occurs when, in Eq (16.133),
the response Y depends on powers of a single predictor variable, x, i.e.,

Y = θ0 + θ1x + θ2x
2 + · · · + θmxm + ε (16.191)

in which case xi = xi. An example was given earlier in Eq (16.135), with Y
as a quadratic function of x.

This class of regression models is important because, in engineering, many
unknown functional relationships, y(x), can be approximated by polynomials.
Because Eq (16.191) is a special case of Eq (16.133), all the results obtained
earlier for the more general problem transfer directly, and there is not much to
add for this restricted class of problems. However, in terms of practical appli-
cation, there are some peculiarities unique to polynomial regression analysis.

In many practical problems, the starting point in polynomial regression
is often a low order linear model; when residual analysis indicates that the
simple model is inadequate, the model complexity is then increased, typically
by adding the next higher power of x, until the model is deemed “adequate.”
But one must be careful: fitting an mth order polynomial to m+1 data points
(e.g., fitting a straight line to 2 points) will produce a perfect R2 = 1 but
the parameter estimates will be unreliable. The primary pitfall to avoid in
such an exercise is therefore “overfitting,” whereby the polynomial model is
of an order higher than can be realistically supported by the data. Under
such circumstances, the improvement in R2 must be cross-checked against the
corresponding R2

adj value.
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The next examples illustrate the application of polynomial regression.

Example 16.9: BOILING POINT OF HYDROCARBONS:
REVISITED
In Example 16.6, a linear two-parameter model was postulated for the
relationship between the number of carbon atoms in the hydrocarbon
compounds listed in Table 16.1 and the respective boiling points. Upon
evaluation, however, the model was found to be inadequate; specifically,
the residuals indicated the potential for a “left over” quadratic compo-
nent. Postulate the following quadratic model,

Y = θ0 + θ1x + θ2x
2 + ε (16.192)

and evaluate a least-squares fit of this model to the data. Compare this
model fit to the simple linear model obtained in Example 16.6.

Solution:
Once more, when we use MINITAB for this problem, we obtain the fol-
lowing results:

Regression Analysis: Boiling Point versus n, n2
The regression equation is
Boiling Point = - 218 + 66.7 n - 3.02 n2

Predictor Coef SE Coef T P
Constant -218.143 8.842 -24.67 0.000
n 66.667 4.508 14.79 0.000
n2 -3.0238 0.4889 -6.18 0.002

S = 6.33734 R-Sq = 99.7% R-Sq(adj) = 99.6%

Thus, the fitted quadratic regression line equation is

ŷ = −218.14 + 66.67x − 3.02x2 (16.193)

where, as before, y is the hydrocarbon compound boiling point, and the
number of carbon atoms it contains is x.

Note how the estimates for θ0 and θ1 are now different from the
respective values obtained when these were the only two parameters in
the model. This is a natural consequence of adding a new component
to the model; the responsibility for capturing the variability in the data
is now being shared by three parameters instead of two, and the best
estimates of the model parameter set will change accordingly.

Before inspecting the model fit and the residuals, we note first that
the three parameters in this case also are all significantly different from
zero (the p-values are zero for the constant term and the linear term
and 0.002 for the quadratic coefficient). As expected, there is an im-
provement in R2 for this more complicated model (99.7% versus 97.4%
for the simpler linear model); furthermore, this improvement was also
accompanied by a commensurate improvement in R2

adj (99.6% versus
97.0% for the simpler model). Thus, the improved model performance
was not achieved at the expense of overfitting, indicating that the added
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quadratic term is truly warranted. The error standard deviation also
shows an almost three-fold improvement from S = 17.0142 for the lin-
ear model to S = 6.33734, again indicating that more of the variability
in the data has been captured by the more complicated model.

The model fit to the data, shown in the top panel of Fig 16.12,
indicates a much-improved fit, compared with the one in the top panel
of Fig 16.9. This is also consistent with everything we have noted so
far. However, the normalized residuals versus fitted values, plotted in
the bottom panel of Fig 16.12 shows that there is still some “left over”
structure, the improved fit notwithstanding. The implication is that
perhaps an additional cubic term might be necessary to capture the
remaining structural information still visible in the residual plot. This
suggests further revising the model as follows:

Y = θ0 + θ1x + θ2x
2 + θ3x

3 + ε (16.194)

The problem of fitting an adequate regression model to the data in Table 16.1
concludes with this next example.

Example 16.10: BOILING POINT OF HYDROCARBONS:
PART III
As a follow up to the analysis in the last example, fit the cubic equation

Y = θ0 + θ1x + θ2x
2 + θ3x

3 + ε (16.195)

to the data in Table 16.1, evaluate the model fit, and compare it to the
fit obtained in Example 16.9.

Solution:
This time around, the MINITAB results are as follows:

Regression Analysis: Boiling Point versus n, n2, n3
The regression equation is
Boiling Point = - 244 + 93.2 n - 9.98 n2 + 0.515 n3

Predictor Coef SE Coef T P
Constant -243.643 8.095 -30.10 0.000
n 93.197 7.325 12.72 0.000
n2 -9.978 1.837 -5.43 0.006
n3 0.5152 0.1348 3.82 0.019

S = 3.28531 R-Sq = 99.9% R-Sq(adj) = 99.9%

The fitted cubic regression equation is

ŷ = −243.64 + 93.20x − 9.98x2 + 0.515x3 (16.196)

Note that the estimates for θ0 and θ1 have changed once again, as has
the estimate for θ2. Again, this is a natural consequence of adding the
new parameter, θ3, to the model.

As a result of the p-values, we conclude once again, that all the four
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FIGURE 16.12: Modeling the dependence of the boiling points (BP) of hydrocarbon
compounds in Table 16.1 on the number of carbon atoms in the compound. Top: Fitted
quadratic curve of BP versus n, the number of carbon atoms; Bottom: standardized
residuals versus fitted value ŷi. Despite the good fit, the visible systematic structure still
“left over” in the residuals suggests adding one more term to the model.
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parameters in this model are significantly different from zero; the R2

and R2
adj values are virtually perfect and identical, indicating that the

expenditure of four parameters in this model is justified.

The error standard deviation has improved further by a factor of

almost 2 (from S = 6.33734 for the quadratic model to S = 3.28531 for

this cubic model) and the model fit to the data shows this improvement
graphically in the top panel of Fig 16.13. This time, the residual plot in

the bottom panel of Fig 16.13 shows no significant “left over” structure.
Therefore, in light of all the factors considered above, we conclude that

the cubic fit in Eq (16.196) appears to provide an adequate fit to the

data; and that this has been achieved without the expenditure of an
excessive number of parameters.

A final word: While polynomial models may provide adequate representations
of data (as in the last example), this should not be confused with a fundamen-
tal scientific explanation of the underlying relationship between x and Y . Also,
it is not advisable to extrapolate the model prediction outside of the range
covered by the data used to fit the model. For example, the model in this last
example should not be used to predict the boiling point of hydrocarbons with
carbon atoms ≥ 9.

16.5.2 Orthogonal Polynomial Regression

Let pi(x); i = 0, 1, 2, . . . , m, be a sequence of ith order polynomials in the
single independent variable, x, defined on an interval [xL, xR] on the real line.
For our purposes here, these polynomials take on discrete values pi(xk) at
equally spaced values xk; k = 1, 2, . . . , n, in the noted interval. The sequence
of polynomials constitutes an orthogonal set if the following conditions hold:

n∑

k=1

pi(xk)pj(xk) =
{

ψ2
i i = j;

0 i $= j
(16.197)

An Example: Gram Polynomials

Without loss of generality, let the independent variable x be defined in the
interval [−1, 1] (for variables defined on [xl, xR], a simple scaling transforma-
tion is all that is required to obtain a corresponding variable defined instead
on [−1, 1]); furthermore, let this interval be divided into n equal discrete in-
tervals, k = 1, 2, . . . , n, to provide n values of x at x1, x2, . . . , xn, such that
x1 = −1, xn = 1, and in general,

xk =
2(k − 1)
n − 1

− 1 (16.198)
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FIGURE 16.13: Modeling the dependence of the boiling points (BP) of hydrocarbon
compounds in Table 16.1 on the number of carbon atoms in the compound. Top: fitted
cubic curve of BP versus n, the number of carbon atoms; Bottom: standardized residuals
versus fitted value ŷi. There appears to be little or no systematic structure left in the
residuals, suggesting that the cubic model provides an adequate description of the data.
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The set of Gram polynomials defined on [−1, 1] for xk as given above is,

p0(xk) = 1
p1(xk) = xk

p2(xk) = x2
k − (n + 1)

3(n − 1)

p3(xk) = x3
k −

[
(3n2 − 7)
5(n − 1)2

]
xk

...
...

p)+1(x) = xk p)(xk) −
[

32(n2 − 32)
(432 − 1)(n − 1)2

]
p)−1(xk) (16.199)

where each polynomial in the set is generated from the “recurrence relation”
in Eq (16.199), given the initial two, p0(xk) = 1 and p1(xk) = xk.

Example 16.11: ORTHOGONALITY OF GRAM POLYNO-
MIALS
Obtain the first four Gram polynomials determined at n = 5 equally
spaced values, xk, of the independent variable, x, on the interval
−1 ≤ x ≤ 1. Show that these polynomials are mutually orthogonal.

Solution:
First, from Eq (16.198), the values xk at which the polynomials are to
be determined in the interval 1 ≤ x ≤ 1 are:

x1 = −1; x2 = −0.5; x3 = 0; x4 = 0.5; x5 = 1.

Next, let the 5-dimensional vector, pi; i = 0, 1, 2, 3, represent the
values of the polynomial pi(xk) determined at these 5 xk values: i.e.,

pi =





pi(x1)
pi(x2)

...
pi(x5)




(16.200)

Then, from the expressions given above, we obtain, using n = 5, that:

p0 =





1
1
1
1
1




; p1 =





−1
−0.5

0
0.5
1




; p2 =





0.50
−0.25
−0.50
−0.25
0.50




; p3 =





−0.15
0.30
0.00
−0.30
0.15





A plot of these values is shown in Fig 16.14 where we see that p0(xk) is
a constant, p1(xk) is a straight line, p2(xk) is a quadratic and p3(xk) is
a cubic, each one evaluated at the indicated discrete points.

To establish orthogonality, we compute inner products, pT
i pj , for
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FIGURE 16.14: Gram polynomials evaluated at 5 discrete points k = 1, 2, 3, 4, 5; p0

is the constant; p1, the straight line; p2, the quadratic; and p3, the cubic.

all combinations of i != j. First, we note that pT
0 pj is simply a sum of

all the elements in each vector, which is uniformly zero in all cases, i.e.,

pT
0 pj =

5∑

k=1

pj(xk) = 0 (16.201)

Next, we obtain:

pT
1 p2 =

5∑

k=1

p1(xk)p2(xk) = −0.500 + 0.125 + 0.000 − 0.125 + 0.500 = 0

pT
1 p3 =

5∑

k=1

p1(xk)p3(xk) = 0.15 − 0.15 + 0.00 − 0.15 + 0.15 = 0

pT
2 p3 =

5∑

k=1

p2(xk)p3(xk) = −0.075 − 0.075 + 0.000 + 0.075 + 0.075 = 0

For completeness, the sums of squares, ψ2
i , are obtained below (note

monotonic decrease):

ψ2
0 = pT

0 p0 =
5∑

k=1

p0(xk)p0(xk) = 5

ψ2
1 = pT

1 p1 =
5∑

k=1

p1(xk)p1(xk) = 2.5

ψ2
2 = pT

2 p2 =
5∑

k=1

p2(xk)p2(xk) = 0.875
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ψ2
3 = pT

3 p3 =
5∑

k=1

p3(xk)p3(xk) = 0.225

Application in Regression

Among many attractive properties possessed by orthogonal polynomials,
the following is the most relevant to the current discussion:

Orthogonal Basis Function Expansion: Any mth order polynomial,
U(x), can be expanded in terms of an orthogonal polynomial set,
p0(x), p1(x), . . . , pm(x), as the basis functions, i.e.,

U(x) =
m∑

i=0

αipi(x) (16.202)

This result has some significant implications for polynomial regression in-
volving the single independent variable, x. Observe that as a consequence of
this result, the original mth order polynomial regression model in Eq (16.191)
can be rewritten as

Y (x) = α0p0(x) + α1p1(x) + α2p2(x) + · · · + αmpm(x) + ε (16.203)

where we note that, given any specific set of orthogonal polynomial basis, the
one-to-one relationship between the original parameters, θi, and the new set,
αi, is easily determined. Regression analysis is now concerned with estimating
the new set of parameters, αi, instead of the old set, θi, a task that is rendered
dramatically easier because of the orthogonality of the basis set, pi(x), as we
now show.

Suppose that the data yi; i = 1, 2, . . . , n, have been acquired using equally
spaced values xk; k = 1, 2, . . . , n, in the range [xL, xR] over which the orthog-
onal polynomial set, pi(x), is defined. In this case, from Eq (16.203), we will
have:

y(x1) = α0p0(x1) + α1p1(x1) + α2p2(x1) + · · · + αmpm(x1) + ε1

y(x2) = α0p0(x2) + α1p1(x2) + α2p2(x2) + · · · + αmpm(x2) + ε2
...

...
y(xn) = α0p0(xn) + α1p1(xn) + α2p2(xn) + · · · + αmpm(xn) + εn

which, when written in matrix form, becomes:

y = Pα + ε (16.204)
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The matrix P consists of vectors of the orthogonal polynomials computed
at the discrete values xk, just as we showed in Example 16.10 for the Gram
polynomials. The least-squares solution to this equation,

α̂ =
(
PTP

)−1
PTy, (16.205)

looks very much like what we have seen before, until we recall that, as a re-
sult of the orthogonality of the constituent elements of P, the matrix PTP is
diagonal, with elements ψ2

i , because all the off-diagonal terms vanish identi-
cally (see Eq (16.197) and Example 16.10)). As a result, the expression in Eq
(16.205) is nothing but a collection of n isolated algebraic equations,

α̂i =
∑n

k=1 pi(xk)y(xk)
ψ2

i

(16.206)

where

ψ2
i =

n∑

k=1

pi(xk)pi(xk); i = 0, 1, . . .m. (16.207)

This approach has several additional advantages beyond the dramatically sim-
plified computation:

1. Each parameter estimate, α̂i, is independent of the others, and its value
remains unaffected by the order chosen for the polynomial model. In
other words, after obtaining the first m parameter estimates for an mth

order polynomial model, should we decide to increase the polynomial
order to m + 1, the new parameter estimate, α̂m+1, is simply obtained
as

α̂m+1 =
∑n

k=1 pm+1(xk)y(xk)
ξ2
m+1

(16.208)

using the very same data set y(xk), and only introducing pm+1(k), a pre-
computed vector of the (m+1)th polynomial. All the previously obtained
values for α̂i; i = 1, 2, . . . , m, remain unchanged. This is very convenient
indeed. Recall that this is not the case with regular polynomial regres-
sion (see Examples 16.9 and 16.10) where a change in the order of the
polynomial model mandates a change in the values estimated for the
new set of parameters.

2. From earlier results, we know that the variance associated with the es-
timates, α̂i, is given by:

Σα̂ =
(
PTP

)−1
σ2 (16.209)

But, by virtue of the orthogonality of the elements of the P matrix, this
reduces to:

σ2
α̂i

=
σ2

ψ2
(16.210)
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and since the value for the term ψ2
i , defined as in Eq (16.207), is de-

termined strictly by the placement of the “design” points, xk, where
the data is obtained, Eq (16.210) indicates that this approach makes
it possible to select experimental points such as to influence the vari-
ance of the estimated parameters favorably, with obvious implications
for strategic design of experiments.

3. Finally, it can be shown that ψ2
i decreases monotonically with i, indicat-

ing that the precision with which coefficients of higher order polynomials
are estimated worsens with increasing order. This is also true for regular
polynomial regression, but it is not as obvious.

An example of how orthogonal polynomial regression has been used in
engineering applications may be found in Kristinsson and Dumont (1993,5
19966).

16.6 Summary and Conclusions

The fitting of simple empirical mathematical expressions to data is an
activity with which many engineers and scientists are very familiar, and per-
haps have been engaged in even since high school. This chapter has therefore
been more or less a re-introduction of the reader to regression analysis, es-
pecially to the fundamental principles behind the mechanical computations
that are now routinely carried out with computer software. We have shown
regression analysis to be a direct extension of estimation to cases where the
mean of the random variation in the observations is no longer constant (as
in our earlier discussions) but now varies as a function of one or more in-
dependent variables. The primary problem in regression analysis is therefore
the determination of the unknown parameters contained in the functional re-
lationship (the regression model equation), given appropriate experimental
data. The primary method discussed in this chapter for carrying out this task
is the method of least squares. However, when regression analysis is cast as
the probabilistic estimation problem that it truly is fundamentally, one can
also employ the method of maximum likelihood to determine the unknown
parameters. However, this requires the explicit specification of a probability
distribution for the observed random variability—something not explicitly re-
quired by the method of least squares. Still, under the normal distribution

5Kristinsson, K. and G. A. Dumont. (1993),“Paper Machine Cross Directional Basis
Weight Control Using Gram Polynomials,” Proceedings of the Second IEEE Conference on
Control Applications, p 235–240, September 13–16, Vancouver, B.C.

6Kristinsson K. and G. A. Dumont. (1996), “Cross-directional control on paper machines
using Gram polynomials,” Automatica 32 (4), 533–548.
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assumption, maximum likelihood estimates of the regression model param-
eters coincide precisely with least squares estimates (see Exercises 16.5 and
16.6).

In addition to the familiar, we have also presented some results for special-
ized problems, for example, when variances are not uniform across observa-
tions (weighted least squares); when the parameters are not independent but
are subject to (linear) constraints (constrained least squares); when the data
matrix is poorly conditioned perhaps because of collinearity (ridge regres-
sion); and when information is available sequentially (recursive least squares).
Space constraints compel us to limit the illustration and application of these
techniques to a handful of end-of-chapter exercises and application problems,
which are highly recommended to the reader.

It bears repeating, in conclusion, that since all the computations required
for regression analysis are now routinely carried out with the aid of computers,
it is all the more important to concentrate on understanding the principles
behind these computations, so that computer-generated results can be inter-
preted appropriately. In particular, first, the well-informed engineer should
understand the implications of the following on the problem at hand:

• the results of hypothesis tests on the significance of estimated parame-
ters;

• the R2 and R2
adj values as measures of how much of the information

contained in the data has been adequately explained by the regression
model, and with the “expenditure” of how many significant parameters;

• the value computed for the standard error of the residuals.

These will always be computed by any regression analysis software as a matter
of course. Next, other quantities such as confidence and prediction intervals,
and especially residuals, can be generated upon request. It is highly recom-
mended that every regression analysis be accompanied by a thorough analysis
of the residuals as a matter of routine “diagnostics.” The principles—and
mechanics—behind how the assumption (explicit or implicit) of the normality
of residuals are validated systematically and rigorously is discussed in the next
chapter as part of a broader discussion of probability model validation.

REVIEW QUESTIONS

1. In regression analysis, what is an independent variable and what is a dependent
variable?

2. In regression analysis as discussed in this chapter, which variable is deterministic



708 Random Phenomena

and which is random?

3. In regression analysis, what is a “predictor” and what is a response variable?

4. Regression analysis is concerned with what tasks?

5. What is the principle of least squares?

6. In simple linear regression, what is a one-parameter model; what is a two-
parameter model?

7. What are the two main assumptions underlying regression analysis?

8. In simple linear regression, what are the “normal equations” and how do they
arise?

9. In simple linear regression, under what conditions are the least squares estimates
identical to the maximum likelihood estimates?

10. In regression analysis, what are residuals?

11. What does it mean that OLS estimators are unbiased?

12. Why is the confidence interval around the regression line curved? Where is the
interval narrowest?

13. What does hypothesis testing entail in linear regression? What is H0 and what
is Ha in this case?

14. What is the difference between using the regression line to estimate mean re-
sponses and using it to predict a new response?

15. Why are prediction intervals consistently wider than confidence intervals?

16. What is R2 and what is its role in regression?

17. What is R2
adj and what differentiates it from R2?

18. Is an R2 value close to 1 always indicative of a good regression model? By the
same token, is an R2

adj value close to 1 always indicative of a good regression model?

19. In the context of simple linear regression, what is an F -test used for?

20. What is the connection between R2, the coefficient of determination, and the
correlation coefficient?

21. If a regression model represents a data set adequately, what should we expect
of the residuals?
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22. What does residual analysis allow us to do?

23. What activities are involved in residual analysis?

24. What are standardized residuals?

25. Why is it recommended for residual plots to be based on standardized residuals?

26. The term “linear” in linear regression refers to what?

27. As far as regression is concerned, how does one determine whether the problem
is linear or nonlinear?

28. What is an “intrinsically linear” model?

29. In employing variable transformations to convert nonlinear regression problems
to linear ones, what important issue should be taken into consideration?

30. What is multiple linear regression?

31. What is the “hat” matrix and what is its role in multiple linear regression?

32. What are some reasons for using weights in regression problems?

33. What is constrained least squares and what class of problems require this ap-
proach?

34. What is ridge regression and under what condition is it recommended?

35. What is the principle behind recursive least squares?

36. What is polynomial regression?

37. What is special about orthogonal polynomial regression?

38. What is the orthogonal basis function expansion result and what are its impli-
cations for polynomial regression?

EXERCISES

16.1 Given the one-parameter model,

yi = xiθ + εi

where {yi}n
i=1 is the specific sample data set, and εi, the random error component,

has zero mean and variance σ2, it was shown in Eq (16.18) that the least squares
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An abstract analysis which is accepted
without any synthetic examination

of the question under discussion
is likely to surprise rather than enlighten us.

Daniel Bernoulli (1700–1782)

In his pithy statement, “All models are wrong but some are useful,” the leg-
endary George E. P. Box of Wisconsin was employing hyperbole to make a
subtle but important point. The point, well-known to engineers, is that per-
fection is not a prerequisite for usefulness in modeling (in fact, it can be an
impediment). If complex, real-world problems are to become tractable, ideal-
izing assumptions are inevitable. But what is thus given up in “perfection”
is more than made up for in usefulness, so long as the assumptions can be
validated as reasonable. As a result, assessing the reasonableness of inevitable
assumptions is—or ought to be—an important part of the modeling exercise;
and this chapter is concerned with presenting some techniques for doing just
that—validating distributional assumptions. We focus specifically on probabil-
ity plots and the Chi-squared goodness-of-fit test, two time-tested techniques
that also happen to complement each other perfectly in such a way that,

727
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FIGURE 17.2: Probability plot for safety data S2 wrongly postulated to be nor-
mally distributed. The departure from the linear fit does not appear too severe, but
the low/borderline p-value (0.045) objectively compels us to reject H0 at the 0.05 sig-
nificance level and conclude that the Gaussian model is inadequate for this data.

in this section have been subjected. This is left to the reader as an exercise
(see Exercise 17.1).

Others

In addition to the probability plots illustrated above for exponential and
Gaussian distributions, MINITAB can also generate probability plots for sev-
eral other distributions, including lognormal, gamma, and Weibull distribu-
tions, all continuous distributions.

Probability plots are not used for discrete probability models in part be-
cause the associated cdfs consist of a series of discontinuous “step” functions,
not smooth curves like continuous random variable cdfs. To check the validity
of discrete distributions such as the binomial and Poisson, it is necessary to
use the more versatile technique discussed next.

17.3 Chi-Squared Goodness-of-Fit Test

17.3.1 Basic Principles

While the probability plot is fundamentally a graphically-based approach,
the Chi-squared goodness-of-fit test is fundamentally computational.
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FIGURE 17.3: Probability plots for yield data sets YA and YB postulated to be normally
distributed. The 95% confidence intervals around the fitted line, along with the indicated
p-values, strongly suggest that the distributional assumptions appear to be valid.



Probability Model Validation 737

3210-1-2-3

99

95

90

80

70

60
50
40
30

20

10

5

1

Standardized Residual

P
e

rc
e

n
t

Normal Probability Plot
(response is k)

FIGURE 17.4: Normal probability plot for the residuals of the regression analysis of the
dependence of thermal conductivity, k, on temperature in Example 16.5. The postulated
model, a two-parameter regression model with Gaussian distributed zero mean errors,
appears valid.

We begin by classifying the sample data, x1, x2, . . . , xn, into m groups
(or “bins”), and obtaining from there a frequency distribution with fo

i as
the resulting observed frequency associated with the ith group—precisely how
histograms are generated (see Chapter 12). From the postulated probabil-
ity model, and its p parameters estimated from the sample data, the the-
oretical (i.e., expected) frequency associated with each of the m groups,
ϕi; i = 1, 2, . . . , m, is then computed. If the postulated model is correct, the
observed and expected frequencies should be close. Because the observed fre-
quencies are subject to random variability, their “closeness” to the correspond-
ing theoretical expectations, quantified by,

C2 =
m∑

i=1

(fo
i − ϕi)2

ϕi
(17.9)

is a statistic that can be shown to have an approximate χ2(ν) distribution
with ν = m − p − 1 degrees of freedom—an approximation that improves
rapidly with increasing n.

The Chi-squared goodness-of-fit test is a hypothesis test based on this
test statistic; the null hypothesis, H0, that the data follow the postulated
probability model, is tested, at the α significance level, against the alternative
that the data do not follow the model. H0 is rejected if

C2 > χ2
α(ν) (17.10)
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17.3.2 Properties and Application

The Chi-squared goodness-of-fit test is versatile in the sense that it can be
applied to both discrete and continuous random variables. With the former,
the data already occur naturally in discrete groups; with the latter, theoretical
frequencies must be computed by discretizing the continuous intervals. The
test is also transparent, logical (as evident from Eq (17.9)), and relatively easy
to perform. However, it has some important weaknesses also:

1. To be valid, the test requires that the expected frequency associated with
each bin must be at least 5. Where this is not possible, it is recommended
that adjacent bins be combined appropriately. This has the drawback
that the test will not be very sensitive to tails of postulated models
where, by definition, expected observations are few.

2. In general, the test lacks sensitivity in detecting inadequate models when
n is small.

3. Even though recommendations are available for how best to construct
discrete intervals for continuous random variables, both the number as
well as the nature of these discretized intervals are largely arbitrary
and can (and often do) affect the outcome of the test. Therefore, even
though applicable in principle, this test is not considered the best option
for continuous random variables.

Poisson Model Validation

The following example illustrates the application of the Chi-squared test to
the glass manufacturing data presented in Chapter 1 and revisited in various
chapters including Chapters 8 (Example 8.8), Chapter 14 (Example 14.13),
and Chapter 15 (Example 15.15).

Example 17.2: VALIDATING THE POISSON MODEL FOR
INCLUSIONS DATA
The number of inclusions found in each of 60 square-meter sheets of
manufactured glass and presented in Table 1.2 in Chapter 1, was pos-
tulated to be a Poisson random variable with the single parameter, λ.
Perform a Chi-squared goodness-of-fit test on this data to evaluate the
reasonableness of this postulate.

Solution:
Recall from our various encounters with this data set that the Pois-
son model parameter, estimated from the data mean, is λ̂ = 1.017. If
the data are now arranged into frequency groups for 0, 1, 2, and 3+
inclusions, we obtain the following table:
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Data Group Observed Poisson Expected
(Inclusions) Frequency f(x|λ) Frequency
0 22 0.3618 21.708
1 23 0.3678 22.070
2 11 0.1870 11.219
≥ 3 4 0.0834 5.004

with the expected frequency obtained from 60 × f(x|λ). We may now
compute the desired C2 statistic as:

C2 =
(22 − 21.708)2

21.708
+

(23 − 22.070)2

22.070
+

(11 − 11.219)2

11.219
+

(4 − 5.004)2

5.004
= 0.249 (17.11)

The associated degrees of freedom is 4 − 1 − 1 = 2, so that from the
χ2(2) distribution, we obtain

P (χ2(2) > 0.249) = 0.883 (17.12)

As a result, we have no evidence to reject the null hypothesis, and hence
conclude that the Poisson model for this data set appears adequate.

Of course, it is unnecessary to carry out any of the indicated computations
by hand, even the frequency grouping. Programs such as MINITAB have Chi-
squared test features that can be used for problems of this kind.

When MINITAB is used on this last example, upon entering the raw data
into a column labeled “Inclusions,” the sequence, Stat > Basic Stats >
Chi-Sq Goodness-of-Fit-Test for Poisson opens a self-explanatory di-
alog box; and making the required selections produces the following results,
just as we had obtained earlier:

Goodness-of-Fit Test for Poisson Distribution
Data column: Inclusions
Poisson mean for Inclusions = 1.01667

Poisson Contribution
Inclusions Observed Probability Expected to Chi-Sq
0 22 0.361799 21.7079 0.003930
1 23 0.367829 22.0697 0.039212
2 11 0.186980 11.2188 0.004267
≥ 3 4 0.083392 5.0035 0.201279

N DF Chi-Sq P-Value
60 2 0.248687 0.883

The right-most column in the MINITAB output shows the individual contri-
butions from each group to the Chi-squared statistic—an indication of how
the “lack-of-fit” is distributed among the groups. For example, the group of 3
or more inclusions contributed by far the largest to the discrepancy between
observation and model prediction; but even this is not sufficient to jeopar-
dize the model adequacy. MINITAB also produces graphical representations
of these results, as shown in Fig 17.5.
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FIGURE 17.5: Chi-squared test results for inclusions data and a postulated Poisson
model. Top panel: Bar chart of “Expected” and “Observed” frequencies, which shows
how well the model prediction matches observed data; Bottom panel: Bar chart of
contributions to the Chi-squared statistic, showing that the group of 3 or more inclusions
is responsible for the largest model-observation discrepancy, by a wide margin.
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Binomial Special Case

For the binomial case, where there are only two categories (x “successes”
and n − x “failures” observed in n independent trials being the observed
frequencies in each respective category), for a postulated Bi(n, p) model, the
Chi-squared statistic reduces to:

C2 =
(x − np)2

np
+

[(n − x) − nq]2

nq
(17.13)

where q = 1 − p, as usual. When this expression is consolidated to

C2 =
q(x − np)2 + p[(n − x) − nq]2

npq

upon introducing q = 1 − p for the first term in the numerator and taking
advantage of the “difference of two squares” result in algebra, the right-hand
side of the equation rearranges easily to give the result:

C2 =
(x − np)2

npq
(17.14)

which, if we take the positive square root, reduces to:

Z =
x − np
√

npq
(17.15)

This, of course, is immediately recognized as the z-statistic for the (large
sample) Gaussian approximation to the binomial random variable used to
carry out the z-test of the observed mean against a postulated mean np, as
discussed in Chapter 15. Thus, the Chi-squared test for the binomial model is
identical to the standard z-test when the population parameter p is specified
independently.

17.4 Summary and Conclusions

This chapter has been primarily concerned with examining two methods for
validating probability models: modern probability plots and the Chi-squared
goodness-of-fit test. While we presented the principles behind these methods,
we concentrated more on applying them, particularly with the aid of computer
programs. With some perspective, we may now observe the following as the
main points of the chapter:

• Probability plots augmented with theoretical model fits and p-values are
most appropriate for continuous models.
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• Chi-squared tests, on the other hand, are more naturally suited to dis-
crete models (although they can also be applied to continuous models
after appropriate discretization).

As a practical matter, it is important to keep in mind that, just as with
other hypotheses tests, a postulated probability model can never be com-
pletely proven adequate by these tests (on the basis of finite sample data),
but inadequate models can be successfully identified as such. Still, it can be
difficult to identify inadequate models with these tests when sample sizes are
small; our chances of identifying inadequate models correctly as inadequate
improve significantly as n → ∞. Therefore, as much sample data as possible
should be used to validate probability models; and wherever possible, the data
set used to validate a model should be collected independently of that used to
estimate the parameters. Some of the end-of-chapter exercises and application
problems are used to reinforce these points.

Finally, it must be kept in mind always that no model is (or can ever
be) perfect. The final decision about the validity of the model assumptions
rests with the practitioner—the person who will ultimately use these models
for problem solving—and these tests should be considered properly only as
objective guides, not as final and absolute arbiters.

REVIEW QUESTIONS

1. What is the primary question of interest in probability model validation?

2. What are the two approaches discussed in this chapter for validating probability
models?

3. Which approach is better suited to continuous probability models and which one
is applicable most directly to discrete probability models?

4. What is the fundamental principle behind probability plots?

5. What is the fundamental concept behind old-fashioned probability plots?

6. What hypothesis test accompanies modern probability plots?

7. What does a modern probability plot consist of?

8. Why are probability plots not used for discrete probability models?

9. What is a Chi-squared goodness-of-fit test?


