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I. 

If celestial bodies were perfectly spherical, or their moments of inertia compared to their 

principal axes were equivalent, then some rotational movement they had once received 

would always be conserved without changing either their speed or rotational axis, which 

would always stay directed toward the same points in the sky.  In addition, the attractive 

forces exerted on some body from other celestial bodies would not at all disrupt its 

rotational movement, since the resultant average force would pass through the inertial 

center of the body, as I demonstrated in a preceding Memoir.  But if a celestial body is 

not spherical, or its moments of inertia compared to its three principal axes are not equal, 

and it began to turn around a different axis from its principal axes, then still there would 

not be applied forces, its rotational movement would be disturbed, and the rotational axis 

would change direction, as I demonstrated in another Memoir that preceded this one. 

 2. From this, it follows that if the rotational movement of a celestial body is not 

uniform, or the rotational axis is not always found to be directed toward the same points 

in the sky, then this body certainly does not have this property, that its moments of inertia 

compared to its principal axes are equivalent, but there will be an inequality between its 

principal moments of inertia.  Therefore, since Earth’s axis is not always directed toward 

the same points in the sky, although the diurnal movement seems uniform, we must 

conclude that Earth’s moments of inertia are not equivalent.  A similar inequality must 

take place in the Moon, since its rotational movement is not uniform, and a change in the 

position of its rotational axis has been observed. 

 3. On the matter of Earth’s movement, it is necessary to observe that Earth’s axis 

is different than its rotational axis.  Since Earth’s axis is in continuous movement due to 

its nutation and the precession of equinoxes, it never aligns with the rotational axis, 

which at each instant is absolutely stationary disregarding annual movement.  To make 

this distinction clearer, let us consider a sphere around Earth’s center on whose surface is 

Earth’s pole A, which advances during a small time dt to a, creating the infinitely small 

angle ωdAPa =  around a fixed point P, but Earth nevertheless turns around the pole A by 

the small angle ϕdZAz = .  With that established, there will be a point O on the arc PA 

that, by this dual movement, will stay at rest, because, by virtue of the pole, it describes 

the arc POdO sinωω = and because of the diurnal movement, the arc AOaOo sinϕ= .  

Let us therefore call these two arcs equivalent, and we will find 
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 4. This therefore is not Earth’s pole A, but another point O that is stationary 

during an instant, and hence the right line drawn to Earth’s center from this point O will 

be the rotational axis and not Earth’s axis, which passes through point A.  It is certainly 

true that the difference, or the arc AO, is so small that it would not enter into any of our 

considerations, since the comparison of dω to dφ is 50″ to ,360*365 4
1 ° or 
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=AO  so that the 

interval AO is only 115
1  of a second, or about a half of a sixtieth of a second.  But, if the 

movement of the pole were more rapid compared to the diurnal movement, which could 

occur in other planets, then it would be necessary to carefully distinguish the planet’s 

rotational axis.  Because Earth’s axis is a fixed line in Earth’s body, but mobile with 

respect to the sky, the rotational axis is not a fixed line in Earth, but after time dt the 

rotational axis, currently the line derived from the center of Earth to the point O, will be 

the line derived to the point ω so that that the rotational axis continually changes both 

with regard to Earth and the sky. 

 5. There are then two manners of representing the diurnal movement of Earth.  

The first is the one used in Astronomy where a fixed line is conceived in Earth, called its 

axis, around which Earth turns while this line moves around the ecliptic poles, which are 

regarded as fixed points in the sky.  The other manner is most appropriate for the 

Mechanical where the points in the sky are marked for each time while Earth turns 

around them; this manner is the only one of its kind and is perfectly determined by 

Earth’s movement, yet the same movement could be represented by an infinity of 

different manners.  Instead of the axis, some other line fixed anywhere in Earth could be 

considered and its movement assigned in the sky, then it would be necessary to define the 

movement by which Earth would turn around this line.  But it is necessary to admit that 

the manner actually used is the simplest of its kind, which most reasonably represents to 

us the movement of Earth: it seems clearer than the other based on the rotational axis, 

although I was obliged to follow this one in the present studies. 

 6. Before examining to what degree the rotational movement of a celestial body is 

disturbed by the forces applied on it by the other celestial bodies, it will be good to 

explain what their rotational movement must be if they had not been subjected to such 

forces.  I therefore present the case where all of a celestial body’s moments of inertia are 

equivalent, since then not only the rotational movement would be uniform and the 

rotational axis stationary, but the applied forces would never be disrupted.  I view the 

celestial body, for which we are determining the rotational movement, as having its 

moments of inertia compared to its three principal axes to be inequivalent.  Firstly, I 

remark that if this body had once received a rotational movement around one of its 

principal axes, then this axis would stay constantly directed toward the same points in the 

sky, and the angular speed would always stay the same.  It is apparent that if Earth were 

not subjected to solar and lunar forces, then its rotational axis would stay at rest, from 

which it must conclude that the right line we call its axis is one of its three principal axes. 

 7. This observation leads me to a thought that seems important.  Since the inertial 

center of Earth is situated on its axis, it is still undecided if it is found at the middle of the 

axis, if it is close to one or the other pole, or rather if it falls in the equatorial plane or 

some other parallel circle.  It is easily understood that common phenomena would not 

provide the knowledge to decide the above, but maybe some effects of the action of the 



Moon will be able to give us some clarity.  Mr. Meyer, the talented Astronomer of 

Göttingen to whom Astronomy is indebted for many important discoveries, believes to 

have strong supporting evidence that the inertial center of Earth is not found at the middle 

of the axis or in the equatorial plane, but in a certain parallel circle whose determination 

merits, without doubt, all the possible cares of Astronomers.  It is in this parallel circle 

that the other two principal axes of Earth must exist. 

 8. But, if Earth had not received a rotational movement around one of its three 

principal axes, the phenomenon of its diurnal movement would no longer be so simple 

and would demand addressing to justly represent it; even so, there would not be forces 

disturbing it.  Although this case likely has not taken place in Earth, it could very well 

exist in some other planet, therefore meriting a more careful development; maybe this is 

the cause of the irregularities noted in the rotational movement of Venus; and hence it 

would be good to treat this more particularly, all as if it had taken place in Earth.  In this 

case, it would not be a question of Earth’s axis since some stationary points, around 

which the sky would seem to turn, would be seen in the sky for some time, but these 

points would continually change place, and the rotational movement would not even be 

uniform.  These irregularities would, without doubt, hinder most Astronomers. 

 9. Let us return to the beginning, or to a fixed epoch, where the three principal 

axes of Earth had been directed toward the points in the sky A , B ,C .  Let us also 

suppose then that Earth had had a rotational movement around the point D in the 

direction ABC with an angular speed e .  Arcs of great circles are derived from the point 

D  to the points A , B , C , and let us call DA  = a , DB  = b , and DC  = c .  For the 

constitution of Earth, its moment of inertia compared to the axis A = Maa, compared to 

the axis B = Mbb, and to the axis C = Mcc, which I assume are known.  Now, to most 

simply represent that the rotational movement, by which Earth will subsequently be 

carried, would be feasible, it must always be compared to a sure point fixed in the sky 

from which are derived the arcs of great circles to points A , B , C : 
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 10. To better understand this important point in the sky P, knowing the position of 

the principal axes A , B , C  at this instant with respect to axis A , we will have  
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from where the position of point P is most conveniently determined.  Here it is necessary 

to note that if the principal moments of Earth were equivalent, or aa = bb = cc, because 

of √G = e aa, since cosa 
2
 + cosb 

2
 + cosc 

2
 = 1, then we would have cosAP = cosa, 

cosBP = cosb, and cosCP = cosc, and hence the point P would coincide with point D.  

Therefore, if Earth’s moments of inertia are approximately equal, then we would know 

that the point P will not be very far from point D; this is why it is necessary to conceive 

the point P placed inside of the triangle ABC containing point D, because since the 

principal axes pass through two opposed points of the sphere, we can always form a 

triangle ABC containing the point D. 

 11. Let us introduce this point P in the calculation, and let us establish for the 

beginning, or our epoch, the arcs  

PA = l , PB = m , and BC = n ,  

and let G = a
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and  logically, for the rotational pole D  at  

 

the same time: 

  

  

 

and for the angle PAB , if we wanted to use it: 

 

  

 

 

so that in calling this angle PAB = r , we have These quantities  

 

are for the initial state, or the fixed epoch, and depend on the position of the rotational 

axis D  compared to the body’s principal axes.  Next, I assume that the body had turned 

then in the direction ABC  with angular speed e , where e  marks the described angle in 

one second. 

 12. Having established these elements, the state and movement of the body after 

some time has passed, which I call t seconds, will be investigated.  The principal axes 

will then have reached some A, B, C, and the body will presently turn around the 

rotational axis O in the direction ABC with angular speed ȣ.  To this effect, let us, for 

brevity, call ;A
aa

ccbb
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 as in the preceding Memoir, where I 

had given the solution to this problem, but instead of the letter u, I use Gv here.  Firstly, it 

is necessary to construct this differential equation: 
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so that for each proposed time, the quantity v, which disappears at time t = 0, can be 

assigned.  It is noticed that for the letters A, B, C, at least one must be a negative value, 

and hence this construction can be derived from the movement of a pendulum that is 

driven in a circle.  At the least, it will not be difficult for each case to fill the tables for the 

values of v at each time. 

 13. Then, calling the angle APA = λ, which marks how much the principal axis A 

has advanced since the beginning in the opposite direction of the rotational movement, 

we have 

 

 

 

so that the angular speed by which point A presently advances around the fixed point P is: 

 

 

 

which had been at the beginning: 

 

 

 

In the same manner, we could assign how much the other two principal axes B and C will 

have advanced around the fixed point P since their initial positions B  and C.  Now then, 

we will have for the arcs PA, PB, PC 
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from which the true position of the three principal axes A, B, C will be known. 

 14. But, having found this for a single axis A, the other two will be more easily 

determined by the angle PAB, which gives us: 

 

 

 

 

 

 

Therefore, this angle is variable; its increment for the element of time dt is found to be 

 

 

 

which is the angular speed by which the angle PAB decreases, so that at the beginning, 

the angular speed by which the angle PAB diminished was 
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It is necessary to note here that because of the assumed values of the letters A, B, C, both 

0222 =++ CcBbAa  and 0444 =++ CcBbAa  are true. 

 15. This could suffice to know the movement, having determined the angle APA, 

the arc PA, and the angle PAB, from where it would be known for each proposed time the 

position of the body with regard to the sky, and hence reciprocally, the apparent position 

of the sky.  But this observation can be furthered.  The body will then turn with angular 

speed ȣ = e √(1 + 2(A + B + C)G v) in the direction ABC around the rotational axis 

whose position is such that 

 

 

 

 

 

 

 

 

where O will be the point in the sky that appears to stay at rest for this instant. 

 16. This representation of the movement becomes much simpler if the body’s 

moments of inertia compared to the two axes B and C are equivalent, or bbcc = , since 
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or  the arc PA = C  always remains the same quantity, 

 

 or PA = PA turns around the point P uniformly with angular speed in the 

 

direction AA.  Furthermore, the speed at which the arc AB nevertheless turns around the 

point A, by which the angle PAB decreases, is also constant: 

 

 

  

Logically, the angular speed of the arc PA = l  around the fixed point P in the direction 

AA is the angular speed by which the body nevertheless turns around the point A in a  

 

contrary direction to BP between 1 and   Here then this movement 

 

is represented in the same manner that we are accustomed to see from Earth in that the 

axis of Earth is mobile around the ecliptic poles. 
*
17. One such movement could be represented by the motion of a Machine of the 

following manner.  Let PQRS be a circle freely moving around some diametrically 

opposed pivots P and R. In this circle is set, at A and D, an axis AD of a body asdq, 

around which the body can freely turn while the same circle turns around the pivots P and 

                                                 
*
† This reference is missing in the original text. 
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R.  Now to represent the movement from the preceding §, both rotational movements 

must be uniform, but in such a way that one is directed in a contrary direction in regard to 

the other.  Assuming aa > bb and the angular speed of the circle around the pivots P and  

 

R is like that of the body around the axis AD by the ratio 1 to  

 

From this, it is seen that the movement of the body is much slower than that of the axis 

AD, and would completely disappear in the case where bbaa = .  Now in the case that  

aa < bb, both movements would be directed in the same fashion.  One such movement 

would be self-sustained and would not need outside forces. 

 18. Using a similar machine, the movement of a body, as determined above, could 

also be represented in general where all of the principal moments of inertia are 

inequivalent, but then the axis AD must be set in the circle such that the points A and D 

can be moved closer or farther from the pivots P and R.  Furthermore, neither rotational 

movement will be uniform but must be determined by the above formulas.  To this effect, 

the minimum and maximum of v must be considered.  Assuming aa > bb and bb > cc, 

since these three formulas must be real and not surpass unity,  
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and the most negative value –v equals the least of these three formulas 

 

  

  

 19. It would therefore be possible that Earth had one such complicated rotational 

movement without which it would be necessary to find the cause in outside forces.  But, 

although Earth’s axis actually moves around the ecliptic poles, this movement is much 

different than that which I just described, because in Earth the movement of the axis is 

extremely slow with regard to the movement around the axis, whereas the described 

movement of the axis is much faster than that of the body around the axis.  This 

observation suffices to assure us that the movement of Earth’s axis, or its nutation, with 

the precession of the equinoxes, is the effect of an outside cause without which Earth’s 

axis would stay absolutely stationary disregarding the annual movement.  From this, it is 

also evident that the line we called Earth’s axis is certainly one of its three principal axes.  

But maybe, in the planet Venus, it is completely different. 

 20.  Let us see now how a celestial body’s rotational movement will be disturbed 

by some outside force, which comes from the attraction of another celestial body, that I 

will call a center of force.  Since here it is solely a matter of rotational movement, and I 

assume the inertial center of the proposed body is at rest, the center of force will describe 

around it a certain orbit, which is compared to a fixed sphere described around an inertial 

center of the body; let the directed line QFS follow the order of the celestial signs.  The 

center of force attracts proportionally by the reciprocal of the square of the distances, and 

at the distance e, the force by which a body is pushed is precisely equal to the weight that 

this body would have on Earth.  Now, since gravity is not the same everywhere, it is 
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necessary to this effect to choose a certain place where the height by which a body 

undoubtedly falls in one second is exactly known.  The letter g will constantly mark this 

height. 

 21. The point P and the circle PQR are considered fixed terms, the letter t 

corresponds to how many seconds have passed, the center of force corresponds to the 

point F, and let the arc PF = p and the angle QPF = q.  In addition, s expresses the 

distance from the center of forces to the inertial center of the proposed body.  The 

quantities p, q, s can be considered functions of the time t.  At the same instant, the 

principal axes of the body correspond to the points A, B, C, compared to which the 

body’s moments of inertia are Maa, Mbb, Mcc, where M is the mass, and having derived 

from these three points the arcs of great circles to both point F and the fixed point P, let 

us call these arcs FA = ζ, FB = η, FC = θ, and PA = l, PB = m, PC = n.  In addition, let us 

call the angles QPA = λ, QPB = µ, QPC = ν, which must be considered as negatives with 

regard to those that I had introduced in the general solution, where I had taken them from 

the opposite circle PSR.  Finally, the body presently turns around the point O in the 

direction ABC with angular speed ȣ.  Let us call the arcs OA = α, OB = β, OC = γ and call 

ȣ cos α = x, ȣ cos β = y, and ȣ cos γ = z. 

 22. Now the attractive force of point F provides us with the following moments of 

forces. 

I. The moment of force compared to the axis IA in the direction 
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23. The arcs ζ, η, θ can be expressed by the other quantities, of which the 

differentials are determined by these equations, because the principles of Spherical 

Trigonometry provide: 

,coscossinsin)cos(cos plplq +−= λζ  

,coscossinsin)cos(cos pmpmq +−= µη  

.coscossinsin)cos(cos pnpnq +−= νθ  

But it is easily understood that this substitution would not be of use and that the general 

solution of the formulas we just found is too difficult to be of practical use past here.  The 

large number of variable quantities that enter here do not allow us any foresight into what 

methods would be necessary to follow.  For this reason, I see myself obliged to confine 

my studies to some particular cases in which I can hope for some success.  At the least, 

the case of Earth is not subject to such great difficulties that we can not surmount them. 

 24. To apply these derived formulas to the movement of Earth, I make the 

following assumptions: 

I.   I assume that the rotational axis O is very close to the principal axis A, so that the   

     arc α=OA can be regarded as extremely small. 

II. I assume that the moments of inertia compared to the two other principal axes B and C  

     are equivalent so that ,bbcc =  and hence ,0=A  and ,1
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     therefore BC −= . 

It seems certain that these two assumptions take place in Earth, having noted that if Earth 

were not subject to the action of the solar and lunar forces, then it would turn uniformly 

around its axis, which would stay fixed.  Therefore, actually the rotational axis O never 

noticeably differs from the principal axis A that we call by excellence Earth’s axis.  Now, 

it would seem equally certain that the moments of inertia compared to the other two 

principal axes are equivalent because of the roundness of Earth around its axis A. 

 25. Since it is convenient to compare everything to pole A, let us call the angle 

PAB = r, and we will have rlm cossincos = and .cossincos rln −=   Then, since the arc 

α=AO  is almost infinitely small, having derived from O on the arcs AB and AC the 

perpendiculars Ob, Oc, let us call the angle ,ρ=OAb and we will have ρα cos=Ab and 

,sin ρα=Ac  therefore ραβ cos90 −°==BO and .sin90 ραγ −°==CO   From that, 

we derive x = ȣ, y = αȣ cos ρ, and z = αȣ sin ρ, neglecting the terms where α would have 

more than one dimension.  Now the equations IV, V, VI will give 

IV. dl sin l = – αȣ dt sin l sin(r + ρ), or dl = – αȣdt sin(r + ρ), 

V.  – dl cos l cos r +dr sin l sin r = ȣdt (α cos l sin ρ + sin l sin r), 

VI. dl cos l sin r + dr sin l cos r = ȣdt (sin l cos r – α cos l cos ρ), 

from where the combination V sin r + VI cos r provides 

dr sin l = ȣdt (sin l – α cos l cos(r + ρ)) 

 

or better yet  

 

and hence we will have almost exactly dr = ȣdt. 

 26. From the last three equations, it suffices to take 
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because the angles µ and ν depend on λ: 
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)sin( −=− µλ ;   

nl

m

sinsin

cos
)sin( −=−νλ . 

From this, since )()( µλλµ −−−=− qq  and )()( νλλν −−−=− qq , we derive: 

ml

qnqml
q

sinsin

)sin(cos)cos(coscos
)cos(

−−−
−=−

λλ
µ  

                 
m

qrqrl

sin

)sin(sin)cos(coscos −+−
−=

λλ
 

nl

qmqnl
q

sinsin

)sin(cos)cos(coscos
)cos(

−+−
−=−

λλ
ν  

                 
n

qrqrl

sin

)sin(cos)cos(sincos −+−
+=

λλ
 

and as a result we obtain: 

plqpl coscos)cos(sinsincos +−= λζ  

rplqrpqrpl coscossin)sin(sinsin)cos(cossincoscos +−+−−= λλη  

rplqrpqrpl sincossin)sin(cossin)cos(sinsincoscos −−+−+= λλθ . 

 27. The first equation, because 0=A , first gives dx = dȣ = 0, hence the angular 

speed will always be the same, which will be called ε, from which x = ȣ = ε, and 

hence );sin( ρεα +−= rdtdl ;
sin

)cos(

l

rdt
d

ρεα
λ

+
= and .

tan

)cos(

l

rdt
dtdr

ρεα
ε

+
−= It 

follows that since ρεα cos=y and ,sin ρεα=z  equations II and III will become: 

II.  0coscos
6

sinsincos
3

=+−− θζρεεαρρεαραε dt
s

Bgee
dtBdd . 

III. 0coscos
6

coscossin
3

=−++ ηζρεεαρρεαραε dt
s

Bgee
dtBdd . 

It is good to observe that the solution of these gives 

)sin(sincoscoscossin qprr −=+ λθη  

plqplrr cossin)cos(sincoscoscoscossin −−=− ληθ  

from which we derive these two other equations 

 

 

0)sin(sincos
6

)sin()sin()cos(
3

=−++−+−+ qpdt
s

Bgee
rdtBrdrd λζρεεαρρεαραε  

0cossin)cos(sincoscos
6

)cos()cos()sin(
3

=−−++++++ plqpldt
s

Bgee
rdtBrdrd λζρεεαρρεαραε

   

 

αȣdt cos(r + ρ)
 

dλ = 
sin l 

, 



28. Let us call angle ωρ =+= rPAO  and ϕλ =− q  to have 

ωεα sindtdl −= ;  
l

dt
d

sin

cosωεα
λ = ;  dq

l

dt
d −=

sin

cosωεα
ϕ , 

l

dt
dtdr

tan

cosωεα
ε −= ,    and    

l

dt
dtdd

tan

cosωεα
εωρ +−= , 

and our equations when reduced will be: 

 

0)coscoscossin(sinsinsin
6

sin)1(sincos
3

=++−+− plplpdt
s

Bgee
dtBdd ϕϕωεεαωωεαωαε

 

0)cossincossin)(coscoscoscossin(sin
6

cos)1(cossin
3

=−++−−+ plplplpldt
s

Bgee
dtBdd ϕϕωεεαωωεαωαε

 

Finally, let u=ωα cos and v=ωα sin , so that vdtdl ε−=  and dq
l

udt
d −=

sin

ε
ϕ , which 

will further reduce these equations to: 

0)coscoscossin(sinsinsin
6

)1(
3

=++−+ plplpdt
s

Bgee
udtBdu ϕϕεεε  

0)cossincossin)(coscoscoscossin(sin
6

)1(
3

=−++−− plplplpldt
s

Bgee
udtBdv ϕϕεεε

where it must be noted that 
bb

aa
B =−1 . 

 29. Since the quantities u and v are nearly infinitely small, we could regard the arc 

l as a constant in these equations and assume dqd −=ϕ .  Then, it will be permitted to 

regard the arc pPF = as a constant or small variable depending on the choice of the 

point P.  Also, the distance from the center of forces s does not ordinarily change so 

much that we could not regard it as constant, at least for finding the approaching integrals.  

Therefore, for brevity, let: 

N
s

Bgee
=

3

6
; κ=

bb

aa
; and dtdq δ= , or dtd δϕ −= , and it is evident that we could satisfy 

our equations by letting: 
2coscos ϕϕ RQPu ++= , and ϕϕϕ cossinsin TSv += , so that the letters P, Q, R, S 

are constants.  Now, having substituted these values we will find that: 

)(

)cos2cos(cossin

δδεεκκε

δεκ

−

+
=

llppN
Q ;  

)(

)2coscos(cossin

δδεεκκε

δεκ

−

+
−=

llppN
S  

)4(

)2cos(sinsin 2

δδεεκκε

δεκ

−

+
=

lplN
R ;   

)4(

)cos2(sinsin 2

δδεεκκε

δεκ

−

+
−=

lplN
T  

εεκδδεεκκεεκ

δεκδ 22 coscossin

)4(

)cos2(sinsin pllNlplN
P −

−

+
−=  

and 
εεκ2

)cos2(sincossin 22

2
1

ppllN
RP

−
=+ . 



 30. Here the average values of l, p, N, and δ will be given.  Having constant 

values for the letters P, Q, R, S, T, and then because ,
δ

ϕd
dt −=  we will have  

δ

ϕεvd
dl =  and ,

sin
dq

l

ud
d −−=

δ

ϕε
ϕ  from where we derive by integration, setting l  as the 

average value of l : 

l = l ,2cos
4

cos ϕ
δ

ε
ϕ

δ

ε
T

S
−−  and 

λ = Const. .
sin4

2sin

sin2sin

sin

sin l

R

l

R

l

Q

l

P

δ

ϕε

δ

ϕε

δ

ϕε

δ

ϕε
−−−−  

Now furthering this, we will have ,q−= λϕ  and then α = √(uu + vv), and .tan
u

v
=ω  

But since ,cos
tan

lddt
l

udt
dtdr λε

ε
ε −=−=  it follows that ,cos ltr λε −=  and hence 

.r−= ωρ   It is seen that if α has a very small value, it will always stay very small, so 

that our calculation remains, with the exception of the single case that follows. 

 31. To simplify the case, since taking into account the irregularity of the 

movement of the center of force F is too difficult for our purposes, let us assume that this 

point F moves uniformly in the circle QFS, around Earth at the constant distance s.  In 

addition, let P be the pole of its orbit, so that the arc ,90°== pPF  and let us call 

,dtdq δ=  where δ is a constant quantity marking the angle described in a second by the 

point F.  Since the arc lPA =  hardly changes, let l  be its average value, and our 

equations reduce to the following, where κ=
bb

aa
 

dt
s

Bgee
vdtdu

3

3

ε
εκ ++ sinl ,02sin =ϕ  

dt
s

Bgee
udtdv

3

3

ε
εκ ++ sinl  cosl ,0)2cos1( =+ ϕ  

 

where +−= dtd δϕ  

 

But since u is extremely small and we neglected the terms where u and v would be raised 

to more than one dimension, we could take ,dtd δϕ −=  so that .
δ

ϕd
dt −=  

 32. Therefore, let us, as before, call ,
6

3
N

s

Bgee
=  to have  

ϕ
δε

ϕ
δ

εκ
d

N
vddu

2
−− sinl ,02sin =ϕ  

ϕ
δε

ϕ
δ

εκ
d

N
vddu

2
−+ sinl cosl ,0)2cos1( =+ ϕ  

which satisfies, like we just saw, these particular values: 

ϕ2cos2
1

2
1 RRPu ++= ; ϕ2sin2

1 Tv = . 

But, to find the general integrals, let us form these two equations that can be integrated. 

εudt 

sinl 
. 



ϕ
δε

ϕ
δ

εκ
ϕ

δ

εκ
ϕ

δ

εκ
d

N
uddu

2
cossin −++  sinl ϕϕ

δ

εκ
2sinsin  

ϕ
δε

ϕ
δ

εκ
ϕ

δ

εκ
ϕ

δ

εκ
d

N
vddv

2
sincos −−+  sinl  cosl )2cos1(cos ϕϕ

δ

εκ
+  }= 0 

 

ϕ
δε

ϕ
δ

εκ
ϕ

δ

εκ
ϕ

δ

εκ
d

N
uddu

2
coscos −−+  sinl ϕϕ

δ

εκ
2sincos  

ϕ
δε

ϕ
δ

εκ
ϕ

δ

εκ
ϕ

δ

εκ
d

N
uddv

2
cossin +−−  sinl  cosl )2cos1(sin ϕϕ

δ

εκ
+  }= 0 

 

 33. Let us say, for the sake of brevity, m
bb

aa
==

δ

ε

δ

εκ
 and n

s

BgeeN
==

3

3

2 δεεδ
, and 

the integrals will be: 

nmvmu −+ ϕϕ cossin sinl nmd −∫ ϕϕϕ 2sinsin sinl  cosl Emd =+∫ )2cos1(cos ϕϕϕ  

nmvmu −− ϕϕ sincos sinl nmd +∫ ϕϕϕ 2sincos sinl cosl Fmd =+∫ )2cos1(sin ϕϕϕ . 

Now ϕϕϕϕ )2cos()2cos(2sinsin 2
1

2
1 +−−= mmm  

         ϕϕϕϕ )2cos()2cos(2coscos 2
1

2
1 +−−= mmm  

         ϕϕϕϕ )2sin()2sin(2sincos 2
1

2
1 ++−−= mmm  

         ϕϕϕϕ )2sin()2sin(2cossin 2
1

2
1 ++−+= mmm , 

from which the integrals are formed. 

nmvmu 2
1cossin −+ ϕϕ sinl (

2

)2sin(

2

)2sin(

+

+
−

−

−

m

m

m

m ϕϕ ) 

    n2
1−  sinl  cosl (

2

)2sin(

2

)2sin(sin2

+

+
+

−

−
+

m

m

m

m

m

m ϕϕϕ ) E= , 

nmvmv 2
1sincos −− ϕϕ sinl (

2

)2cos(

2

)2cos(

+

+
−

−

−

m

m

m

m ϕϕ ) 

    n2
1−  sinl cosl (

2

)2cos(

2

)2cos(cos2

+

+
+

−

−
+

m

m

m

m

m

m ϕϕϕ ) F= . 

Where it must be noted that in the case 2=m , ϕ
ϕ

=
−

−

2

)2sin(

m

m
 and ∞=

−

−

2

)2cos(

m

m ϕ
 

are constant, and hence contained in F, so that this term can be omitted. 

 34. Now, multiplying the first by ϕmsin  and the other by ϕmcos , their sum 

gives: 

nu 2
1− sinl (

2

2cos

2

2cos

+
−

− mm

ϕϕ ) n2
1− sinl cosl (

2

2cos

2

2cos2

+
+

−
+

mmm

ϕϕ ) 
ϕϕ mFmE cossin += , 

Then, multiplying the first by ϕmcos , and the other by ϕmsin− , we will obtain 

nv 2
1+ sinl (

2

2sin

2

2sin

+
+

− mm

ϕϕ ) n2
1+ sinl cosl (

2

2sin

2

2sin

+
−

− mm

ϕϕ ) 
ϕϕ mFmE sincos −= . 



Let us change the constants by calling ξcosDE =  and ξsinDF =  where ξ is a constant 

angle, and our equations reduce to this: 

and hence we will have: 

n N sinl  cos 2φ (2+ m cosl ) 
u =  

m 
sinl  cosl  + 

mm – 4 
+ D sin(mφ + ξ) 

 

  

 

35. These equations perfectly agree with those that we had found above, if we set 

the constant D = 0, but they are more general for the reason that they still contain the two 

constants D and ξ.  Nevertheless, the case where m = 2 asks for a particular development 

in which it must be derived by the first integrals, which will be: 

nvu 2
12cos2sin −+ ϕϕ sinl n2

1
4

1 )4sin( −ϕϕ sinl  cosl E=++ )4sin2(sin 4
1 ϕϕϕ  

nvu 8
12sin2cos +− ϕϕ sinl n2

14cos −ϕ sinl cosl G=+ )4cos2(cos 4
1 ϕϕ . 

From this, we derive these: 

nu 2
1− sinl n8

12sin +ϕϕ sinl n2
12cos −ϕ  sinl cosl n2

12sin −ϕϕ  sinl cosl 

    n8
1−  sinl cosl ϕϕϕ 2cos2sin2cos GE +=  

nv 2
1− sinl n8

12cos +ϕϕ sinl n2
12sin −ϕ  sinl cosl ϕϕ 2cos  

    n8
1−  sinl cosl ϕϕϕ 2sin2cos2sin GE −=  

and hence we will have: 

nu 2
1= sinl cosl n2

1+ sinl +1( cosl nGE 8
1(2sin2sin) ++ ϕϕϕ sinl −1( cosl ϕ2cos))  

nv 2
1= sinl +1( cosl nGE 8

1(2cos2cos) +−+ ϕϕϕ sinl −1( cosl ϕ2sin)) . 

 36. Comparing to this case m = 2 or 
aa

bb2
=

δ

ε
, I notice that the quantities u and v 

could grow to infinity since they contain terms multiplied by the arc φ that grows 

continually with time.  Therefore, the arc OA = α = √(uu + vv) would soon be surpassing 

the limits of the smallness that I placed on it, and hence our solution absolutely excludes 

this case.  It is therefore very remarkable that if the movement of the center of force F 

were to the diurnal movement of the planet like aa : 2bb, then the diurnal movement 

would soon be considerably disturbed, although it had started around a principal axis.  

Thus for Earth, where aa is very close to bb, if the Moon achieved its revolutions in two 

days, instead of 27, the rotational axis of Earth would suffer terrible perturbations, which 

there would hardly be a means to allocate. 

 37. But it is apparent that such a case exists nowhere in the Universe, or at least in 

our planetary system, which is the extent of our studies.  I already noted that if the Moon 

were two or three times farther from Earth, which it is in fact not, its movement would be 

so irregular that it would be nearly impossible for us to acquire even a gross knowledge: 

because for a perfect understanding, there is still much required of us that we could never 

2n sinl  cos 2φ n mn sinl  cosl cos 2φ 
u –  

mm – 4 
– 

m 
sinl  cosl  – 

mm – 4 
= D sin(mφ + ξ) 

mn sinl  sin 2φ 2n sinl  cosl sin 2φ 
v +  

mm – 4 
+ 

mm – 4 
= D cos(mφ + ξ), 

n sinl  sin 2φ (m + 2 cosl ) 
v = – 

mm – 4 
+ D cos(mφ + ξ). 



acquire.  If the Moon were much closer to Earth, we could more exactly determine its 

movement, but presently we perceive another inconvenience that renders the nutation of 

Earth’s axis indeterminable.  From this, it seems to result that Providence saw well to 

offer to our studies of such objects, which do not absolutely surpass the threshold of our 

spirit, although it was impossible for us to complete our work.  Maybe such movements 

that would be inaccessible to us are found in other planetary systems where intelligent 

creatures are blessed with a higher degree of insight. 

 38. Let us therefore assume that the square of the number 
bb

aa
m

δ

ε
= differs 

considerably enough from 4 so that the quantities u and v always stay very small and the 

smallness hypothesis of the arc OA = α = √(uu + vv) stays unaltered.  Then, from the 

solution that we just found, we will nearly exactly discover the phenomena of the 

rotational movement of the proposed bodies.  Because having found 

m

n
u

2
= sin 2l  + )sin(2cos ξϕϕ ++ mD  

 

−=v  )cos(2sin ξϕϕ ++ mD  

 

we will have α = √(uu + vv) and 
u

v
=ωtan .  Then, because 

δ

ϕεvd
dl =  and  

 

dλ =  –   :  

 

l = l  + )sin(2cos ξϕ
δ

ε
ϕ ++ m

m

D
 

 

 

 

 

and finally r = Const. – λ cosl  + εt  and r−= ωρ . 

 

Application to the rotational movement of Earth. 

 

 39. To apply these formulas to Earth, it is advisable to take point P in the ecliptic 

pole, so that when F marks the Moon, the arc pPF =  is not a quarter circle, and hence it 

is necessary to resort to the general formulas from §28.  Letting therefore the circle 

♈☊L♎ be the ecliptic, ☊ the ascending node of the moon’s orbit ☊FM, and the Moon is 

presently found at F at a distance from Earth s, which I regard as a constant.  The 

attractive force of the Moon at distance e is equal to that of gravity.  The fixed point ♈ is 

not the equinox, but rather the first star of Aries, from which the longitude of the 

ascending node is ♈☊ = ζ, and the inclination of the lunar orbit at the ecliptic or the 

angle F☊L = γ, which I regard as constant, during that the arc ζ diminishes uniformly, for 

which the movement I propose is dζ = -βdt.  Then, let the longitude of the Moon counted 

n (2 + m cosl ) sinl   

mm – 4 

n (m + 2 cosl ) sinl   

mm – 4 

εu dφsinl   

δ sinl 

εn (m + 2 cosl ) sinl   

2δ (mm – 4) 

εn cosl   εn (m + 2 cosl )   εD 
λ = Const. – 

δm 
φ – 

2δ (mm – 4) 
sin 2φ +  

δm sinl  
cos(mφ + ξ) 

Fig. 5 



since ♈, or the arc ♈☊L = q, which I also assume proportional to time, so that dq = δdt; 

since the inequality of the movement hardly influences the movement of Earth’s axis. 

 40.  Therefore, having the arc ☊L = q – ζ and the angle L☊F = γ, since γ does not 

exceed ,5°  we will have approximately )sin(sin ζγ −= qFL  and 1cos =FL , neglecting 

the terms where γ would have more that one dimension, so that 1sin =p and 

)sin(cos ζγ −= qp .  Currently, let Earth’s axis at A compared to that of the Earth’s 

moment of inertia to be equal to Maa and compared to the other principal axes be equal 

to Mbb.  Let us call the arc lPA =  and the angle ♈PA = λ.  Moreover, let AB be the 

Prime Meridian derived on Earth and the angle rPAB = .  In addition, Earth presently 

turns around pole O in the direction ♈L♎ following the order of the signs with angular 

speed ε.  Let arc α=AO , which I assume is extremely small, and the angle ρ=BAO .  

Now I have set ωρ =+r  and furthermore u=ωα cos and v=ωα sin . 

 41. Let us subtract the longitude of the terrestrial pole A from the longitude of the 

Moon, and let angle ϕλ =−= qAPF , which, from before, would be ϕ− .  We will have: 

vdtdl ε−= ;    
l

udt
d

sin

ε
λ = ;    

l

udt
dtd

sin

ε
δϕ −= ,   and   

l

ludt
dtdr

sin

cosε
ε −= . 

Now everything comes back to the solution of these two equations: 

0))sin(coscos(sinsin)1(
6

3
=−+−−+ ζγϕϕ

εε
ε qlldt

bb

aa

s

gee
vdt

bb

aa
du  

0))sin(sincos))(cossin(coscos(sin)1(
6

3
=−−−+−+− ζγϕζγϕ

εε
ε qllqlldt

bb

aa

s

gee
udt

bb

aa
dv

Let us, for brevity, call µ
ε

=
bb

aa
and ν

ε
=− )1(

3
3 bb

aa

s

gee
, and we will have: 

0))sin(coscos(sinsin =−+++ ζγϕϕνµ qlldtvdtdu  

0))sin(sincos))(cossin(coscos(sin2 =−−−+−− ζγϕζγϕνµ qllqlldtudtdv  

or when reduced: 

0))2cos(cos)cos(cos2sin(sin =−−−−+++ λζγλζγϕνµ qllldtvdtdu  

0)cossin)2sin(2cos)sin(2cos2coscossincos(sin =−−−+−−+−− llqlllllldtudtdv γγλζγλζγϕνµ

 42. Now, without repeating the general integral, since we know its form, let us say 

+−−+−++= )2sin()sin(2cos λζλζϕ qDCBAu C )sin( ξµ +t  

−−−+−+= )2cos()cos(2sin λζλζϕ qGFEv C )cos( ξµ +t  

and since dtd δϕ = , dtd βζ = , dtdq δ= , and dtd 0=λ , because we neglect the terms 

where the small quantities would return, we will have 

+−−++−−−= )2cos()2()cos(2sin2 λζβδλζβϕδ qDCB
dt

du
C )cos( ξµµ +t  

+−−+−−+= )2sin()2()sin(2cos2 λζβδλζβϕδ qGFE
dt

dv
C )sin( ξµµ +t  

Now in the differential equations, it is permitted to regard the arc lPA =  as a constant, 

and to put in place of l its average value, which is l  like above.  It therefore only rests to 

substitute these assumed values. 

 43. Now the first equation divided by dt gives 



+−−++−−− )2cos()2()cos(2sin2 λζβδλζβϕδ qDCB C )cos( ξµµ +t  

+Eµ           +Fµ  +Gµ             –C µ 
+ν sinl           +νγ cosl  –νγ cosl 

 

}= 0 

and the other gives:  

                     +−−+−−++ )2sin()2()sin(2cos2 λζβδλζβϕδ qGFE C )sin( ξµµ +t  

–Aµ           –Bµ         –Cµ          – Dµ                                     –C µ 
–ν sinl cosl   –ν sinl cosl    +νγ cos2l          –νγ cos2l 

 

}= 0 

Equating all these separate members to zero, we first of all derive: 

)1( γγ
µ

ν
−−=A  sinl cosl  )1(

2
γγ

µ

ν
−−=  sin 2l  

and then: 

          νµδ ++− EB2 sinl  = 0;       νδµ −+− EB 22 sinl cosl  = 0, 

         νγµβ ++− FC cosl  = 0;             νγβµ ++− FC cos 2l  = 0, 

νγµβδ −++ GD )2( cosl  = 0; νγβδµ −+−− )2(GD cos 2l  = 0, 

 

 44. The coefficients B, C, D, E, F, G will therefore have the following values: 

ν sinl (2δ + µ cosl ) ν sinl (2δ cosl  + µ) 
B = – 

µµ – 4δδ 
;                    E =  – 

µµ – 4δδ 

 

νγ (β cosl  – µ cos 2l ) νγ (β cos 2l  – µ cosl ) 
C = – 

µµ – ββ 
;                F =  + 

µµ – ββ 

 

νγ ((2δ + β ) cosl  + µ cos 2l ) νγ ((2δ + β ) cos 2l  + µ cosl ) 
D = – 

µµ – (2δ + β )
2 ;   G =  + 

µµ – (2δ + β )
2
 

 

and like we had found )1( γγ
µ

ν
−−=A  sinl cosl , where instead of γ we can put sinγ and 

γγ 2coscos 2
1

2
12 +=  instead of γγ−1 ; now γ marks the average inclination of the lunar 

orbit at the ecliptic.  For the other two constants C and ξ, they stay arbitrary as the nature 

of complete integrals requires them.  This would take place even when the force of the 

moon contained in the letter ν would vanish. 

 45. Having found these coefficients, it will no longer be difficult to assign the 

other quantities that determine the movement.  Firstly the differential vdtdl ε−=  gives 

l = l  + +−−
+

−−+ )2sin(
2

)sin(2cos
2

λζ
βδ

ε
λζ

β

ε
ϕ

δ

ε
q

GFE
 )sin( ξµ +t  

from where we would know for each time the distance of Earth’s pole A to the ecliptic 

pole P.  Then, for the longitude of the terrestrial pole A, or the angle ♈PA = λ, we will 

have 

 

C ε 

µ 



Aεt Bε Dε 
λ = Const. + 

sinl 
+ 

2δ sinl 
sin 2φ +  

β sinl 
cos(ζ – λ) –  

 

 

 

 

Then, for the angle rPAB = , or the movement of the Prime Meridian, we would have 

λε −= tr cosl .  Finally, for the rotational pole O, we would have the distance              

AO = α = √(uu + vv), and call the sum of the angles ωρ =+=+ rBAOOAB ; since 

u

v
=ωtan , we will have the angle rBAO −== ωρ .  By this method we acquire a 

perfect knowledge of the diurnal movement of Earth. 

 46. Although these formulas properly regard the effect of the Moon, it is easy to 

apply them to those of the Sun when calling 0=γ , and then δ will mark the average 

movement of the Sun, or the arc described in one second.  So as not to confuse these two 

effects, let the longitude of the Sun since the first star of Aries = Q and its average 

movement, or the angle traveled in its orbit during one second = ∆.  Since λ marks the 

angle ♈PA, this same letter λ expresses the longitude of the Summer solstice from the 

same term ♈, therefore °− 90λ signifies the longitude of the Spring equinox and Q – λ is 

the solar longitude since the Summer solstice Φ.  As a result, if we let the solar longitude 

since the Spring equinox = Ψ, we will have °+Φ=Ψ 90 , and hence °−Ψ=Φ 90  and 

°−Ψ=Φ 18022 . 

 47. Now, if the force of the Sun at the distance e is equal to gravity, at the 

assumed distance from Earth s, it will be 
ss

ee
 calling gravity 1.  Now the speed of Earth in 

its orbit is s∆ , and the height from where a falling body acquires the same speed will 

be
g

ss

4

∆∆
, which divided by half the distance 

2

s
 gives the centrifugal force 

g

s

2

∆∆
that must 

be equal to the central force 
ss

ee
 from where we derive ∆∆=

3

2

s

gee
.  Let N be the value of 

the letter ν for the Sun, and we will have )1(
2

3
−

∆∆
=

bb

aa
N

ε
, where ε marks the angular 

speed of the diurnal movement of Earth and
bb

aaε
µ = .  From this we will have: 

)(
2

3
bbaa

aa
A −

∆∆
−=

εε
sinl cosl ;   or   

µ

N
A

−
= sinl cosl , 

–N (2∆ + µ cosl ) sinl –N (2∆ cosl  + µ) sinl 
B =  

µµ – 4∆∆ 
;             E = 

µµ – 4∆∆ 
, 

and then C = 0, F = 0, D = 0, G = 0. 

 48. Therefore, for the distance of Earth’s pole A to the ecliptic pole P, we will 

have: 

Nε (2∆ cosl  + µ) sinl C ε 
PA = l =l  + 

2∆ (µµ – 4∆∆) 
cos 2Ψ + 

µ 
sin(µt + ξ) 

Dε C ε 

(2δ + β) sinl 
cos(2q – ζ – λ) – 

µ sinl 
cos(µt  + ξ) 



and for its longitude, or the angle ♈AA = λ: 

Nεt cosl Nε (2∆ + µ cosl ) C ε 
λ = Const. – 

µ 
+ 

2∆ (µµ – 4∆∆) 
sin 2Ψ – 

µ sinl 
cos(µt + ξ) 

The rotational movement of the Prime Meridian AB around the pole A may be regarded 

as a constant with angular speed c.  Now we would not know the true rotational pole O 

without having determined the effect of all the forces that act on Earth, because it is 

necessary to find the complete values of the two letters u and v that resulted from all the 

forces, and then we will have AO = √(uu + vv), 
u

v
=ωtan , and from that the angle 

PABrBAO −=−= ωω .  But in Earth, the points A and O are indiscernible. 

 49. For the Moon, we are uncertain of the distance e where its attractive force 

would be equal to gravity, and hence also the value of the letter ν.  But we can conclude 

by comparing the letters ν and N of the effects that the Moon and Sun produce in the tides 

that they are proportional.  Nevertheless, it is uncertain how to carry this conclusion to a 

high degree of precision.  Newton believed that the value of ν referring to the Moon was 

about four times greater than that of N referring to the Sun.  Now Mr. Daniel Bernoulli 

proved that this comparison is not much greater than double.  Let us therefore say 

mN=ν , providing m is a number greater than 2.  Then let the lunar longitude since the 

Spring equinox be ψ so that °−= 90ψϕ  and °−= 18022 ψϕ ; δ is the angle described by 

the Moon in one second, and β the angle by which the lunar nodes decline in the same 

time.  Let us say longitude of the ascending node since the Spring equinox = θ, and we 

will have °+−= 90λζθ and °−=− 90θλζ .  Therefore, since °−+=+= 90λψλϕq  

and °−+= 90λθζ , we will have °−−=−− 9022 θψλζq . 

 50. Let us introduce these angles that Astronomy reveals for each time, and we 

will have the distance of Earth’s pole A to the ecliptic pole P: 

mNε (µ – δ cosl ) sinl mNε (µ cosl  – β cos 2l ) sinγ 
PA = l = l  + 

2δ (µµ – δδ) 
cos 2ψ + 

β (µµ – ββ) 
cosθ + 

 

 

 

and its longitude counted since the first star of Aries 

mNεt cosγ
2
 cosl mNε (2δ + µ cosl ) C ε 

♈PA = λ = Const. – 
µ 

+ 
2δ (µµ – 4δδ) 

sin 2ψ – 
µ sinl 

cos(µt + ξ) – 

Now we only have to combine these anomalies with those that produce the solar force to 

have all of the perturbations that disturb Earth’s pole A, both compared to its distance 

from the ecliptic pole and its longitude counted since the first star of Aries. 

 51. Before the effects of the solar and lunar forces are further developed, I would 

like to note that even if these forces had not existed, it may have been possible that 

Earth’s axis A was still not stationary.  This is because setting N = 0 still will give us  

 

 

mNε (µ cosl  + (2δ + β) cos 2l ) sinγ C ε 

(2δ + β)(µµ – (2δ + β)
2
) 

cos(2ψ – θ) + 
µ  

sin(µt + ξ), 

mNε ( β cosl  – µ cos 2l ) sinγ   mNε (µ cos 2l  + (2δ + β) cosl ) sinγ 

β (µµ –  ββ) sinl 
sin θ + 

(2δ + β)(µµ – (2δ + β)
2
) sinl 

sin(2ψ –  θ). 



 

where the constant C  does not depend on the solar and lunar forces, so that if it were not 

0, Earth’s axis would be perturbed by some nutation while Earth would turn uniformly 

around it.  This is because, taking the arc Pα = l , Earth’s pole A would uniformly 

describe a circle 1, 2, 3, 4 around the fixed point α in the same direction as the  

 

diurnal movement, and the radius of the circle αA would be or of an arbitrary 

 

size, the angular speed is εµ
bb

aa
= .  This case would take place if Earth would have 

begun to turn around a different axis than its principal axes.  Since we would not know 

for sure that the constant C  is absolutely 0, it is important to expand on the phenomena 

of this axis’s nutation. 

 52. Earth would therefore uniformly turn around its principal axis A, with angular 

speed ε, while the axis A would describe around a fixed point α a circle with angular 

speed ε
bb

aa
.  Let T be the time of one revolution of Earth around the axis, and the time of 

one revolution of this axis about a fixed point α will be T
aa

bb
.  If bb = aa, these two times 

would be equal and the point in Earth that would have once corresponded to the fixed 

point α would always correspond to it.  Hence we would take this point α rather than A 

for Earth’s pole, and in effect, in this case all the moments of inertia of Earth would be 

equivalent.  Yet, if the moments of inertia Maa and Mbb are not equal, there is no point 

on Earth that would stay at rest, and the movement of the pole A will be the least 

complicated, so that in this case we have no reason to rather regard some other point in 

Earth as its pole. 

 53.  Let us call the radius of the small circle 1, 2, 3, 4 that describes Earth’s axis A 

around a fixed point α, or the arc σα =A , and since the distance of the pole A to the 

ecliptic pole P is equal to the obliquity of the ecliptic, and the longitude of the pole A 

corresponds to the Summer solstice, it follows that in the interval of time T
aa

bb
, the 

obliquity of the ecliptic varies by the quantity σ2 , and the equinoctial points undergo a  

 

change in their longitude of Now, during each interval of time T
aa

bb
,  

 

the same inequalities come back.  Since Earth is an elliptic spheroid, with the diameter of 

the equator at the axis between approximately 201 and 200, if Earth were homogenous, 

101
11−=

aa

bb
 and the period of these inequalities would be 24*201

200 hours, or 23
h
, 53′.  In 

this interval of time, the variations in the obliquity of the ecliptic and the longitude of the 

equinoctial points will be all the larger: at its largest, the radius of the circle σ will be 

C ε 
PA = l = l  + 

µ 
sin(µt + ξ), and 

C ε 
♈PA = λ = Const. – 

µ sinl 
cos(µt + ξ), 

C ε 

µ 
, 

2σ 

sinl 
= 5σ. 

Fig. 6 



much larger, and at its smallest, this radius does not vanish entirely, but it is certainly 

extremely small.  To discover these inequalities would be a huge problem for 

Astronomers. 

 54.  Some may object me for in this case we did not take the extremity of the axis 

A for Earth’s pole, but rather the point α, which would effectively be the rotational pole if 

aa were equal to bb.  But the lesser inequality between aa and bb completely reverses 

this idea, because although the point α does not noticeably change place during some 

revolutions, it will describe a type of spiral in which the turns become larger and larger, 

and if 101
11−=

aa

bb
, then after 50 revolutions or days, the point α will be found in the 

same circle 1, 2, 3, 4, and after 100 days it will describe a circle whose diameter is two 

times larger.  Then, its turns will retract so that after 200 days, it returns to the center of 

the circle 1, 2, 3, 4, from where we see that this point would not at all be proper for 

comparing the diurnal movement, so it would be necessary to absolutely hold to Earth’s 

true axis A, which describes the circle 1, 2, 3, 4. 

 55. The inequalities caused by the solar and lunar forces are independent of this, 

which would result from the nature of Earth, provided that it was not considerable, as the 

original calculation assumed it.  We could therefore regard the circle 1, 2, 3, 4 as 

completely vanishing, and this all the more likely since there are no observation from 

which we may conclude the contrary.  Let us therefore examine more carefully the 

inequalities that are produced by the solar and lunar forces and perpetuated in the 

variations of the arc lPA =  and the angle ♈PA = λ.  Now the arc l expresses the 

obliquity, and λ the longitude of the Summer solstitial point, counted since the first star of 

Aries.  Therefore °− 90λ will be the longitude of the Spring equinoctial point, and hence 

reciprocally λ−°90  is the longitude of the first star of Aries since the Spring equinoctial 

point.  It is therefore a matter of determining from each proposed time both the longitude 

of the first star of Aries since the equinoctial point and the obliquity of the ecliptic. 

 56. Now the formulas that we just found contain two elements for which we do 

not know the exact value.  The one is the number m, which marks by how much the lunar 

force is greater than that of the Sun in the production of the tides, and we know by the 

judicious reflections of Mr. Bernoulli that this number m is about 2
12 .  The other 

element is the fraction 
bb

aa
, for which we do not absolutely know the value, because the 

knowledge of the exterior figure of Earth is not at all determined, just that Earth is not 

composed of a homogenous material, in which case we will have approximately 

200
201=

bb

aa
.  But, since it is very probable that the material of Earth is not at all less than 

homogenous, and we have no knowledge of its distribution, I will call n
bb

aa
= , so that 

nεµ = , and I will regard the number n as unknown, although we can be assured that it 

does not noticeably differ from unity.  From this we will have 
ε2

)1(3 ∆∆−
=

n
N , and it 

will be necessary to conclude by the phenomena the exact values of the two numbers m 

and n. 



 57. For the angular speeds ε, ∆, δ, and β, it suffices in knowing the comparisons, 

which only enter in our formulas.  Let us therefore take their values for a day, where 

Earth makes one complete revolution around its axis, so that 0129600360 ′′=°=ε .  Then 

the Astronomical Tables give us, according to the average movements: 

the everyday movement of the Sun    ∆ =        59′,   8″ =   3548″ 
the everyday movement of the Moon   δ = 13°, 10′, 35″ = 47435″ 
the everyday movement of the descending node β =          3′, 11″ =     191″ 

hence, we will have:  or better yet, these proportional fractions 

0000000.1=ε ;              0000000.1=εε  
1296000=ε ;          n1296000=µ  

        0027376.0=∆ ;             0000075.0=∆∆  

         0366011.0=δ ;              0013396.0=δδ  
3548=∆ ;               47435=δ  

         0001474.0=β ;             0000000.0=ββ  

191=β ;        950612 =+ βδ    0733495.02 =+ βδ ;   0053801.0)2( 2 =+ βδ  

The arc PA = l  marking the average obliquity of the ecliptic will be l  = 23°, 28′, 30″, 

and the average inclination of the lunar orbit may be called γ = 5°, 9′. 
 

Of the Variation in the obliquity of the ecliptic. 

 

 58. Calling the average obliquity of the ecliptic l , which is for the beginning of 

this century
†
 = 23°, 28′, 43″ and for the end = 23°, 27′, 55″, the first correction depends 

on the longitude of the Sun, which is called = Ψ; the correction will be 

 

 

 

which in substituting the marked values reduces to 

 

 

 

If the coefficient were = 1, then it would have the value 57°, 17′, 45″ = 206265″; 
therefore, reducing this coefficient in minutes and seconds, this connection will be thus 

expressed in seconds.  

 

 

 

or using the value for l : 

 

 

 

 59. The second correction depends on the lunar longitude, which is called = ψ, 

and will be  

 

 

which reduces to 

                                                 
†
 this century is in reference to the 18

th
 century. 

3(n – 1) ∆ (εn + 2∆ cosl ) sinl 
+ 

4(εεnn – 4∆∆) 
cos 2Ψ, 

0.0020532 (n – 1)(n + 0.0054752 cosl ) sinl 
+ 

nn – 0.0000300 
cos 2Ψ. 

(n – 1)(n + 0.0054752 cosl ) sinl 
+ 423.503 

nn – 0.0000300 
cos 2Ψ, 

+ 168.70 
(n – 1)(n + 0.00502) 

cos 2Ψ seconds. 
nn – 0.00003 

3m (n – 1) ∆∆ (εn + 2δ cosl ) sinl 
+  

4δ (εεnn  – 4δδ) 
cos 2ψ, 



 

 

This formula is reducible to minutes and seconds and the value of the arc l  can be used 

to give 

 

 

from where we see that this correction is much smaller than the preceding, since we know 

that the number m is certainly less than 4.  For that matter, it is also certain that the 

number n differs very slightly from unity, so that n – 1 is an extremely small fraction. 

 60. The third correction depends on the longitude of the ascending node, which is 

called θ, this correction will be 

 

 

 

which when reduced to numbers, and then in minutes and seconds, becomes 

 

 

 

 Finally, the fourth correction is proportional to the cosine of the angle θψ −2 , and 

expressed as such: 

 

 

 

 which when reduced to numbers, and then in minutes and seconds, becomes 

 

 

 

 so that this correction would nearly vanish compared to the preceding. 

 61. All these corrections become greatest positively if 02 =Ψ and °== 1802 θψ , 

and then they combine together in neglecting the small fractions attached to the numbers 

n and nn, )671.131070.161(
1

m
n

n
+

−
seconds.  Now, if the same angles Ψ2 , ψ2 , and θ  

are °180 , then it will result in the greatest negative correction: )465.130570.168(
1

m
n

n
+

−
 

seconds.  Therefore, the greatest change in the obliquity of the ecliptic will be able to rise 

to )136.261640.337(
1

m
n

n
+

−
 seconds.  Now, by the observations of Mr. Bradley, we 

know that this change is about 81 ′′ , or maybe a little bigger, since all circumstances of 

his observations had not attempted to show the greatest change. 

 

Of the Precession of Equinoxes. 

 

 62. Here it is necessary to firstly consider the average movement of the 

equinoctial points, contained in the proportional terms at the time t, which is: 

0.0001538 (n – 1) m (n + 0.0732022 cosl ) sinl 
+  

nn  – 0.0253584 
cos 2ψ. 

m (n – 1)(n + 0.06710) 
+ 12.618  

nn  – 0.00536 
cos 2ψ seconds, 

3m (n – 1) ∆∆ (εn cosl  – β cos 2l ) sinγ 
+  

2β (εεnn  – ββ) 
cos θ, 

m (n – 1)(n – 0.00011) 
+ 1295.45  

nn 
cos θ minutes and seconds. 

3m (n – 1) ∆∆ (εn cosl  + (2δ + β) cos 2l ) sinγ 
+  

2 (2δ + β)(εεnn  – (2δ + β)
2
) 

cos(2ψ – θ), 

2.603 m (n – 1)(n + 0.05459) 
+  

nn  – 0.00538 
cos(2ψ – θ) minutes and seconds, 



tm
n

n
)cos1(

2

)1(3 2γ
ε

+
∆∆−

− cosl , 

from where we see that the longitude of the equinoctial points counted since the first star 

of Aries start to diminish, assuming that n > 1, or better yet, the longitude of this star 

counted since the equinox increases with the time.  Let us therefore find this increase for 

the time of one year, and then ∆t will have the value 360°, hence the annual precession of 

the equinoxes will be 

°+
∆−

360)cos1(
2

)1(3 2γ
ε

m
n

n
cosl , 

 which reduces to °
−

+ 360
)1(

)991943.01(0037666.0
n

n
m , or better yet to the form 

2
14881)991943.01(

1
m

n

n
+

−
seconds.  Now we know by the observations and the remarks 

that I made on the planetary action that this precession is 3
150  seconds. 

 63. Now, if we assume the greatest variation in the obliquity of the ecliptic is 81 ′′  

and this difference had been observed at the same season of the year, then the angle Ψ, or 

the longitude of the Sun, has no influence here, so we will have these two equations for 

determining the two unknown numbers m and n, 

18
1

22616 =
−

n

n
m and 3

1
2

1 50
1

)991943.01(4881 =
−

+
n

n
m , 

therefore 154
1512

1

2616

)991943.01(4881
=

+

m

m
, from where we derive m9.24724881 2

1 =  and 

974.1=m .  If instead of 81 ′′ , we would have taken it to be a little bigger, we would have 

found m = 2 and, in this case, it would result that: 289
1

1
=

−

n

n
 and 288

289=n .  Now it 

seems that it cannot be the case that m < 2, since Newton found 4=m  and Mr. Bernoulli, 

after having better examined the same observations, concluded 2
12=m . 

 64. But, since we are not so very assured of the number 81 ′′ , which marks the 

greatest variation in the obliquity, which we sum from the average precession, let us 

consider the number m as given, and we will firstly have 
mn

n

20.9698.96

11

+
=

−
, from 

where the greatest change in the obliquity of the ecliptic instead of 81 ′′ will be 

m

m

20.9698.96

2616

+
 that is = α for the same season of the year; therefore the following 

hypothesis are given: 

 

 

 

 

 

 

 

 

 



 

 

if we will have 

2=m ; 
38.289

11
=

−

n

n
;   288

289=n ;   10
118=α  seconds, 

4
12=m ; 

43.313

11
=

−

n

n
;   312

313=n ;   10
818=α  seconds, 

2
12=m ; 

48.337

11
=

−

n

n
;   336

337=n ;   10
419=α  seconds, 

4
32=m ; 

53.361

11
=

−

n

n
;   361

362=n ;   10
919=α  seconds, 

3=m ; 
58.385

11
=

−

n

n
;   385

386=n ;   10
320=α  seconds, 

4
13=m ; 

63.409

11
=

−

n

n
;   409

410=n ;   10
720=α  seconds, 

2
13=m ; 

68.433

11
=

−

n

n
;   434

434=n ;   10
121=α  seconds. 

All the same, m could equal ∞, in which case n would equal 1, the largest change of the 

obliquity of the ecliptic would not surpass 10
227  seconds. 

 

Some inequalities in the Precession of the Equinoxes. 

 

 65. Since λ marks the longitude of the Summer solstice since the first star of Aries, 

°− 90λ will mark that of the Spring equinox, hence λ−°90 is the longitude of the first 

star of Aries counted since the Spring equinox.  Therefore, having found by the average 

movement the average longitude of the first star of Aries, which the Astronomical Tables 

show under the heading of the precession of the equinoxes, in counting ″
3

150 per year, 

the other terms that enter in the expression of λ taken negatively will give the periodical 

inequalities that must either be added or subtracted from the average longitude.  In this 

manner, we will find the true longitude of the first star of Aries since the equinoctial 

point for each proposed time.  But, if we want to go back several centuries, it is necessary 

to take into account the planetary actions of Jupiter and Venus, from where both the 

average obliquity and the average precession of equinoxes is changed, as I had made seen 

in our Memoirs Vol. X, to which I refer to myself here. 

 66. The first correction therefore depends on the solar longitude Ψ and is 

proportional to the sine of twice this longitude.  This correction is contained in this 

formula 

 

 

 

which in substituting for ε, ∆, and l , their values change as such, 

 

 

 

3(n – 1) ∆ (εn cosl  + 2∆) 
– 

4(εεnn – 4∆∆) 
sin 2Ψ, 

(n + 0.0059693) 
– 0.0018833 (n – 1) 

nn – 0.0000300 
sin 2Ψ, 



which upon reducing to minutes and seconds gives 

 

 

 

 

 Since 288
289=n , this correction would never surpass 3

11 seconds, which is hardly 

noticeable.  Nevertheless, if we want exact calculations, then this small correction must 

not be neglected. 

 67. The second correction depends on the longitude of the Moon ψ and is 

proportional to ψ2sin . 

 

 

 

which by substitution will thus be expressed in minutes and seconds. 

 

 

 

The third equation depends on the longitude of the ascending node θ and is proportional 

to its sine, 

 

 

 

which when reduced to minutes and seconds will be 

 

 

 

Finally, the fourth depends on the angle θψ −2  

 

 

 

and gives in minutes and seconds 

 

 

 

 68. Let us now consider the three hypotheses 2=m , 2
12=m , and 3=m , and 

the corrections for the obliquity of the ecliptic will be: 

 

 

 

 

 

 

 

 

 

 

n + 0.00597 
– 396.60 (n – 1) 

nn – 0.00003 
sin 2Ψ seconds. 

3(n – 1) m∆∆ (εn cosl  + 2δ) 
– 

4δ (εεnn – 4δδ) 
sin 2ψ, 

n + 0.079807 
– 29.06m (n – 1) 

nn – 0.0053584 
sin 2ψ seconds. 

3(n – 1) m∆∆ (εn cos2l  – β cosl ) sinγ 
– 

2β (εεnn – ββ) sinl 
sin θ, 

n – 0.000198 
– 2420.4m (n – 1) 

nn – 0.000000 
sin θ seconds. 

3(n – 1) m∆∆ (εn cos2l  + (2δ + β) cosl ) sinγ 
– 

2(2δ + β) (εεnn – (2δ + β)
2
) sinl 

sin(2ψ – θ), 

n + 0.098557 
– 4.86m (n – 1) 

nn – 0.005380 
sin(2ψ – θ) seconds. 

 if 2=m   if 2
12=m  if 3=m  

+ A cos 2Ψ A = 0″.58 A = 0″.50 A = 0″.44 

+ B cos 2ψ B = 0.08 B = 0.09 B = 0.10 

+ C cos θ C = 8.96 C = 9.61 C = 10.07 

+ D cos(2ψ –  θ) D = 0.02 D = 0.02 D = 0.02 



 

 

Now the corrections for the longitude of 1 + ♈ will be 

 

 

 

 

 

  

 

69. These formulas are perfectly in agreement with those that I had found in our 

Memoirs Vol. V, and hence I will no longer keep myself here at their application.  I will 

only remark that Earth is not a homogenous mass, since then the value of the number n 

would need to be 200
201 , which is nevertheless according to all observations less than 300

301 .  

From this, it follows that the inequality between the principal moments of inertia is not as 

great as if it were homogenous, or better yet it more approaches the nature of a globe by 

the distribution of its material than by its figure.  It is therefore necessary that Earth 

contains inside it a heavier material and is more equally distributed around the inertial 

center.  Now this is also all that we can conclude.  To the rest, if Earth did not turn very 

closely around a principal axis and its moments of inertia compared to the two other 

principal axes were not equivalent, then it would have been near impossible to determine 

its rotational movement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 if 2=m   if 2
12=m  if 3=m  

– A cos 2Ψ A = 1″.37 A = 1″.18 A = 1″.03 

– B cos 2ψ B = 0.20 B = 0.21 B = 0.22 

– C cos θ C = 16.75 C = 17.95 C = 18.81 

– D cos(2ψ –  θ) D = 0.03 D = 0.03 D = 0.04 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 



 

 

Commentary 

 

Notation: ☊ - ascending node, the point in the lunar orbit where the Moon crosses 

       from below to above the ecliptic plane. 

 ♈ - Aries 

 ♎ - Libra 

 ȣ  - small ou ligature, I used this symbol because it most closely matched 

        a variable used in the original work, in which I was unsure of its true 

        nature. 

The Greek used in the original work is an alternate alphabet, in which I used their 

Modern Greek equivalents. 


