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Translator’s Introduction

The following translation is the happy collaboration of student and professor.
Kristen McKeen, a senior undergraduate mathematics major at Rowan University made
the original translation from French. Tom Osler, professor of mathematics for 45 years,
worked with her in trying to comprehend Euler’s ideas and writing the final version
presented here. 

We tried to imagine how Euler would express himself if he was fluent in modern
English and modern mathematical jargon. Euler often wrote in very long sentences, and
we sometimes replaced these by several shorter ones. We did not convert Euler’s
mathematical notion into modern form, since in all cases the older notation is easy to
understand. When we found typographical errors, we did not change them but made note
of the error in parenthesis. Other errors are probably ours. 

Modern readers will find that Euler’s work reads more like a diary than a finished
mathematical paper. He sometimes describes paths of thought that he ultimately
abandons. At times he appears to explore an idea that he leaves incomplete. A few notes
follow the paper in which we make comments on Euler’s work, explain related computer
experiments, and complete a few elementary mathematical steps that he omits. 

1. Let x, y, z be the roots of three squares and require that the following three

equations be satisfied
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yy zz xx pp
xx zz yy qq
xx yy zz rr

+ − =
+ − =
+ − =

                                           (1)

If we add these equations two at a time, the following equations are produced:

2 ,
2 ,
2 .

pp qq zz
pp rr yy
qq rr xx

+ =
+ =
+ =

Thus while solving our first problem, we also solve a second problem:  Find three square

numbers such that the half sum of any two of them is also a square. This follows from 

,
2 2

pp qq pp rrzz yy+ +
= =  and .

2
qq rr xx+

=

2. Moreover, it is obvious, having found the three numbers x, y, z, all their

multiples will also solve the same problem, namely: nx, ny, nz.  Because the problem as

stated does not have a unique solution, in the following, we will search for three numbers,

having no common divisor.  First we notice that all three of the unknown numbers cannot

be even.  We will now show that these three numbers must all be odd. All even squares

are of the form 4aa, and all odd squares are of the form 1)(4 ++ aaa . Therefore if we

assume that two of the squares are even, that’s to say

4 ,xx aa= 4y bb=  (should be 4yy bb= ) and the third odd:  4( ) 1zz cc c= + + ,

the expression xx yy zz+ −  becomes 4( ) 1aa bb cc c+ − − − , which will never be a

square.  Next assume that only two are odd and the third is even, as

        4( ) 1,xx aa a= + + 4( ) 1,y bb b= + +  ( 4( ) 1),should be yy bb b= + + 4z cc= (should

be 4 ).zz cc=

The expression xx yy zz+ −  now becomes 4( ) 2aa a bb b cc+ + + − + , which will not be a

square either.  Finally assume all three squares are odd, for example
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4( ) 1,xx aa a= + +  4( ) 1,yy bb b= + +  4( ) 1z cc c= + + , ( 4( ) 1).should be zz cc c= + +

The expression x x y y z z+ −  becomes 4( ) 1aa a bb b cc c+ + + − − + , which may

represent a square.

3.  In this section we show, that if one wants to determine four square numbers

such that the sum of three less the fourth one equals a perfect square, the search will be

useless, because no solution is possible.  To prove this, we will have to cover all the cases

involving evens and odds.  Indeed,

1)  if three squares are even, namely:

4 ,xx aa=  4 ,yy bb=  4zz cc=  and 4( ) 1,vv dd d= + +

we will have for xx yy zz vv+ + −  the value 4( ) 1aa bb cc dd d+ + − − − , which will never

be a square.

2) If there are two evens and two odds, 

4 ,xx aa=  4 ,yy bb=  4( ) 1,zz cc c= + +  4( ) 1,vv dd d= + +

we have for xx yy zz vv− + +  the expression 4( ) 2aa bb cc c dd d− + + + + + , which will

never be a square.

3)  Next consider the case of only one even square, namely

4 ,xx aa=  4( ) 1,yy bb b= + +  4( ) 1,zz cc c= + +  4( ) 1.vv dd d= + +

We have for yy zz vv xx+ + −  the expression 4( ) 3bb b cc c dd d aa+ + + + + − + , which

again is never a perfect square.

4)  Finally suppose the four numbers are odd, 

4( ) 1,xx aa a= + +  4( ) 1,yy bb b= + +  4( ) 1,zz cc c= + +  4( ) 1.vv dd d= + +

We have for xx yy zz vv+ + −  the value 4( ) 2aa a bb b cc c dd d+ + + + + − − + , which is

not a square.
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4. After these considerations, let us examine a method to arrive at a solution of the

proposed problem.  For this purpose first note that the first two equations may be

expressed as the general equation

=−± )( xxyyzz an ordinary square.

Now 2AA BB AB+ ±  is always a perfect square; then, comparing this formula with the

preceding one, we have ,zz AA BB= +  2 ,yy xx AB− = and to make AA BB+ a perfect

square it is not necessary to suppose ,A aa bb= −  2 ,B ab=  and we will have

2( )zz aa bb= + ; therefore z aa bb= + .  After these assumptions, the value of yy xx−  will

be 4 ( ).ab aa bb−   But yy xx−  is the product of y x+  by ,y x−  and 4 ( )ab aa bb−  the

product of 2ab by (2 2 ),aa bb−  and to satisfy the equation 4 ( )yy xx ab aa bb− = −  take

2 ,y x ab+ = 2 2y x aa bb− = − . Therefore 

x bb ab aa= + −  and .y aa ab bb= + −

Thus, if we take for the values of x, y and z the expressions

,bb ab aa+ −  aa ab bb+ −  and ,aa bb+

the first two equations will be satisfied.  We must now determine if these values will also

satisfy the third equation. By substituting these values of x, y, z, we get

4 4 4 .xx yy zz a b aabb rr+ − = + − =

5. We must now find numbers a and b such that the formula 4 4 4a b aabb+ −

becomes a perfect square.  It is easy to see that this condition is satisfied, if we take

2 .a b=   To find another solution of the equation 4 4 4 ,a b aabb rr+ − =  we set

( 2),a b z= +  and we get 4 4 4 4 3 24 ( 8 20 16 1).a b aabb b z z z z+ − = + + + +   Let us suppose

that the square root of this expression is 2 ( 8 1).b zz z+ +   By comparing the square of 
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2 ( 8 1)b zz z+ +  with 4 4 3 2( 8 20 16 1)b z z z z+ + + + ,

we find that

38 46 0z zz+ = ; which has the solution 23
4

z = − .

Consequently 152
4

z + = −  and 15
4
ba = − .  Now, since the values of a and b may be either

positive or negative, we take 15,a =  4,b =  and we get 149,x =  269,y =  241,z =  which

appear to be the smallest desired numbers.  From these we find 329,p =  89,q =  191.r =

6. As this solution is obtained from the equation 4 ( ),yy xx ab aa bb− = −  by

factoring the right side using 2ab  and 2( ),aa bb−  it follows that we can in general

express the values of y and x of this manner:  2my x ab
n

+ =  and 2 ( )ny x aa bb
m

− = − .

But, after some very tiresome calculations, we do not reach very useful solutions.  The

most simple assumption is 2 ( ),y x a a b+ = +  2 ( )y x b a b− = − ; from which we find

4 3 3 42( 2 2 2 )yy xx a a b aabb ab b+ = + + − + .

From this, for the value of ,rr yy xx zz= + −  we find 4 3 3 44 2 4a a b aabb ab b+ + − +  which

is the complete square of 2 .aa ab bb+ −  Therefore the values of a and b are entirely

arbitrary.  But when considering the values of x, y and z, which are ,aa bb+

2aa ab bb+ −  and ,aa bb+  we see that x and z are equal, and for this reason this solution

is not acceptable.

7. We can still use other methods for the solution of the problem.  But all of the

methods have the great defect of only giving solutions of limited usefulness, and that

after very long and very difficult calculations.  For this reason we explain here four

absolutely remarkable methods, which, without a lot of difficulty, supply infinitely many
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general formulas for expressing the three numbers x, y, and z, which, in turn, will give

infinitely many solutions.  However, the formulas do not contain all possible solutions.

Easy methods for finding more general solutions.

First method.

8.  If we suppose ,s xx yy zz= + +  our equations (1) will become

2 ,s xx pp− =  or 2 ,s pp xx= +

2 ,s yy qq− =  or 2 ,s qq yy= +

2 ,s zz rr− =  or 2 ,s rr zz= +

from which we can see that s has to be, in three different ways, the sum of a square and a

double square.

9.  Let us now carefully consider the numbers which can be expressed in the form

2 .aa bb+   First we inquire if, when such a number is prime, a and b might not be unique.

If two solutions exist, then we have 2s aa bb= +  and also 2s cc dd= + .  It follows then

that 2 2aa cc dd bb− = −  and consequently 2( )a c d b
d b a c
+ −

=
+ −

.  Now since these two

fractions are equal, let us suppose that after having been reduced to smaller terms they are

m
n

.  From that we have a c m
d b n
+

=
+

, or ,a c mf+ =  .d b nf+ =  Similarly 2( )d b m
a c n
−

=
−

and ,d b mg− =  2 ,a c ng− =  and consequently 2 2 ,a mf ng= +  2 .b nf mg= −   But since

4 4 8 ,s aa bb= +  by substituting, in place of 2a and 2b, their values, we get

4 ( 2 ) 2 ( ),s ff mm nn gg mm nn= + + +  or 4 ( 2 )( 2 ),s ff gg mm nn= + +  which is impossible

since s is a prime number.

10.  It follows then that if s is not  known to be a prime number, and it is

demonstrated that it is a number of the form 2aa bb+  then it may only be divisible by
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numbers of the same form, with  a and b relatively prime. So s is the product of two or

more prime numbers of the same form 2aa bb+ .  But it is easy to observe, that two

prime factors are not sufficient for producing a triple resolution; therefore s must have at

least three prime factors of the form 2aa bb+ .

11.  Let us observe here that all odd numbers of the form 2aa bb+  are always of

the form 8 1n +  or 8 3n + , and that when the number is even and of the form 2aa bb+ , it

is the double of one or the other of the two formulas.  The form 2aa bb+  brings us back

to the first case, when a is odd and secondly, when a is even.  Thus, all other odd

numbers of the form 8 5n +  or 8 7n +  are entirely excluded from the number of divisors

of the form 2 .aa bb+  Therefore all numbers which are divisible by these:  5, 7, 13, 15,

21, 23, 29, 31, 37, 39, 45, 47, 53, 55, etc. may not be combined in the form 2aa bb+ ,

where we suppose a and b are relatively prime. 

12.  It is very remarkable that all the following prime numbers, of the form 8 1n +

or 8 3n + , are always reducible to a square plus the double of a square, but only in one

way, and here are some examples

8 1n + 8 3n +

2 217 3 2 2= + ⋅ 2 23 1 2 1= + ⋅

2 241 3 2 4= + ⋅ 2 211 3 2 1= + ⋅

2 273 1 2 6= + ⋅ 2 219 1 2 3= + ⋅

2 289 9 2 2= + ⋅ 2 243 5 2 3= + ⋅

2 297 5 2 6= + ⋅ 2 259 3 2 5= + ⋅

2 2113 9 2 4= + ⋅ 2 267 7 2 3= + ⋅

2 2137 3 2 8= + ⋅ 2 283 9 2 1= + ⋅
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2 2107 3 2 7= + ⋅

2 2131 9 2 5= + ⋅

2 2139 11 2 3= + ⋅

13.  With all divisions we will not know how to find the smallest number to

divide, and yet there is not a doubt that the division does occur for all numbers of the

form 8 1n +  or 8 3,n +  and we can demonstrate this rigorously.  For this purpose, it’s only

a matter of proving that given a prime, of the form 8 1n +  or 8 3,n +  one may always find

a product of the form 2aa bb+  which allows one or the other for a factor.  This proof

follows from a very beautiful theorem by Fermat, namely:  that the form 2 1mc −  is always

divisible by the number 2 1,m +  provided it is prime and is not a divisor of c.

Consequently, if the number 8 1n +  is prime, it will always be a factor of the formula

8 1,nc −  provided c is not be a multiple of 8 1n + .  But the quantity 8 1nc −  has two factors

which are 4( 1),nc +  4( 1),nc −  it’s therefore necessary that one or the other is divisible by

8 1n + .  Consequently, if we take for c a number for which 4 1nc −  is not a multiple of

8 1n + , the number 4 1nc +  will necessarily be divisible by 8 1n + .  But the formula 4 1nc +

may be written then 2 2 2( 1) 2 ;n nc c− +  therefore the number 8 1n +  is a divisor of a number

of the form 2aa bb+ .

14.  As for the formula 8 3,n +  each prime number of the form 8 3n +  is a divisor

of 8 2 1nc + −  and consequently of 4 1 1,nc + +  or of 4 1 1.nc + −   Let 2,c =  the formula 4 1 1nc + −

becomes 42 2 1,n⋅ −  which will never by divisible by 8 3,n +  because all the divisors of
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the form 2 1ff −  are 8 1n +  or 8 1n −  and never 8 3.n +   Therefore 4 12 1n+ +  or 42 2 1n⋅ +

which is of the form 2 ,aa bb+  will necessarily be divisible by 8 3n + .  

After this useful digression, we return to our problem.  We have seen that the sum

s must have at least three factors, thus let us set it equal to

( 2 )( 2 )( 2 )aa bb cc dd ff gg+ + +

and to shorten the calculations, let ( 2 )( 2 ) 2 ,aa bb cc dd mm nn+ + = +  then we will have 

2 ,m ac bd= ±  .n bc ad= ∓

Now our sum s can be expressed as  ( 2 )( 2 ),s mm nn ff gg= + +  which we set equal to

2 ,zz vv+  and get 2z mf ng= ±  and .v nf mg= ∓

15.  Let us substitute now, in place of m and n, the values found, and we will have

four different values for z and v, namely for z:

1)  ( 2 ) 2 ( ),f ac bd g bc ad+ + −

2)  ( 2 ) 2 ( ),f ac bd g bc ad+ − −

3)  ( 2 ) 2 ( ),f ac bd g bc ad− + +

4)  ( 2 ) 2 ( ),f ac bd g bc ad− − +

and for v:

1)  ( ) ( 2 ),f bc ad g ac bd− − +

2)  ( ) ( 2 ),f bc ad g ac bd− + +

3)  ( ) ( 2 ),f bc ad g ac bd+ − −

4)  ( ) ( 2 ).f bc ad g ac bd+ + −
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16.  There are therefore four different values of both z and v.  But we only require

three, because of the three conditions 2 ,s pp xx= +  2s qq yy= +  and 2 ,s rr zz= +  that

we have to fulfill.  We only use the first three values of z and v; and get

( 2 ) 2 ( ) ,
( 2 ) 2 ( ) ,
( 2 ) 2 ( ) ,
( ) ( 2 ) ,
( ) ( 2 ) ,
( ) ( 2 ) .

f ac bd g bc ad p
f ac bd g bc ad q
f ac bd g bc ad r
f bc ad g ac bd x
f bc ad g ac bd y
f bc ad g ac bd z

+ + − =
+ − − =
− + + =
− − + =
− + + =
+ − − =

17.  We search now, using the values x, y, z, for the sum of their squares which

will have the form 2 ,Aff Bgg Cfg+ +  where

3 2 3 ,
3 4 12 ,

( )( 2 ).

A bbcc abcd aadd
B aacc abcd bbdd
C bc ad ac bd

= − +
= + +
= − + −

Now consider the difference between this expression for the sum and the earlier

expression

( 2 )( 2 )( 2 )s aa bb cc dd ff gg= + + +

( 2 2 4 ) 2 ( 2 2 4 )ff aacc bbcc aadd bbdd gg aacc bbcc aadd bbdd= + + + + + + +

(To make these equal) we are lead to write

2 0,Fff Ggg Cfg+ + =  where 

2 4 ,
4 4 4 4 ,

( )( 2 ).

F bbcc abcd aadd aacc bbdd
G aacc abcd bbdd bbcc aadd
C bc ad ac bd

= − + − −
= + + − −
= − + −

We now have reached a solution of our problem.  We must find values of the six letters a,

b, c, d, f, g, which make 2 0,Fff Ggg Cfg+ + =  and from these we find x, y, z and also p,

q, r.
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18.  Therefore we study 2 0,Fff Ggg Cfg+ + =  which implies

( )C CC FGf
g F

− ± −
= .

It is necessary to search for numbers a, b, c, d, f, g, such that CC FG−  becomes a square.

But this leads us towards three great difficulties, which we want to avoid.  Happily we

come across a case, where the equation 2 0Fff Ggg Cfg+ + =  reduces easily to the first

degree, namely when F is equal to 0. In this case we have 2 0,Ggg Cfg+ =  or .
2

f G
g C
= −

Thus, after reducing 
2
G
C

−  to smaller terms; if we take the numerator for f and the

denominator for g, all the formulas above will be expressed in rational numbers.  This is

the merit of this method.

19.  Let us now remark that the value 2 4 ,bbcc abcd aadd aacc bbdd− + − −

found for F, may be expressed as the product of two factors in the following manner:

{( ) ( 2 ) }{( ) ( 2 ) }.F b a c a b d b a c a b d= + + + − + −

Thus if one or the other of these two factors is made zero, then F becomes zero.  First we

will take 2 ,c a b
d b a

− −
=

+
 and second, we will use 2 .c b a

d b a
−

=
−

  There will therefore be two

values for the letters c and d, and consequently two solutions of the problem.

20.  In the same manner we want to make the value of G vanish.  Since it is

equal to 4 4 4 4 ,aacc abcd bbdd bbcc aadd+ + − −  which is the product of the two factors

( 2 ) (2 2 ) ,a b c b a d+ − +  ( 2 ) (2 2 ) ,a b c b a d− − −
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we will have, for the determination of c and d, the equation 2 2 ,
2

c b a
d a b

+
=

+
 or

2 2 .
2

c b a
d a b

−
=

−
  But these values do not result in new solutions; thus it’s sufficient of us to

use values obtained from 0.F =

21.  There is therefore a solution simple enough for the proposed problem, and

which provides at the same time infinitely many numerical values.  For achieving this, we

give the following rules:

1)  After having taken at will the two numbers a and b, we search for the values

of c and d by one or the other of the two formulas 
ab

ba
d
c

+
−−

=
2 , or 2 ,c b a

d b a
−

=
−

 since

each will lead to a solution.

2) We then find the values of C and G from the formulas

( )( 2 ),
( 4 ) (4 4 ) 4 ,

C bc ad ac bd
G aa bb cc bb aa dd abcd
= − + −
= − + − +

and we will have

( 4 ) 4( ) 4
2( )( 2 )

f aa bb cc bb aa dd abcd
g bc ad ac bd

− + − +
=

+ −
.

After reducing this fraction to lowest terms, we take f equal to the numerator, and g to the

denominator.

3) Having thus found the values of f and g, we immediately have those of x, y, z

by the formulas

( ) ( 2 ),
( ) ( 2 ),
( ) ( 2 ),

x f bc ad g ac bd
y f bc ad g ac bd
z f bc ad g ac bd

= − − +
= − + +
= + − −

which are the three desired numbers.
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4) Finally the letters p, q, r are also found by following these formulas

( 2 ) 2 ( ),
( 2 ) 2 ( ),
( 2 ) 2 ( ).

p f ac bd g bc ad
q f ac bd g bc ad
r f ac bd g bc ad

= + + −
= + − −
= − + +

Let us clarify these rules by some examples.

Example 1.  Let 1a =  and 1,b =  thus c
d

 will be equal, in the first case to 3 ,
2

−

and in the second to 1 ,
0

 which does not lead to a solution.  Thus suppose 3c =  and

2;d = −  f
g

 will be 51;
14

= −  let 51f =  and 14.g = −   Thus

51(3 2) 14(3 4) 241,x = + + − = 51 28 5 191,p = − − ⋅ = −

  51(3 2) 14(3 4) 269,y = + − − =      51 28 5 89,q = − + ⋅ =

  51(3 2) 14(3 4) 149,z = − + + =      51 7 28 329,r = ⋅ − =

finally 3 17 2993s = ⋅ ⋅  or 3 17 41 73.⋅ ⋅ ⋅

Example 2.  Let 1a =  and 2,b =  thus 5
3

c
d
= −  or 3 ,

1
=  and thus we have two

cases.

Case 1.  Let 3c =  and 1,d =  and get 99
14

f
g
=  and, consequently, 99f =  and

14g =  . From these values we obtain

99 5 14 7 397,x = ⋅ − ⋅ = 99 7 28 5 833,p = ⋅ + ⋅ =

        99 5 14 7 593,y = ⋅ + ⋅ =            99 7 28 5 553,q = ⋅ − ⋅ =

        99 7 14 707,z = ⋅ + =            99 28 7 97,r = − + ⋅ =

                                                 9 11 10193.s = ⋅ ⋅
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Case 2.  Let 5c =  and 3,d = −  and calculate 387
238

f
g
= − . Thus we have

387,f =  238;g = −  from which we get

       387 13 238 7 3365,x = ⋅ − ⋅ =  387 7 2 238 13 8897,p = ⋅− − ⋅ ⋅ = −

387 13 238 7 6697,y = ⋅ + ⋅ =           387 7 2 238 13 3479,q = ⋅− + ⋅ ⋅ =

387 7 238 17 6755,z = ⋅ + ⋅ =            387 17 2 238 7 3247,r = ⋅ − ⋅ ⋅ =

                                                  9 43 263057.s = ⋅ ⋅

Example 3.  Let 3a =  and 1,b =  and get 5
4

c
d
= −  or 1 .

2
=   It must be remarked

here that the last case is already handled in the preceding example, since a, b, c, d are

changeable.  This is why we only consider the first case, where 5c =  and 4d = − . We

get 627 ,
322

f
g
=  and so 627,f =  322g = . Thus we have

627 17 322 7 8405,x = ⋅ − ⋅ =  627 7 644 17 15337,p = ⋅ + ⋅ =

     627 17 322 7 12913,y = ⋅ + ⋅ =       627 7 644 17 6559,q = ⋅ − ⋅ = −      

                 627 7 322 23 11795,z = ⋅− − ⋅ = −           627 23 644 7 9913,r = ⋅ − ⋅ =

                                          11 57 600497.s = ⋅ ⋅

22.  These examples are sufficient for showing how, by the rules, we may easily

find as many solutions as desired.  We are content here to show the smaller results for

which the numbers x, y, z do not surpass one thousand.

I II III IV V

241x = 397 425 595 493

269y = 593 373 769 797

149z = 707 205 965 937
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191p = 833  23 1081 1127

89q = 553 289 833 697

329r =  97 527 119 289

Second Method.

23. The solution of our problem has been reduced to this quadratic equation 

2 0,Fff Ggg Cfg+ + =  where

( )( 2 ),
( ) ( 4 ) 2 ,
( 4 ) (4 4 ) 4 ,

C bc ad ac bd
F bb aa cc aa bb dd abcd
G aa bb cc bb aa dd abcd

= − + −
= − + − −
= − + − +

and finally to the formula ,f C CC FG
g F

− ± −
=  in which CC FG−  must be a square.

Let us therefore write ,CC FG VV− =  so that .f C V
g F

− ±
=   By substituting in the

expression CC FG− the values of C, F, and G, we get the expression

2 4 3 2 3 2 4( 2 ) 8( 2 ) 4( 2 ) 16( 2 ) 4( 2 ) ,VV aa bb c aa bb abc d aa bb ccdd aa bb abcd aa bb d= − + − − − − − + −

which is divisible by 2( 2 )aa bb− .  By the substitution of m in place of ,
2

ab
aa bb−

 this

becomes simply

4 3 3 4
2 8 4 16 4 .

( 2 )
VV c mc d ccdd mcd d

aa bb
= + − − +

−

24. Since this formula must be a square, let us assume its square root is equal to
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4 2
2

V cc mcd dd
aa bb

= − +
−

.

By comparing , we find that:  2 2 0mc d mmd− − =  and, consequently, 2 1.
2

c mm
d m

+
=

Thus, we let 2 1c mm= +  and 2 ,d m=  and our formula becomes

2 4(2 1) 8 (2 1) 8 4 1 12 .
2

V mm mm mm mm mm m
aa bb

= + − + + = + −
−

25. Now we need only start with arbitrary numbers for a and b, compute

2
abm

aa bb
=

−
, C, F, V, and, then get f C V

g F
− ±

=  . Thus the numbers  f and g may be

determined in two ways in each case.  However, having found these numbers, one will be

able to determine easily the values of x, y, z, that those of p, q, r.  The simplest cases were

examined in our first method of solution.  Here are other examples:

Example 1.  Let 2a =  and 1,b =  then 1,m =  3,c =  2,d =  28,f =  51,g = and

get

482,x = 382,p =

          538,y = −            178,q =

          298,z = 658.r = −

Example 2.  Let 3a =  and 2,b =  then 6,m =  73,c =  12,d =  7,f = −

17,g = and obtain

          5309,x =           1871,p =

          3769,y =           5609,q =

          4181,z =           4991.r =
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Third method

26. As in our first method, we let the sum of three unknown squares

( 2 )( 2 )( 2 )s aa bb cc dd ff gg= + + + . However we suppose that the first factor 2aa bb+

can be expressed in two ways as a square plus twice a square, namely

2 2 .aa bbαα ββ+ = +   We use the expression 2aa bb+  to determine  the numbers  x, y,

p, q, as we have done (16), and the last expression 2αα ββ+  to determine  z and r, so

that

( ) ( 2 ),x f bc ad g ac bd= − − + ( 2 ) 2 ( ),p f ac bd g bc ad= + + −

( ) ( 2 ),y f bc ad g ac bd= − + + ( 2 ) 2 ( ),q f ac bd g bc ad= + − −

( ) ( 2 ),z f c d g c dβ α α β= + − + ( 2 ) 2 ( ).r f c d g c dα β β α= − + +

We now calculate the sum of the three squares ,xx yy zz s+ + =  and we get this formula

2 ,s Aff Bgg Cfg= + −  where

2 4 2 2 ,A bbcc abcd aadd cc cd ddββ αβ αα= − + + + +

2 8 8 4 4 ,B aacc abcd bbdd cc cd ddαα αβ ββ= + + + + +

    ( 2 )( ).C c d c dα β β α= − +

Let     ( 2 )( 2 ) 2 2 4 ;D aa bb cc dd aacc bbcc aadd bbdd= + + = + + +

And observe that        ( 2 )( 2 )( 2 ) 2 .s aa bb cc dd ff gg Dff Dgg= + + + = +

Subtracting this value of s from the expression 2 ,Aff Bgg Cfg+ −  we obtain the equation

2 0,Fff Ggg Cfg+ − =  where ,F A D= −  2 ,G B D= −

and consequently ( ) ( 4 ) 4 2 ,F aa cc bb dd abcd cdββ αα αβ= − + − − +

( 4 ) 8 4 4( )G bb cc abcd cd aa ddαα αβ ββ= − + − + − .
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These may be written as follows:

( ) ( )( ) ( ) ( )( )2 2 ,F a c b d a c b dβ α β α= + + + − + −

( ) ( )( ) ( ) ( )( )2 2 2 2 .G b c a d b c a dα β α β= + − + − − −

27. Using these equations, as before we can make 0,F =  by setting

2c b
d a

α
β
− −

=
+

or 2 .b
a

α
β
− +

=
−

Then our equation becomes 2 0,Ggg Cfg− =  from which we get .
2

f G
g C
=   This formula

is complicated because of the value of G, but we can simplify it.  Notice  that since F is

equal to zero, the quantity G may be replaced by 2F+G, and this quantity, according to

the preceding equations, is equal to

( )( )( ) ( )( )2 4 2 2 2 ;aa bb cc dd aa bb cc ddββ αα− + − + = − + +

consequently  ( )( )
( )( )

2 2
;

2 2
aa bb cc ddf

g c d c dα β β α
+ +

= −
− +

from which it follows that ( )( )2 2 ;f aa bb cc dd= + +  ( )( )2 2 .g c d c dα β β α= − − +

28. If one wants to substitute the values of c, d, f, g in the final formulas of x, y, z

and p, q, r, they would become complicated.  But we can give a very simple rule for

finding the numbers x, y, z and p, q, r.

Rule

for finding as many solutions as one would want of our problem.

29. Having selected at will two numbers m and n, in which m must be odd, we

obtain from these three quantities ,2nnmms +=  nnmmt 2−=  and 2u mn= . Now the

values of the six variables x, y, z, p, q and r become
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( ) ( ),2243)( usttusussx +−++= ( ) ( )( ),2443 usustusstp ++++=

( ) ( ),2243)( usttusussy ++++= ( ) ( )( ),2443 usustusstq ++−+=

( ) ( ) ,2243 2ustusstz +++= ( )( ) ( ).24432 usttusussr +−++=

30. Considering these six formulas, notice that changing the sign of t only

changes the signs of z, p and q and does not give us new solutions to our problem. But if

we take  u negative, these formulas will undergo a significant change.  It follows that

each pair of numbers m and n gives, two different solutions, depending on whether we

take m and n positive or negative.  Here are some examples.

Example 1.  Let 1=m  and ;1±=n  then ,3=s  ,1=t  .2±=u   First let ,2−=u

and get ,1=+ us  ,12 −=+ us  143 =+ us  and, consequently,

,52113 =+⋅⋅=x ,143 −=−=p

,123 =−=y ,743 =+=q

,523 =+=z .143 =+−=r

But here two of the desired numbers are equal, that’s why this solution will not be

admitted.

If we select ,2=u  then  ,5=+ us  ,72 =+ us  1743 =+ us  and, consequently,

,241721753 =⋅−⋅⋅=x 3 17 4 5 7 191,p = ⋅ + ⋅ ⋅ =

3 5 17 2 7 269,y = ⋅ ⋅ + ⋅ = 3 17 4 5 7 89,q = ⋅ − ⋅ ⋅ = −

3 17 2 49 149,z = ⋅ + ⋅ = 3 7 17 4 7 329.r = ⋅ ⋅ − ⋅ =

Example 2.  Let, in this example, 1=m  and 2;n =  then 9,s =  7,t = −  4.u = ±

Let us take first 4;u = −  and get 5,s u+ =  2 1,s u+ =  3 4 11s u+ =  and finally obtain
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9 5 11 98 397,x = ⋅ ⋅ − = 9 7 11 4 7 5 1 833,p = − ⋅ ⋅ − ⋅ ⋅ ⋅ = −

9 5 11 98 593,y = ⋅ ⋅ + = 9 7 11 4 7 5 1 553,q = − ⋅ ⋅ + ⋅ ⋅ ⋅ = −

     7 9 11 2 7 707,z = − ⋅ ⋅ − ⋅ = −       9 1 11 4 7 7 1 97.r = ⋅ ⋅ − ⋅ ⋅ ⋅ = −

For the second case, let 4;u =  then 13,s u+ =  2 17,s u+ =  3 4 43s u+ =  and,

consequently,

9 13 43 98 17 3365,x = ⋅ ⋅ − ⋅ = 7 9 43 4 7 13 17 8897,p = − ⋅ ⋅ − ⋅ ⋅ ⋅ = −

       9 13 43 98 17 6697,y = ⋅ ⋅ + ⋅ =         7 9 43 4 7 13 17 3479,q = − ⋅ ⋅ + ⋅ ⋅ ⋅ =

       27 9 43 2 7 17 6755,z = − ⋅ ⋅ − ⋅ ⋅ = −         29 17 43 4 7 17 3247.r = ⋅ ⋅ − ⋅ ⋅ =

Demonstration

of the preceding rule.

31. Let us put 2 2 ,aa bb sαα ββ+ = + =  2a b tα β− =  and ;a b uβ α+ =  we then

have 2 .ss tt uu= +   Let us take the values found above (27) of c and d, namely

2 ,c bα= − −  .d aβ= +  Concerning the other two values (of c and d), they are derived by

taking a and b negative.  We get 2 3 4 ,cc dd s u+ = +  2 ,ac bd t+ = −

( )2 2 ,c d s uα β− = − +  ( ) ,bc ad s u− = − +  and ,c d tβ α+ =  and finally, according to

(27), ( )3 4f s s u= +  and ( )2 2 .g t s u= +

32. Let us substitute now the values in the retrieved formulas above (26); we will

find the following expressions:

( )( ) ( )3 4 2 2 ,x s s u s u tt s u= + + − +

( )( ) ( )3 4 2 2 ,y s s u s u tt s u= + + + +

       ( ) ( )23 4 2 2 ,z st s u t s u= + + +
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( ) ( )( )3 4 4 2 ,p st s u t s u s u= + + + +

( ) ( )( )3 4 4 2 ,q st s u t s u s u= + − + +

( )( ) ( )3 4 2 4 2 ,r s s u s u tt s u= + + − +

which were obtained  in the rule.

33. Finally, since the three numbers s, t, u are subject only to the condition

2 ,ss tt uu= +  we must find the numbers s, t, u which fulfill this condition; then the

preceding formulas will immediately give the values of the desired numbers.  As for

those of s, t, u which fill the condition 2 ,ss tt uu= +  here are the simplest:

s 3 9 17 19 27 33 33 41 43

t 1 7  1 17 23 17 31 23  7

u 2 4 12  6 10 20  8 24 30.

Fourth method.

34. We have seen, at the beginning of this paper, that the equations

,yy zz xx pp+ − = zz xx yy qq+ − =

 will be satisfied, if we take

,z aa bb= + ( )4 ,yy xx ab aa bb− = − 2 ,p aa ab bb= + − 2q aa ab bb= − − .

It is easy to see that these equation will be satisfied, if we take 

( ) ,z mn aa bb= + ( )4yy xx mmnn aa bb− = −

and   ( )2 ,p mn aa ab bb= + − ( )2 .q mn aa ab bb= − −

Therefore it  remains to fulfill the third condition of our problem, namely:

.xx yy zz rr+ − =
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35. Now, so that the three numbers x, y, z do not have a common factor, we take

( )2y x mma a b+ = +  and ( )2y x nnb a b− = − . To simplify the expressions let

aa ab A+ =  and ,ab bb B− =  so that 2y x mmA+ =  and 2 ;y x nnB− =  and since

A B aa bb− = +  we find ( ).z mn A B= −   The sum of the squares of y x+  and y x−  is

4 42 2 4 4 ;yy xx m AA n BB+ = +  therefore 4 42 2yy xx m AA n BB+ = + .

Subtracting from this the value of zz, we get this expression for rr

( )24 42 2 .rr m AA n BB mmnn A B= + − −

36. To make this formula more manageable, let us suppose ,m f g= +  ;n f g= −

from which we get 4 3 3 4 ,rr f f g ffgg fg gα β γ β α= + + + +  where 

( ) ( )2 22 2 ,AA BB A B A Bα = + − − = +

     8 8 ,AA BBβ = −

     ( ) ( )212 2 .AA BB A Bγ = + + −

By substituting these values of ,α  ,β  γ  in the preceding equation, we will have

( ) ( ) ( ) ( ) ( ) ( )2 2 24 3 3 48 12 2 8 .rr A B f AA BB f g AA BB A B ffgg AA BB fg A B g = + + − + + + − + − + + 

37. To make this expression a square, let us suppose that its root is

( ) ( ) ( )4 ,r A B ff A B fg A B gg= + + − − +

Thus it follows that
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( ) ( ) ( ) ( ) ( ) ( )2 2 2 24 3 3 48 2 16 8 .rr A B f AA BB f g A B ffgg A B ffgg AA BB fg A B g= + + − − + + − − − + +

Subtracting from this expression the preceding one we will obtain

( ) 30 32 16 ,ABffg AA BB fg= + −

from which we get
2

f AA BB
g AB

−
=

−

and, consequently, ,f AA BB= −

2 .g AB= −

Thus we find the numbers f and g according to the values of A and B which are

determined by the equation ,A aa ab= +  .B ab bb= −   Then we take ,m f g= +

,n f g= −  and obtain the values of x, y, z, p, q, which, according to the preceding

equations, are

,x mmA nnB= − ,y mmA nnB= + ( ),z mn A B= −

           ( )2 ,p mn aa ab bb= + − ( )2 .q mn aa ab bb= − −

As for r, we had

( ) ( ) ( )4 ,r A B ff A B fg A B gg= + + − − +

and this equation, because ,m f g= +  ,n f g= −  becomes

( ) ( )( ).r mn A B mm nn A B= + + − −

Therefore, it is easy to develop the values of x, y, z, and  p, q, r for each value of the

letters a and b.

38. We present a method for finding as many solutions as desired.  After

arbitrarily selecting a and b, we form ,A aa ab= +  ,B ab bb= −  then f AA BB= −  and
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2 .g AB= −  From these we get ,m f g= +  .n f g= −   Thus, having determined these

values, the desired numbers are given by the following formulas:

,x mmA nnB= − ( 2 ),p mn aa ab bb= + −

,y mmA nnB= + ( 2 ),q mn aa ab bb= − −

( ),z mn A B= − ( ) ( )( ).r mn A B mm nn A B= + + − −

We show a few examples.

Example 1.  Let 1,a =  2;b =  we have 3,A =  2;B = −  From these we have 5,f =

12,g =  17,m =  7,n = −  and finally the desired numbers are:

17 17 3 7 7 2 965,x = ⋅ ⋅ + ⋅ ⋅ = 17 7 1 119,p = − ⋅ ⋅ = −

17 17 3 7 7 2 769,y = ⋅ ⋅ − ⋅ ⋅ = 17 7 7 833,q = − ⋅ ⋅− =

17 7 5 595,z = − ⋅ ⋅ = − 7 17 1 240 5 1081.r = − ⋅ ⋅ + ⋅ =

This solution has already been found reported previously (22).

Example 2.  Let 2,a =  1;b =  and get 6,A =  1,B =  35,f =  12.g = −  Finally we

have 23,m =  47,n =  and consequently,

23 23 6 47 47 1 965,x = ⋅ ⋅ − ⋅ ⋅ = 23 47 7 7567,p = ⋅ ⋅ =

23 23 6 47 47 1 5383,y = ⋅ ⋅ + ⋅ ⋅ = 23 47 1 1081,q = ⋅ ⋅− = −

23 47 5 5405,z = ⋅ ⋅ = 23 47 7 1680 5 833.r = ⋅ ⋅ − ⋅ = −

39. It should be observed that it would be superfluous to take both  the numbers a

and b odd, since then the numbers A and B will be even, and consequently reducible to

the smaller numbers.

Example 3.  Let 2,a =  3;b =  we have 10,A =  3,B = −  91,f =  60,g =  151,m =

31;n =  from which results
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151 151 10 31 31 3 230893,x = ⋅ ⋅ + ⋅ ⋅ = 151 31 7 32767,p = ⋅ ⋅ =

151 151 10 31 31 3 225127,y = ⋅ ⋅ − ⋅ ⋅ = 151 31 17 79577,q = ⋅ ⋅− = −

151 31 13 60853,z = ⋅ ⋅ = 151 31 7 21840 13 316687.r = ⋅ ⋅ + ⋅ =

We observe here that all the solutions found with this method, are essentially different

from all those calculated from the preceding methods.

 Notes by section

Sections 1 to 7. In the first section Euler introduces the central problem to be

examined. In sections 2 to 7 he describes explorations that he later abandoned. He

presents four successful solutions beginning in section 8

Section 2. Euler assumes that the reader knows the following:

Lemma 1.: Numbers of the form 4 2n +  and 4 3n +  cannot be squares.

Proof: If 2 4 2x n= + , then x is even. Let 2x p= and we have 24 4 2p n= + . Thus

2 1/ 2n p= −  which is impossible. This shows that 4 2n + cannot be a square. If

2 4 3x n= + , then x is odd. Let 2 1x p= +  and we have 24 4 1 4 3p p n+ + = + . Thus

2 1/ 2n p p= + −  which is impossible. This shows that 4 3n + cannot be a square.

Section 9. The following is used without proof:

Lemma 2: The set T of numbers of the form 2 22a b+ is closed under multiplication. 

Proof  By direct multiplication we see that 

( )( )2 2 2 2 2 22 2 ( 2 ) 2( )a b c d ac bd ad bc+ + = + + − .

Section 11. Euler states the following without proof:

Lemma 3:  If 2 22a b+ is odd, then 2 22 1 3 mod 8a b or+ ≡ . 
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Proof:    It is clear that a must be odd, and therefore 2 2(2 1) 4 ( 1) 1a m m m= + = + + . Thus

2 1mod8a ≡ . If b is even, then 22 0mod8b ≡  and we have 2 22 1 mod8a b+ ≡ . If b is odd

then 2 22 2(2 1) 8 ( 1) 2 2mod8b m m m= + = + + ≡ and 2 1 2 3mod8.a ≡ + ≡  The lemma is

proved.

The converse is not true. The number 35 is the smallest example, since 35 3mod8≡  but

cannot be expressed in the form 2 22a b+ .

Section 12.  We used a computer to extend Euler’s list to all primes congruent to 1 or 3

mod 8 less than 800,000. In all cases these primes were of the form 2 22a b+ . Is Euler

conjecturing that this is true for all such primes? (See (e) below.)

Sections 9 to 14. Let T denote the set of all numbers of the form 2 22a b+ ..In these

sections Euler studies the nature of numbers in T.  We find that:

(a) The set T is closed under multiplication. (See Lemma 2 above.)

(b) If p is a prime in T, then 2 22p a b= + , where a and b are unique.(See section 9.)

(c) If 2 2 2s x y z= + + , where the numbers x, y, z are the solution of the main problem of

this paper, then s is in T and has at least 3 prime factors. (See section 10.)

(d) If n is odd and in T, then n is congruent to 1 or 3 mod 8. (See section 11.)

(e) All primes equal to 1 or 3 mod 8 divide some number in T. (See sections 13 and 14.)
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