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I. Introduction 

 

Every student of calculus learns that one typically solves a differential equation by 

integrating it.  However, as Euler shows in his 1758 paper (E236), Exposition de quelques 

paradoxes dans le calcul intégral (Explanation of certain paradoxes in integral calculus), there 

are differential equations that can be solved by actually differentiating them again.  This seems 

paradoxical or as Euler describes it in the introduction of his paper ([1]):  

 

Here I intend to explain a paradox in integral calculus that will seem rather 

strange: this is that we sometimes encounter differential equations in which it 

would seem very difficult to find the integrals by the rules of integral calculus yet 

are still easily found, not by the method of integration, but rather in 

differentiating the proposed equation again; so in these cases, a repeated 

differentiation leads us to the sought integral.  This is undoubtedly a very 

surprising accident, that differentiation can lead us to the same goal, to which we 

are accustomed to find by integration, which is an entirely opposite operation. 

 

In this paper we explain Euler’s paradoxical method and the geometrical problems that he 

poses (and solves) as applications of his new method.  Moreover, we establish a theorem in 

Section II to mathematically characterize his method.  In Section III we discuss a generalization 

of one of his problems to three dimensions and demonstrate how its solution, consisting of 

surfaces called tangentially equidistant surfaces, contains an interesting family of developable 

ruled surfaces. 

 

II. Integrating by Differentiating 

 

In his paper Euler presents four geometrical problems (I-IV) to demonstrate his 

paradoxical method of differentiation.  We shall only treat Problems I and II.  Problems III and 

IV are generalizations of Problems I and II and can be solved analogously.  Here is Euler’s 

statement of the first problem: 

 

PROBLEM I 

 

Given point A, find the curve EM such that the perpendicular AV, derived from 

point A onto some tangent of the curve MV, is the same size everywhere (Figure 

1).  
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Figure 1 

 

In modern terms, Problem I asks for a curve EM where every one of its tangent lines has fixed 

distance from point A (origin). 

To solve this problem, Euler begins by introducing notation.  In Figure 1, let   denote 

the curve EM and set x AP , y PM , dx Pp Mm  , dy m , and 2 2ds Mm dx dy   .  

It follows from the similarity of the three triangles APR , PMS , and Mm  that  

 ,
PS M PR m

PM Mm AP Mm

 
  , 

which implies 

 ,
PM M ydx AP m xdy

PS PR
Mm ds Mm ds

  
    . 

Thus, 

 
ydx xdy

a AV PS PR
ds


    , 

or in differential form, 

 2 2ydx xdy a dx dy   . (1.1) 

 

To solve (1.1), Euler applies the “ordinary” method of integrating a differential equation.  

Towards this end, he squares (1.1) to obtain 

 
2 2 2 2 2 2 2 22y dx xydxdy x dy a dx a dy     

and then solves for dy by extracting square roots: 

 
2 2 2

2 2

xydx a dx x y a
dy

a x

   



. 

This is equivalent to 

 2 2 2 2 2a dy x dy xydx adx x y a     . (1.2) 
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Next, Euler applies the substitution 2 2y u a x   to (1.2), and by assuming 2 2x a  (otherwise 

0)y  , he obtains 

 2 2 2( ) 1a x du adx u   . (1.3) 

Now, it is straightforward to check that 2 1u   is a solution to (1.3) since 0du  .  Therefore, 

 2 2y a x   , 

or upon squaring both sides, yields the circle of radius a centered at the origin as the solution 

(see Figure 2): 

 
2 2 2x y a  . (1.4) 

 

 
Figure 2 

 

On the other hand, if 2 1u  , then (1.3) can be separated as 

 
2 22 1

du adx

a xu



, 

 and upon integration Euler reveals a family of lines as the other solution to Problem I: 

 
2 2( 1) ( 1)

2 2

n n
y x a

n n

 
  . (1.5) 

Here, n is a constant of integration.  Observe that the lines described by (1.5) are all tangent to 

the circle in (1.4) (see Figure 3) and reveals the circle as their envelope (see Figure 4). 

 



4 

 

 
 

         Figure 3       Figure 4 

 

Having now solved Problem I by the traditional method of integration, Euler then points 

out that this technique in many cases is quite inefficient and impractical.  For example, to 

separate variables in the third-order equation 

 3 33ydx xdy a dx dy   , (1.6) 

one would need to extract cube roots – not an easy task.  Moreover, this would certainly not be 

possible in the general case 

 
0

n
n k k

n
k

k

y dx x dy a c dx dy



   , (1.7) 

 where the constants kc  are arbitrary. 

 

Euler proceeds to solve (1.1) again, but this time using his novel method of 

differentiation.  Towards this end, he rewrites (1.1) in the form 

 21y px a p    (1.8) 

where /p dy dx .  Then differentiating (1.8) yields 

 
21

ap
dy xdp pdx dp

p
  


, 

which simplifies to 

 
2

0
(1 )

ap dp
xdp

p
 


. 

because dy pdx .  Assuming 0dp  , Euler concludes that 

 
2(1 )

ap
x

p
 


 

and 
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2

2 2

2 2
1 (1 )

(1 ) (1 )

ap a
y px a p a p

p p
       

 
. 

To eliminate the parameter p in the solution above for x and y, he sums their squares to 

obtain the same circle found in (1.4): 

 
2 2 2

2 2 2

21

a p a
x y a

p


  


. 

On the other hand, if 0dp  , then /p dy dx m  , a constant.  This yields the linear solution  

 2(1 )y mx a m   , (1.9) 

which agrees with the solution previously found in (1.5) upon setting 2( 1) / (2 )m n n  . 

To emphasize the usefulness of his new method, Euler then demonstrates how (1.6) can 

also be solved with ease by rewriting it in the form 

 33 (1 )y px a p    (1.10) 

Differentiating (1.10) now yields 

 
2

3 23 (1 )

ap dp
dy p dx xdp

p
  


, 

which reduces it to 

 
2

3 23
0

(1 )

ap dp
xdp

p
 


. 

As before, by assuming 0dp  , Euler is able to solve for x and y: 

 

2

3 23

3 23

,
(1 )

.
(1 )

ap
x

p

a
y

p









 (1.11) 

To eliminate p here, Euler sums the cube powers of x and y to obtain 

 
3 6 3 3 3

3 3 3

3 2 3 3

(1 ) (1 ) 2

(1 ) 1 1

a p a p a
y x a

p p p

 
     

  
, 

which allows him to solve for 

 
3 3 3

3 3

1

1 2

a x y

p a

 



. 

Thus, 

 

2
3 3 3 3

33 23

( )

4(1 )

a a x y
y

ap

 
 


, (1.12) 

or equivalently, 

 
3 3 3 3 3 24 ( )a y a x y   . (1.13) 

 

On the other hand, if we require 0dp  , then by the same argument /p dy dx m  , a 

constant.  This produces the other solution: 
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 3 31y mx a m   . (1.14) 

 

Of course Euler does not stop here but proceeds to demonstrate the solution for the 

general case given by (1.7).  We on the other hand shall not following him in this regard, but 

instead establish the even more general result: 

 

Theorem: If 

 ( )ydx xdy F p dx  , (1.15) 

where /p dy dx  and ( )F p  is a differentiable function of p with 0dp  , then 

 
( )

( ) ( )

x F p

y F p pF p

 

 
 (1.16) 

Conversely, if )( pfx   and )( pgy   where dxdyp  ,  0dp , and f (p) and g(p) are 

differentiable functions of p, then (1.15) and (1.16) hold with  

 ( ) ( )F p f p dp   (1.17) 

 

To prove this theorem, we rewrite (1.15) in the form 

 ( )y xp F p   (1.18) 

and differentiate it to get 

 ( )dy pdx xdp F p dp   . (1.19) 

Then recognizing that dy pdx , (1.19) simplifies to 

 0 ( )
dp dp

x F p
dx dx

  . (1.20) 

Assuming 0dp  , we obtain the parametric solution 

 
( )

( ) ( )

x F p

y F p pF p

 

 
 

as desired.  On the other hand, if 0dp  , then /p dy dx m  , a constant.  Thus, 

 ( )y mx F m  . (1.21) 

Conversely, suppose )( pfx   and )( pgy   where dxdyp  ,  0dp , and f (p) and 

g(p) are differentiable functions.  It is then easy to see that dppfdx )(  and pdxdy  , 

therefore dppfpdy )( .  Using integration by parts, we further see that  

 dppfppfy )()( . 

By making the substitution  dppfpF )()( , we have 

 
( ) '( ),

( ) '( ) ( ).

x f p F p

y g p pF p F p

  

   
 (1.22) 

Hence )()()( pFppfpg  , or equivalently, 

dxpFxdyydx )( . 

 

As an application of this Theorem, suppose we modify Problem I to require that the 

distance a be proportional to ds (infinitesimal arclength), i.e.   
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ydx xdy

a kds
ds


  , 

where k is the proportionality constant.  The corresponding differential equation in this case 

takes the form 

 
2 2( )ydx xdy k dx dy   , (1.23) 

or equivalently, 

 
2(1 )ydx xdy k p dx    (1.24) 

where /p dy dx .  It follows from the Theorem with 
2( ) (1 )F p k p   that 

 
2

'( ) 2 ,

'( ) ( ) (1 ).

x F p kp

y pF p F p k p

   

    
 (1.25) 

The solution is thus a parabola: 

 
2

2
1

4

x
y k

k

 
  

 
. (1.26) 

 

We now move on to Euler’s second problem: 

 

PROBLEM II 

 

On the axis AB, find the curve AMB such that having derived from one of its 

points M the tangent TMV, it intersects the two straight lines AE and BF, derived 

perpendicularly to the axis AB at the two given points A and B, so that the 

rectangle formed by the lines AT and BV is the same size everywhere. (Fig. 5) 

 

 
Figure 5 

 

As in Problem I, Euler defines AP x , PM y , ,dxMPp    and m dy   (see 

Figure 5).  Moreover, he defines the interval aAB 2 , which is fixed.  Since the triangles 

,mM ,TRM and MSV are all similar to each other, it follows that 

dx

dyx
RM  and ,

)2(

dx

dyxa
SV


  

where Euler has used the fact that 2MS AB AP a x    .  Moreover,  
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dx

dyx
yAT   and 

dx

dyxa
yBV

)2( 
 . 

As the product AT BV is required to be constant, the corresponding differential equation 

becomes 

 22
( )( )

xdy xdy ady
y y c

dx dx dx
    . 

Again, Euler mentions that the differential equation above is quite difficult to solve by 

the ordinary method of integration and instead applies his method of differentiation to further 

demonstrate its usefulness.  As before, he first rewrites the equation in terms of /p dy dx , 

resulting in  

 
2( )( 2 )y px y px ap c    . 

Then completing the square in y yields the positive root 

 2 2 2( )y a x p c a p      (1.27) 

This form now allows Euler to apply his method of differentiation, which yields 
2

2 2 2
( )

( )

a p dp
dy a x dp p dx

c a p
    


. 

Again, cancellation of the terms dy  and pdx  allows Euler to solve for x (assuming 0dp  ) and 

thus y from (1.27): 
2

2 2 2

2 2 2
2 2 2

2 2 2 2 2 2

,
( )

( ) .
( ) ( )

a p
x a

c a p

a p c
y c a p

c a p c a p

 



   

 

 

To eliminate the parameter p, Euler sums the squares of x and y, producing 
2 2 2 2 2

2 2 2 2 2

( )
1

a x y a p c

a c c a p

 
  


, 

which represents an ellipse with semi-axes of length a and c.  This is illustrated in Figure 6. 

 

 



9 

 

Figure 6 
 

On the other hand, if 0dp  , then p n  (constant) and thus the corresponding solution 

is the family of tangent lines (see Figures 7 and 8) 

2 2 2( )y n a x c n a     . 

Moreover, setting 0x   and 2x a  yields 
2 2 2( )AT na c n a     and ,)( 222 ancnaBV   

respectively, which confirms that 2cBVAT  is a fixed value.  Observe that when 0n  , then 

TV  is horizontal and thus AT BV c  . 

 

 
 

         Figure 7      Figure 8 

 

 

III. Generalization to Three Dimensions 

 

The modern approach to deriving the differential equation for Problem I is to employ 

vectors.  In particular, the value a AV  can be viewed as the projection of the position vector 

( , )AM x y r


onto the normal vector ( , )dy dx n  for the tangent line (see Figure 9), i.e. 

 a
r n

n


. 

 

It follows that 

 
2 2

xdy ydx
a

dx dy

 



, 

which is equivalent to (1.1). 

 



10 

 

 
Figure 9 

 

Problem I can now be generalized to three dimensions as follows: 

 

PROBLEM I-3D 

Determine a surface M whose tangent plane at every point P has constant 

distance k from the origin (Figure 10). 

 

 
Figure 10 

 

Let us call M a tangentially equidistant (TED) surface of distance k.  To derive the 

corresponding differential equation for TED surfaces, we again view the distance k as the 

projection of the position vector ( , , )OP x y z r


 onto the normal vector 

( / , / ,1)z x z y    n  for the tangent plane at P: 

 k
r n

n


. 

It follows that S is modeled by the following nonlinear partial differentiation equation: 

 

22

1
z z z z

z x y k
x y x y

     
       

      
. (1.28) 
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Using our intuition from Problem I, it is clear that (1.28) should have two types of 

solutions: the sphere 
2 ( )S k  of radius k centered at the origin, i.e. 

2 2 2 2x y z k   , and every 

one of its tangent planes.  However, there is a third family of solutions that is quite interesting 

and consists of developable ruled surfaces generated from spherical curves lying on 2 ( )S k . 

To derive these three families of solutions, denote by /p z x    and /q z y    so that 

(1.28) becomes 

 2 21z xp yq k p q     . (1.29) 

Then following Euler we differentiate (1.29) with respect to x yields 

 
2 21

z p q k p q
p x y p q

x x x x xp q

     
     

      
. (1.30) 

Since /p z x   , (1.30) simplifies to 

 
2 21

p q k p q
x y p q

x x x xp q

    
   

     
. (1.31) 

Similarly, differentiating (1.29) with respect to y yields 

 
2 21

p q k p q
x y p q

y y y yp q

    
   

      
. (1.32) 

 

CASE I: Assume the partial derivatives for p and q to be non-zero: 

 / 0, / 0, / 0, / 0p x p y q x q y            . 

Then equating coefficients for these partial derivatives on the left and right hand sides of (1.31) 

and (1.32) yields the following solution: 

 

2 2

2 2

2 2

2 2

,
1

,
1

1 ,
1

kp
x

p q

kq
y

p q

k
z xp yq k p q

p q


 


 

     
 

 (1.33) 

which represents a sphere of radius k (Figure 11): 

 
2 2 2 2x y z k   . 
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Figure 11 

 

CASE II: Assume all four partial derivatives vanish identically: 

 / 0, / 0, / 0, / 0p x p y q x q y            . 

It follows that p and q are both constant, say p m  and q n .  Thus, we obtain a family of 

planes as our second solution set: 

 2 21z mx ny k m n     . (1.34) 

 

Ruled TED Surfaces 

 

In this section we present a third family of TED surfaces and demonstrate how they can be 

constructed as ruled surfaces generated from spherical curves.  A surface M is called a ruled 

surface if it has a coordinate patch 2 3:x D M     of the form (see [2]) 

 ( , ) ( ) ( )u v u v u  x . (1.35) 

Here, ( )u  and ( )u  are curves in 3  and the surface S can be viewed as consisting of lines 

emanating from ( )u  (directrix) and moving in the direction ( )u  (ruling).  To obtain ruled 

TED surfaces, we restrict   to being a spherical curve lying on
2 ( )S k .  Since 

2 ( )S k  is an 

equidistant surface, it follows that ( , )u vx  describes an TED surface M if every tangent plane of 

M is also a tangent plane of 
2 ( )S k .  This holds if both parameter tangent vectors   

 
( , ) '( ) '( )

( , ) ( )

u

v

u v u v u

u v u

 



 



x

x
 

lie on the tangent plane 
2

( ) ( )uT S k , or equivalently, if 
2

( )( ) ( )uu T S k  and all three vectors 

'( )u , ( )u , and '( )u  are coplanar .  In that case the unit normal  

 u v

u v

x x
U

x x





 

for M does not depend on v since 
pT M  is constant in the v-direction and so the normal curvature 

of M is zero in the same direction.  Thus, M is a developable surface, i.e. a surface having zero 

Gaussian curvature.  We summarize this formally in the following theorem. 

 

Theorem: Let M be a ruled surface having a coordinate patch of the form  
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 ( , ) ( ) ( )u v u v u  x , 

where   is a spherical curve on 2 ( )S k  and 
2

( )( ) ( )uu T S k  .  If '( )u , ( )u , and ( )u  are 

coplanar, then 2

( , ) ( ) ( )u v uT M T S kx  and thus M is a developable ruled TED surface of distance k. 

 

To construct such surfaces based on our theorem, define 

 ( ) ( ) '( )u u u    . 

We claim that this choice of   yields a developable TED surface M defined by (1.35).  To prove 

this, first observe that 
2

( )( ) ( )v uu T S k x  since ( )u  is perpendicular to ( )u  and thus 

perpendicular to the unit normal ( ) / ( )U u u   for 
2 ( )S k .  To prove that '( )u , ( )u , and 

'( )u  are coplanar, we will show that their scalar triple product vanishes.  Towards this end 

recall that ( )u  is perpendicular to '( )u  since   has constant distance k from the origin and 

so , ',    are mutually orthogonal.  It follows that 
2

'( ) ( ) '( ) ( )u u u u     . 

Thus,  

 
2 2

' ( ' ) ( ' ' '') ( ) ( '') ( ) 0                      . 

This proves that the vectors '( )u , ( )u , and '( )u  are coplanar.  Thus, by our theorem M is a 

developable ruled TED surface of distance k. 

 

Let us now finish our discussion by considering a couple of examples of developable ruled TED 

surfaces generated from our construction. 

 

Example 1: Assume   is a parallel (latitude) of 
2 ( )S k  of the form 

 0 0 0( ) (cos cos ,sin cos ,sin )u u v u v v  , 

where 0v  is its latitude.   Then the corresponding developable ruled TED surface M is a cone 

circumscribing the sphere (Figure 12), unless   is an equator ( 0 0v  ), in which case M is a 

cylinder (Figure 13). 

   
       Figure 12     Figure 13 

 

Example 2: Assume   is the spherical figure-8 curve (see Figure 14) given by 

 
2( ) (sin cos ,sin ,cos )u u u u u   
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Figure 14 

 

Then the corresponding developable ruled TED surface M is shown in Figures 15 and 16 (side 

views) circumscribing the sphere. 

 

     
Figure 15      Figure 16 

 

Observe that other TED surfaces can be constructed by taking any region S  of the 

sphere 
2 ( )S k and attaching to it the developable ruled TED surface corresponding to the 

boundary of S  (assumed to be a simple closed spherical curve).  One such example is the silo 

surface obtained as the union of the upper hemisphere and the cylinder generated as a ruled 

surface from the circular boundary (equator) of the hemisphere (see Figure 17). 

 
Figure 17 

 

We conclude by asking whether the converse holds true, i.e. whether every TED surface must 

either be the sphere of radius k, a developable ruled surface, or unions of developable ruled TED 

surfaces with regions of the sphere.  Our intuition says that it should be true but we have not 

been able to prove this.  Of course, counterexamples are most welcome! 
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