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The First Paradox 

I. 

Here I intend to explain a paradox in integral calculus that will seem rather strange: this 

is that we sometimes encounter differential equations in which it would seem very 

difficult to find the integrals by the rules of integral calculus yet are still easily found, not 

by the method of integration, but rather in differentiating the proposed equation again; so 

in these cases, a repeated differentiation leads us to the sought integral.  This is 

undoubtedly a very surprising accident, that differentiation can lead us to the same goal, 

to which we are accustomed to find by integration, which is an entirely opposite 

operation. 

 

 II. To get a better feel for the importance of this paradox, we only have to 

remember that integral calculus holds the natural method for finding integrals from 

differential quantities: and from this it seems that for a proposed differential equation, 

there is no other way to arrive at its integral than to attempt its integration.  And if we 

would, instead of integrating this equation, differentiate it once more, we would need to 

believe that we would further distance ourselves from the proposed goal; considering that 

we would then have a differential equation of the second degree, it would need two 

integrations before we reach the proposed goal. 

 

 III. It must therefore be very surprising that a repeated differentiation does not 

distance us only further from the integral that we proposed to find, but it can even give us 

this integral.  This would undoubtedly be a great advantage, if this accident were general 

and always held true, since then the study of integrals, which are often impossible, would 

no longer pose the least difficulty: but it is only found in some very particular cases in 

which I will relate some examples: the other cases always follow the ordinary method of 

integration.  Therefore, here are some problems that serve to clarify this paradox. 

 

PROBLEM I 

 Given point A, find the curve EM such that the perpendicular AV, derived from 

point A onto some tangent of the curve MV, is the same size everywhere. (Fig. 1) 

 

 IV. Taking for the axis some straight line AP derived from the given point A, we 

derive the perpendicular MP there from some point M on the sought curve and another 

infinitely close line mp.  Also, let us call AP = x, PM = y, and the given length of the line 

AV = a.  Furthermore, let the element of the curve Mm = ds, and having derived Mπ 

parallel to the axis AP, we will have Pp = Mπ = dx and πm = dy; therefore 
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.)( 22
dydxds +=   We extend from the point P also onto the tangent MV the 

perpendicular PS and onto this line from the point A the perpendicular AR, which will be 

parallel to the tangent MV.  Now, since the triangles PMS and APR are similar to the 

triangle Mmπ, we can derive: 
ds

dxy

Mm

PMM
PS =

⋅
=

π
 and :

ds

dyx

Mm

APm
PR =

⋅
=

π
 from 

where, because of AV = PS – PR, we will have this equation, 
ds

dyxdxy
a

−
=  or 

,)( 22
dydxadsadyxdxy +==−  which will express the nature of the sought curve. 

 

 V. Therefore, here is a differential equation for the curve we seek: and if we want 

to handle it according to the ordinary method, it is necessary to first of all remove the 

differentials from the radical sign: therefore taking the squares, we will have: 
22222222 2 dyadxadyxdydxxydxy +=+−  

and hence: 

22

2222
2 2

xa

dxydxadydxxy
dy

−

+−−
=   

†
 

from which extracting the root produces: 

22

222 )(

xa

ayxdxadxxy
dy

−

−++−
=   

†
 

or 

)( 22222
ayxdxadxxydyxdya −+=+−  

from which it is now necessary to find the integral to know the curve in question. 

 

 VI. To integrate this equation, let us call ,)( 22
xauy −=  to have 

,)1)(()( 222222 −−=−+ uxaayx  and ,
)(

)(
22

22

xa

dxux
xadudy

−
−−=  in which 

.)()( 222
3

2222
xadxuxxadudyxdya −−−=−   These values being substituted give: 

)1)(()( 2222
3

22 −−=− uxadxaxadu  

or 

,
)1(

222 xa

dxa

u

du

−
=

−
 

an equation where the variables x and u are separated. 

 

 VII. Since this equation is separated, I first of all note that its conditions are 

satisfied if we set ,0)1( 2 =−u  or ;12 =u  because in this case both 

                                                 
†
 The negative signs at the front of these numerators were erroneously placed in front of the whole fraction 

in the original paper. 
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)1)(( 222 −− uxadxa  and ,)( 2
3

22 xadu − since ,0=du vanish.  Hence, again we have 

an integral value ,12 =u  or ,1±=u  from where we derive ,)( 22
xay −±=  or 

;222 axy =+  this is the equation for a circle described around the center A with radius a.  

Now it is clear that this circle would satisfy the problem, since the perpendicular AV 

becomes equal to the radius of the circle and falls on the tangent point M, as is known by 

the properties of circles. 

 

 VIII. But this case is still not the extent of the differential equation 

;
)1(

222 xa

dxa

u

du

−
=

−
 let us therefore search for its integral, which will be by logarithms 

xa

xan
uu

−

+
=−+

)(
log])1(log[

2

2
12  

so that we would have: 

.)1( 2

xa

xa
nuu

−

+
=−+  

From this, we will find, 

xa

xa
nu

xa

xa
n

−

+
−

−

+
=− 21 2  

and hence 

.
2

1

2 xa

xa

nxa

xan
u

+

−
+

−

+
=  

Resulting in 

),(
2

1
)(

2
)( 22

xa
n

xa
n

xauy −++=−=  

the equation for a straight line derived in such a way that the perpendicular that is derived 

from the given point A to this line is equal to a. 

 

 IX. Therefore, here is the solution of the proposed problem that we would find by 

the ordinary method where it is firstly necessary to separate the variables and then 

integrate the separated differential equation.  Now it is clear that this operation is not only 

awkward, but it would become impossible if instead of the irrational formula 

,)( 22
dydx +  we would have a more complicated one.  For example, if we were to 

encounter this equation 

3 33 )( dydxadyxdxy +=−  

In taking the cubes, it would be a pain to extract the root for finding the relation between 

the differentials dx and dy, and if the root were higher, this extraction would become 

impossible. 

 

 X. Well, now I say that this same equation that contains the solution of the 

problem 
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)( 22
dydxadyxdxy +=−  

can reduce to a finite equation, and even algebraic, between x and y, without y using the 

ordinary integration just seen: but, in what consists of the crux of the paradox, by a 

subsequent differentiation of this equation.  Or this will be the same differentiation that 

we will apply to the integral equation, which will make known to us the nature of the 

sought curve.  What I just advanced will put the crux of the paradox that I had proposed 

to disentangle here in all its glory. 

 

 XI. In order that the differentials do not cause us any trouble in using a 

subsequent differentiation, let us assume dy = p dx, and we will have 

.)1()( 222
pdxdydx +=+   By this substitution our equation, being divided by dx, will 

take this form, 

)1( 2
papxy +=−  or )1(

2
papxy ++=  

where it does well to note that although we no longer perceive the differentials here, this 

equation is still differential because of the letter p, which has the value of ;
dx

dy
 so if we 

were to replace it, we would return to the first differential equation. 

 

 XII. Presently, instead of integrating this differential equation, I differentiate it 

once more to have, 

.
)1( 2

p

dpap
dpxdxpdy

+
++=  

Now, having assumed dy = p dx, replacing dy with this value first of all gives us: 

,
)1(

0
2

p

dpap
dpx

+
+=  

from where in dividing by dp we first of all derive: 

)1( 2
p

ap
x

+
−=  

and since ,)1( 2
papxy ++=  in substituting this value of 

)1( 2
p

ap
x

+
−=  here, we 

will have: 

)1(
)1(

2

2

2

pa
p

ap
y ++

+
−=  or .

)1( 2
p

a
y

+
=  

 

 XIII. Therefore, here are the values, and even algebraic, for the two coordinates x 

and y, these only containing the single variable p: and as presently there is no longer a 

question of the assumed value of ,
dx

dy
p =  the problem is solved by this repeated 

differentiation.  Because we only have to eliminate the variable p from these two 

equations 
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)1( 2
p

ap
x

+
−=  and 

)1( 2
p

a
y

+
=  

this can  be easily done by adding together the squares 2
x  and ,2y  from where we will 

first of all have 

2

2

222
22

1
a

p

apa
yx =

+

+
=+  

which is the equation for the circle that would satisfy the proposed problem. 

 

 XIV. It is true that besides the circle there are still infinitely many straight lines 

that equally satisfy the question that this method does not seem to produce.  But it 

nevertheless contains them, and visibly still more than the other ordinary method.  We 

only have to regard the equation ,
)1(

0
2

p

dpap
dpx

+
+=  which we arrived at by 

differentiation, and which, since it is divisible by dp, also contains the solution dp = 0.  

Now from this we immediately derive p = const. = n, and hence ;)1( 2
nanxy ++=  

where all of the straight lines that fulfill the conditions of the problem are comprised. 

 

 XV. Having already noted that this equation: 

3 33 )( dydxadyxdxy +=−  

is a pain to solve by the ordinary method, we will first of all produce its integral by 

differentiation.  From calling dy = p dx, we will have ,)1()( 3 33 33
pdxdydx +=+  and 

hence 

3 3 )1( papxy +=−  or 3 3 )1( papxy ++=  

which being differentiated gives 

3 23

2

)1( p

dpap
dpxdxpdxpdy

+
++==  

from where we derive ,
)1(

0
3 23

2

p

dpap
dpx

+
+=  or 

3 23

2

)1( p

ap
x

+

−
=  and .

)1(3 23
p

a
y

+
=  

 

 XVI. If we want to eliminate p here, we only have to add the cubes to have 

3

3
3

3

33

23

63
33

1

2

1

)1(

)1(

)1(

p

a
a

p

pa

p

pa
xy

+
+−=

+

−
=

+

−
=+  so that ,

21

1
3

333

3
a

yxa

p

++
=

+
 and 

hence 

.
4

)(

)1(
3

3
2

333

3 23 a

yxa

p

a
y

++
=

+
=  

Therefore 
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233333 )(4 yxaya ++=  

or 
633633336 2220 yyxxyaxaa +++−+=  

for a sixth order curve.  But besides this, it would also satisfy dp = 0, or p = n, because of 

the division by dp; and this case gives infinitely many straight lines contained in this 

equation 

.)1(3 3
nanxy ++=  

 

 XVII. We see that by the same method we will easily solve all the problems 

which would lead to such equations: 

n nnn
etcdydxdydxdxadyxdxy .)( +++=− −− µµνν γβα  

Because of calling dy = p dx, we would have 

n etcppapxy .)( ++++= µν γβα  

and differentiating and dividing by dp, 

n n
etcppn

etcpapa
x

1

11

.)(

.

−

−−

+++

−−−
=

µν

µν

γβα

γµβν
 

and 
n n

etcppn

etcpanpanna
y

1.)(

.)()(

−+++

+−+−+
=

µν

µν

γβα

γµβνα
 

from where, in eliminating p, we will derive an algebraic equation between x and y.  Now, 

also since dp = 0 and p = const. = m, the straight lines contained in this formula: 

n etcmmamxy .)( ++++= µν γβα  

are equally satisfying.  I therefore move to another problem. 

 

PROBLEM II 

 On the axis AB, find the curve AMB such that having derived from one of its 

points M the tangent TMV, it intersects the two straight lines AE and BF, derived 

perpendicularly to the axis AB at the two given points A and B, so that the rectangle 

formed by the lines AT and BV is the same size everywhere. (Fig. 2) 

 

 XVIII. Let the given interval AB = 2a, the abscissa AP = x,
†
 the ordinate PM = y, 

and having derived the infinitely close line pm, we will have ,dxMPp == π  and 

.dym =π   We derive the straight lines MR and MS parallel to the axis AB, and the 

relation of the triangles ,mMπ  TRM, and MSV, because of ,2 xaMSPB −==  will 

produce: 

dx

dyx
RM = ‡

 and 
dx

dyxa
SV

)2( −
=  

from where we will have: 

                                                 
†
 Originally written AB = x. 

‡
 Originally written .

dx

dyx
PM =  
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dx

dyx
yAT −=  and 

dx

dyxa
yBV

)2( −
+=  

of which the upcoming product is a constant :2
c  

.)
2

)(( 2
c

dx

dya

dx

dyx
y

dx

dyx
y =+−−  

 

 XIX. If we would like to treat this equation by the ordinary method, we would 

surely encounter difficulties, and maybe would only arrive at the integral equation after 

numerous detours.  But to assist us in the other method, let us call dy = p dx to have 
2)2)(( cappxypxy =+−−  

or: 
22222 2)(2 cxpxappyxay =+−−+  

or 
222222 )()(2 pacpxapyxay +=−+−+  

from where the extraction of the root produces: 

)()( 222
pacpxay +=−+  

or 

.)()( 222
pacpxay ++−−=  

 

 XX. Let us now differentiate this equation, instead of searching for the integral, 

and we will obtain: 

)(
)(

222

2

pac

dppa
dxpdpxadxpdy

+
++−−==  

where the terms p dx  eliminating each other and the division by dp will give: 

)( 222

2

pac

pa
xa

+
=−  or 

)( 222

2

pac

pa
ax

+
−=  

and substituting the value of a – x in the one of y, we will have 

)(
)(

222

222

22

pac
pac

pa
y ++

+

−
=  or .

)( 222

2

pac

c
y

+
=  

 

 XXI. Having therefore: 

)( 222
pac

ap

a

xa

+
=

−
 and 

)( 222
pac

c

c

y

+
=  

The elimination of the quantity p will occur in adding the squares of these two formulæ, 

which will give: 

,1
)(

222

222

2

2

2

2

=
+

+
=+

−

pac

cpa

c

y

a

xa
 

therefore: 

2

2

2

2 2

a

xax

c

y −
=  or )2( 2

xax
a

c
y −=  
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from where we see that the sought curve is an ellipse described on the axis AB, and of 

which the conjugate semi-axis is c, so that in such an ellipse the rectangle of the tangents 

AT and BV is always equal to the square of the conjugate semi-axis. 

 

 XXII. But it is clear that besides this curve, the problem would also be satisfied 

by infinitely many straight lines TV derived such that the rectangle BVAT ⋅  is .2
c   

These lines are found by setting the divisor dp equal to 0, which gives p = const. = n, 

from where we will have: .)()( 222
ancxany ++−−=   From this, if x = 0, we derive 

,)( 222
ancnaAT ++−=  and if x = 2a, ,)( 222

ancnaBV ++=  so that we always 

have 
2

cBVAT =⋅  

some value that is able to have the number n. 

 

PROBLEM III 

 Given two points A and C, find the curve EM such that if we derive some tangent 

MV, which the perpendicular AV is directed towards from the first point A, and we join 

the straight line CV to V from the other point C, this line CV is the same size everywhere. 

(Fig. 3) 

 

 XXIII. Let us set the given distance AC equal to b, and taking this line for the axis, 

the ordinate MP is directed towards it from the point M and is infinitely close to the line 

pm.  Let AP = x, and PM = y; and because of dxMPp == π  and ,dym =π  let 

.)( 22
dsdydxMm =+=   This proposed, we have seen in the solution of the first 

problem that we will have: .
ds

dyxdxy
AV

−
=   Let us also extend the line VX from the 

point V perpendicular to the axis, and because of the similarity of the triangles Mmπ and 

VAX, we will have: 

2

)(

ds

dyxdxydx
VX

−
=  and 

2

)(

ds

dyxdxydy
AX

−
=  

and hence: 

.
)(

2
ds

dyxdxydy
bCX

−
+=  

 

 XXIV. Now let the given length CV equal a, and because 222
XVCXCV +=  we 

will have: 

2

2

2

22 )()(2

ds

dyxdxy

ds

dyxdxydyb
ba

−
+

−
+=  

and furthermore, because :222 dsdydx =+  

2

22
2

2

22
22

2

22

22

2 )(2)(

ds

dxb
a

ds

dyb
ba

ds

dyb

ds

dyxdxydyb

ds

dyxdxy
−=+−=+

−
+

−
 

of which the square root is 
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)(
2

22
2

ds

dxb
a

ds

dyb

ds

dyxdxy
−=+

−
 

or from multiplying by ds 

.)( 2222
dxbdsadybdyxdxy −=+−  

 

 XXV. Here it is evident enough that we would dive into a very annoying 

calculation, if we would want to attempt to solve this equation by the ordinary method.  I 

therefore set dy = p dx, and because ),1( 222 pdxds +=  our differential equation will take 

this form 

))1(( 222
bpabppxy −+=+−  

which I differentiate again, placing p dx in for dy, and I will have: 

))1(( 222

2

bpa

dppa
dpbdpxdxpdxp

−+
=+−−  

which being divided by dp gives: 

))1(( 222

2

bpa

pa
xb

−+
=−  or 

))1(( 222

2

bpa

pa
bx

−+
−=  

and 

.
))1((

))1(()(
222

22
222

bpa

ba
bpapxby

−+

−
=−++−−=  

 

 XXVI. From this, to eliminate p, I form these equations: 

))1(( 222
bpa

ap

a

xb

−+
=

−
 and 

))1((

)(

)( 222

22

22
bpa

ba

ba

y

−+

−
=

−
 

and adding the squares of these formulæ, I find: 

1
)1(

)1()(
222

222

22

2

2

2

=
−+

−+
=

−
+

−

bpa

bpa

ba

y

a

xb
 

which is the equation for an ellipse whose center is C
†
, one of its foci at A, and the semi-

major axis equal to CV.  But besides this ellipse, the divisor dp = 0 still gives infinitely 

many straight lines comprised in this equation 

.))1(()( 222
bnaxbny −++−−=  

 

PROBLEM IV 

 Given two points A and B, find the curve EM such that having derived some 

tangent VMX, if the perpendiculars AV and BX are directed towards it from the points A 

and B, the rectangle of these lines BXAV ⋅  is the same size everywhere. (Fig. 4) 

 

 XXVII. Let the distance of the given points AB = 2b on which we derive the 

perpendicular MP and an infinitely close line mp: and we call the coordinates: AP = x,    

                                                 
†
 Originally mislabeled D. 
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PM = y, to have ,dxMPp == π  ,dym =π  and .)( 22
dsdydxMm =+=   This proposed, 

we have seen that we will have .
ds

dyxdxy
AV

−
=   Furthermore, we derive AR 

perpendicular to BX, and the similarity of the triangles Mmπ and ABR will produce 

,
2

ds

dyb
BR =  and in adding to it ,

ds

dyxdxy
AVRX

−
==  we will have 

.
)2(

ds

dyxbdxy
BX

−+
=   Therefore, let 2

c  be the rectangle of the lines AV and BX, and 

we will have for the curve EM this equation: 

.)2)(( 22dscdybdyxdxydyxdxy =+−−  

 

 XXVIII. Without troubling ourselves with the ordinary method, let us call          

dy = p dx, so that ),1( 222 pdxds +=  and we will have: 

)1()2)(( 22 pcbppxypxy +=+−−  

which reduces to: 

)1(2)(2 222222 pcxpxbppyxby +=+−−+  

or to 
2222222 )1()()(2 pbpcpxbpyxby ++=−+−+  

of which the square root is: 

))(()( 2222
pcbcpxby ++=−+  

and hence 

.))(()( 2222
pcbcpxby +++−−=  

 

 XXIX. Let us differentiate this differential equation again, and because dy = p dx, 

we will have: 

))((

)(
)(

2222

22

pcbc

dppcb
dxpdpxbdxp

++

+
++−−=  

which being divided by dp first of all gives: 

))((

)(

2222

22

pcbc

pcb
xb

++

+
=−  

or 
)( 222

2

pac

pa
xb

+
=−  calling 222

acb =+  for brevity.  From this we will derive: 

.
)(

)()(
222

2
222

pac

c
pacpxby

+
=++−−=  

Therefore, having: 

)( 222
pac

ap

a

xb

+
=

−
 and 

)( 222
pac

c

c

y

+
=  

We will have when adding the squares 
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.1
)(

2

2

2

2

=+
−

c

y

a

xb
 

 

 XXX. This equation, as is evident, is an ellipse whose foci are at the points A and 

B; and hence the center is at the point in the middle C.  The semi-minor axis will 

therefore be c; and this squared is from which the rectangle BXAV ⋅  will be equal 

everywhere: this being also a property of ellipses.  Now there are also straight lines that 

satisfy this same problem that the divisor dp = 0 will provide us.  Since calling p = n, the 

equation for all these straight lines will be .)()( 222
ancxbny ++−−=   I would still 

add many similar problems to confirm this paradox, but these four will entirely suffice to 

prove it true. 

 

The Second Paradox 

XXXI. 

The second paradox that I will put forth is no less surprising, since it is also contrary to 

the common ideas of integral calculus.  We usually imagine that having some differential 

equation, we only need to find its integral and to render it in its full extent by adding to it 

an undefined constant to have all the cases that are comprised in the differential equation.  

Or when this differential equation is resultant from a solution of a problem, we have no 

doubt that the integral equation found by the ordinary rules contains every possible 

solution of the problem: this is understood when we have not neglected the addition of a 

constant that all integration demands. 

 

 XXXII. However, there are cases where ordinary integration gives us a finite 

equation that does not contain all that would be contained in the proposed differential 

equation, still not neglecting the aforementioned constant.  This would seem much more 

paradoxical since we are accustomed to being convinced of the accuracy of the idea 

explained in the previous paragraph.  Because if the integral equation, which we will 

have found after all prescribed precautions, does not exhaust the extent of the differential 

equation, the problem will allow solutions that the integration will not produce, and 

hence we will arrive at a defective solution that undoubtedly seems to upset the ordinary 

principles of integral calculus. 

 

 XXXIII. Now it is very easy to propose infinitely many differential equations that 

show a certain relation between the variable quantities that is impossible to find by the 

scope of ordinary integration.  Let us propose, for example, this differential equation: 

)( 222
ayxdydyydxx −+=+  

and it is evident that the finite equation 0222 =−+ ayx  would entirely satisfy this.  

Because of having from that ,0=+ dyydxx  both members of the differential equation 

vanish by themselves: this is an undoubted sign that this finite equation 222 ayx =+  is 

contained in the proposed differential equation: or that a circle resolves the problems that 

lead to this differential equation. 
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 XXXIV. However, when we integrate this differential equation, we will not find 

this relation 222 ayx =+  in the least: because, dividing our equation by 

,)( 222
ayx −+  we have: 

.
)( 222

dy
ayx

dyydxx
=

−+

+
 

The integral is evident and when completely expanded is 

cyayx +=−+ )( 222  

having introduced the undefined constant c.  Now it is clear that the equation we already 

found 222 ayx =+  is absolutely not contained in this integral equation for whatever 

value that we give to the constant c. 

 

 XXXV. Taking the squares of our integral equation we found, we will have: 

222 2 ccyax +=−  and 
c

cax
y

2

222 −−
=  

and hence we would believe that the proposed problem, which led us to this equation, 

only satisfies infinitely many parabolas, contained in the equation ,
2

222

c

cax
y

−−
=  

according to the different values of c.  And since we found infinitely many parabolas, we 

will doubt much less that we had not arrived at a complete solution.  However, we just 

saw that the same problem would also be satisfied by the circle contained in the equation 

.222 ayx =+  

 

 XXXVI. I have encountered several other cases of this type in my Treatise on 

movement, where I had already noted this same paradox in which a differential equation 

sometimes contains solutions that are not comprised in the integrated equation: I had also 

given a sure rule there, by the way of which we can find these solutions contained in the 

differential equations that we would not be able to derive from the integrated equation.  

However, as I had not created enough of a feel there for the evident importance of this 

paradox, we could believe that this is some bizarreness in mechanical problems that 

would have no place in Geometric problems, or that this would not be a reproach that we 

could directly make to the same Analysis. 

 

 XXXVII. For the example I just made here, as it is formed from fancy, we could 

also doubt if this case is ever encountered in the solution of a real problem.  But the same 

examples that I related to clarify the first paradox will also serve to clarify this one.  

Because the first problem asks for a curve such that if perpendicular lines head from a 

given point to all its tangents, all its perpendiculars will be equivalent; this problem, I say, 

being proposed, we first of all see that a circle described about a point given as its center 

with a radius equal to the straight line to which all the mentioned perpendiculars must be 

equal will satisfy the problem. 

 

 XXXVIII. However, having been lead to this differential equation: 
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)( 22222
ayxdxadxxydyxdya −+=+−  

where the variables x and y are mixed together, we saw that by way of this substitution 

,)( 22
xauy −=  it changes to this separated form, 

222 )1( xa

dxa

u

du

−
=

−
 

of which the integral in its full extent would be 

xa

xa
uuu

−

+
=−+ )1( 2  

from where I derived this equation: 

)(
2

1
)(

2
xa

n
xa

n
y −++=  

which only contains straight lines, so that the circle seems at this hour entirely excluded 

from the solution of the proposed problem. 

 

 XXXIX. It is the same with the second problem, which is solved, as we have seen, 

by an ellipse expressed by this equation ;)2( 2
xax

a

c
y −=  this is also clear by the 

known properties of the ellipse.  Now having found this differential equation: 

,)
2

)(( 2
c

dx

dya

dx

dyx
y

dx

dyx
y =+−−  

we will derive by the extraction of the root: 

2

2222

2

))2(()(

xax

xaxcyayxa

dx

dy

−

−−+−
=  

.))2(()()2( 22222
xaxcyadxdxyxadyxax −−=−−−  

Now it is evident that the equation 0)2( 2222 =−− xaxcya  would satisfy this formula, 

because we will have from this ,)2( 2
xax

a

c
y −=  and hence in differentiating their 

logarithms: 

,
2

)(
2xax

xadx

y

dy

−

−
=  or ,0)()2( 2 =−−− dxyxadyxax  

so that in this case, both members of the differential equation vanish. 

 

 XL. But, if we treat this differential equation according to the ordinary method, 

and we call ,)2( 2
xauy −= to have 

))(2())2(( 22222222
cuaxaxxaxcya −−=−−  

and 

)2(

)(
)2(

2

2

xax

dxxau
xaxdudy

−

−
+−=  

These substituted values will change our equation to this form: 
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))(2(

)2()()2()()2(

2222

222
3

2

cuaxaxdx

xaxdxxauxaxdxxauxaxdu

−−

=−−−−−+−
 

which now reduces to this separated form, 

2222 2)( xax

dx

cua

du

−
=

−
 or 

2222 2)( xax

dxa

cua

dua

−
=

−
 

of which the general integral is 

xa

x

b

cuaau

−
=

−+

2
log

)(
log 2

1

222

 

or 

.
)2(2

)(
2

222

xax

bx

xa

x
bcuaau

−
=

−
=−+  

 

 XLI. From this we will easily find the value of u, which will be: 

,
)2(22

)2(

2

22

xax

bx

bx

xaxc
u

−
+

−
=  

and since ,)2( 2
xauy −=  we will obtain: 

,
2

)(

22

)2( 22222

b

xcb

b

acbx

bx

xaxc
y

−
+=+

−
=  

and it is evident that this integral equation, somewhat general as it is because of the 

undefined constant b, does not contain the ellipse we already found.  This same accident 

will also take place in the two other related problems, where we will treat the differential 

equations we find by the ordinary method for finding integrals, where the ellipse, which 

produces a valid solution, will not be comprised. 

 

 XLII. But here is the general rule by which we can easily find these cases where 

the integral of a proposed differential equation escapes ordinary integration.  Let z be 

some function of two variables x and y, and let Z be some function of z.  Furthermore, let 

P, Q, V also be some functions of the variables x and y, and let us assume that we could 

reach this differential equation 

)( dyQdxPZdzV +=  

and it is clear that the value Z = 0 would satisfy this equation; from this we will derive     

z = const. and hence dz = 0, so that in the cases Z = 0 the two members of the proposed 

equation vanish. 

 

 XLIII. By this rule, we will easily find the ellipse that contains a solution of the 

second problem; because of being reached by this differential equation: 

2222 2)( xax

dx

cua

du

−
=

−
 or )()2( 2222

cuadxxaxdu −=−  
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replacing z with u and the function )( 222
cua −  for Z, the proposed equation will be 

satisfied by the equality Z = 0 or 0222 =− cua  from where we derive 
a

c
u =  and hence 

,)2( 2
xa

a

c
y −=  which is the equation for the ellipse in question that is found to be 

excluded from the integrated equation. 

 

 XLIV. Here it is worth noting that these same cases that are inaccessible by 

ordinary integration are precisely those that a repeated differentiation produced for us in 

the clarifications of the first paradox.  And in briefly reflecting here, we will notice that 

this agreement is not due to mere chance, and we could claim in general that every time a 

differential equation is differentiated again, it immediately leads to a finite equation that 

never would be found by the ordinary scope of integration; but to find it, it is necessary to 

apply the rule that I just explained.  From this, we therefore see that the two explained 

paradoxes are bound together as such, one must contain the other. 

 

 XLV. The rule therefore, following what we ordinarily judge, if a differential 

equation is fully integrated or not, is not general.  We commonly believe that when we 

integrated a differential equation in sort, the integral equation contains an undefined 

constant that is not found in the differential, and then the integral equation is complete to 

the same extent as the differential.  But we see by the examples related here that although 

the equations found by integration contain such a constant, which seems to make it 

general, the differential equations still hold a solution that is not comprised in the integral.  

This circumstance on the criterion of complete integral equations could provide us with a 

third paradox, if it were not already so tightly bound with the preceding ones. 

 

 XLVI. It can therefore often occur that it is even absolutely impossible to 

integrate, or still to separate a proposed differential equation, and of which we could 

nevertheless by the given rule find a finite equation that would satisfy the question.  Thus, 

if we were to find in the solution of a problem an equation such as 

)())(()( 222222222
axydyxdxyxadxxyadyxaa −+−−=+−  

for which we would uselessly attempt integration, we would yet be sure that this finite 

equation 222 axy =+  is comprised in it, because in setting ,0222 =−+ axy  both 

members of the equation vanish; this becomes clearer when we set ,)( 22
xazy −=  

because then the equation will take this form: .)1()( 22 −−= zdyxdxydza   Then, 

calling )1( 2 −= zZ  we will have by the given rule ,0)1( 2 =−z  or z = 1, and hence 

.222 axy =+  
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