
ar
X

iv
:1

41
0.

12
12

v1
  [

m
at

h.
D

S]
  5

 O
ct

 2
01

4

NEW APPROXIMATIONS FOR THE AREA OF THE MANDELBROT SET

DANIEL BITTNER, LONG CHEONG, DANTE GATES, AND HIEU D. NGUYEN

Abstract. Due to its fractal nature, much about the area of the Mandelbrot set M remains to be un-
derstood. While a series formula has been derived by Ewing and Schober to calculate the area of M by
considering its complement inside the Riemann sphere, to date the exact value of this area remains unknown.

This paper presents new improved upper bounds for the area based on a parallel computing algorithm and
for the 2-adic valuation of the series coefficients in terms of the sum-of-digits function.

1. Introduction

The Mandelbrot set (hereafter M) is defined as the set of complex numbers c ∈ C such that the sequence
{zn} defined by the recursion

zn = z2n−1 + c

with initial value z0 = 0 remains bounded for all n ≥ 0. Douady and Hubbard [3] proved thatM is connected
and Shishikura [11] proved that M has fractal boundary of Hausdorff dimension 2. However, it is unknown
whether the boundary has positive Lebesgue measure.

In [6] Ewing and Schober derived a series formula for the area of M by considering its complement, M̃ ,

inside the Riemann sphere C = C ∪ {∞}, i.e. M̃ = C −M . It is known that M̃ is simply connected with
mapping radius 1 ([3]). In other words, there exists an analytic homeomorphism

ψ(z) = z +
∞
∑

m=0

bmz
−m (1)

which maps the domain ∆ = {z : 1 < |z|≤ ∞} ⊂ C onto M̃ . It follows from the classic result of Gronwall

[8] that the area of the Mandelbrot set M = C− M̃ is given by

A = π

[

1−

∞
∑

m=1

m|bm|2

]

(2)

In order to calculate the coefficients bm, Ewing and Schober considered the expansion

pn(ψ(z)) =

∞
∑

m=0

βn,mz
2n−m (3)

where bm = β0m+1 and the polynomials pn(w) are defined recursively by

p0(w) = w
pn(w) = p2n−1(w) + w

(4)

They were able to prove in [5] that the polynomials pn(w) are Faber polynomials of degree 2n for M , i.e.
pn(ψ(z)) = z2

n

+ o(1) as z → ∞. It follows that βn,m = 0 for n ≥ 1 and 1 ≤ m ≤ 2n. Moreover, this range
of zero values can be extended to 1 ≤ m ≤ 2n+1 − 2 because of the recursion

βn,m = 2βn−1,m +

m−1
∑

k=1

βn−1,kβm−1,m−k (5)
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which they obtained by substituting (3) into (4) and equating coefficients. Formula (5) can then be manip-
ulated to obtain the following backward recursion formula ([6]):

βn,m =
1

2



βn+1,m −

m−2n+1+1
∑

k=2n+1−1

βn,kβn,m−k − β0,m−2n+1+1



 (6)

where βn,0 = 1 and β0,m = bm−1 for m ≥ 1.
No explicit formula is known for βn,m, except those at certain positions. However, it is clear from (6)

that βn,m is rational and that its denominator equals a power of 2 when expressed in lowest terms. In [6]
Ewing and Schober established the following upper bound on its 2-adic valuation.

Theorem 1 (Ewing-Schober [6]). Let n ≥ 0 and m ≥ 1. Then 22m+3−2n+2

βn,m is an integer, i.e.

|ν(βn,m)|≤ 2m+ 3− 2n+2 (7)

for non-zero βn,m.

Here, the 2-adic valuation ν(x) of a positive integer x is defined to be the greatest integer for which 2ν(x)

divides x and if x/y is a fraction in lowest terms, then we define ν(x/y) = ν(x)− ν(y). Observe that in the
special case bm = β0,m+1, (7) reduces to

|ν(bm)|≤ 2m− 1 (8)

In the same paper [6], Ewing and Schober used (6) to compute the first 240,000 coefficients for bn by
computer. Since

A ≤ AN ≡ π

[

1−
N
∑

m=1

m|bm|2

]

(9)

this yielded an upper bound of 1.7274 for the area of M . They were able to slightly improve their result to
1.72 by extending their computations to the first 500,000 coefficients as reported by Ewing in [4]. They also
calculated a crude lower bound of 7π/16 ≈ 1.3744 by estimating the size of the main cardioid (3π/8) and the
main bulb (π/16). However, they reported a discrepancy with their approximation of 1.52 obtained by pixel
counting. More recent calculations by Förstemann [7] provide an estimate of 1.50659 based on a resolution
of almost 88 trillion pixels. Thus, as noted by Ewing and Schober, either the series (2) converges so slowly
that the approximation A500,000 ≈ 1.72 is poor or else the pixel counting method fails to account for the
boundary of M . Recently, Buff and Chéritat [2] found Julia sets with positive area. Therefore, coupled with
Shishikura’s result that the boundary of M has Hausdorff dimension 2, it is not far-fetched to suspect that
the boundary of M may have positive area.

In this paper, we report on progress in obtaining new upper bounds for A and new results involving the
two-dimensional sequence βn,m. In particular, we were able to compute the first five million coefficients for
bn by developing a parallel processing implementation of (6). As a result, we obtained the new upper bound

A5,000,000 ≈ 1.68288 (10)

Moreover, we were able to improve on (7) by establishing the tighter bound (Theorem 7)

|ν(βn,m)|≤ 2m− 2n+2 + 4− s(n,m) (11)

for non-zero βn,m where s(n,m) is the base-2 sum-of-digits function of degree n (Definition 2). In the special
case bm = β0,m+1, we obtain as a corollary

|ν(bm)|≤ 2(m+ 1)− s(0,m+ 1) (12)

It is observed (yet unproven) that equality in (12) is achieved whenm is odd. In comparison, equality in (8)
appears to hold only when m+1 equals a power of 2. Thus, our result is significant on two levels. First, from
a computational perspective, inequality (11) allows the values of βn,m to be calculated by integer arithmetic
(as discussed by Ewing and Schober in [6]) using less memory than (7). Such an approach would increase
the accuracy in which upper bounds for the area of the M are calculated over floating-point arithmetic
where the values of βn,m are stored as truncated decimals. Secondly, (12) is significant mathematically in
that it reveals the sum-of-digits function to be a crucial ingredient in determining the exact area of M by
using the series formula (2). This we believe to be an important advance in understanding the nature of the
Mandelbrot set.
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2. Two-adic Valuation of βn,m

In this section we consider the 2-adic valuation of βn,m and prove the bound in (11), which is a refinement
of (7). We begin by defining the sum-of-digits function and present a series of lemmas on properties of this
function that will be utilized in the proof.

Definition 2. Let m be a non-negative integer with base-2 expansion m = dL2
L + dL−12

L−1 + ... + d02
0

where dL = 1 and di ∈ {0, 1} for i < L. We define the base 2 sum-of-digits function s(n,m) of degree n by

s(n,m) =

L
∑

i=n

di

Lemma 3. s(n,m) is sub-additive, i.e.

s(n, l+m) ≤ s(n, l) + s(n,m)

for all l,m, n ∈ N.

Proof. We follow the proof in [10]. Let l = cK2K+cK−12
K−1+...+c02

0 andm = dL2
L+dL−12

L−1+...+d02
0.

Since s(n,m+ 2i) = s(n,m) for i < n and s(n,m+ 2i) ≤ s(n,m) + 1 for i ≥ n, it follows that

s(n, l+m) = s(n,m+

K
∑

i=0

ci2
i)

= s(n,m+

K
∑

i=n

ci2
i)

≤ s(n,m) +

K
∑

i=n

ci

≤ s(n,m) + s(n, l)

�

Lemma 4. For all m,n ∈ N, we have

a) 0 ≤ s(n,m)− s(n+ 1,m) ≤ 1

b) s
(

n, 2n+1 − 1
)

= 1

c) s(0,m) ≤ 2s
(

0, m2
)

− 1 for positive even integers m.

Proof. (a) We express m as in Definition 2. It follows that

s(n,m)− s(n+ 1,m) =

L
∑

i=n

di −

L
∑

i=n+1

di

= dn +

L
∑

i=n+1

di −

L
∑

i=n+1

di

= dn

where dn must equal either 0 or 1. This completes the proof for part a).

b) The result follows immediately from the fact that 2n+1 − 1 = 20 + ...+ 2n−1 + 2n.
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c) We shall prove this inequality by induction on m. It is clear that the inequality is true for m = 0 since
s(0, 2) = s(0, 1) = 1. Then from the induction hypothesis and Lemma 3, we have

s(0,m+ 2) ≤ s(0,m) + s(0, 2)

≤ 2s
(

0,
m

2

)

− 1 + s(0, 2) = 2s
(

0,
m

2

)

≤ 2s
(

0,
m

2
+ 1

)

− 2s(0, 1) = 2s

(

0,
m+ 2

2

)

− 2

≤ 2s

(

0,
m+ 2

2

)

− 1

This complete the proof. �

Next, we present a lemma regarding the convolution described in equation (6).

Lemma 5. Let m ≥ 2n+2 − 2.

a) For m even, we have

m−2n+1+1
∑

k=2n+1−1

βn,kβn,m−k = 2





m/2−1
∑

k=2n+1−1

βn,kβn,m−k



+
(

βn,m/2

)2
(13)

b) For m is odd, we have

m−2n+1+1
∑

k=2n+1−1

βn,kβn,m−k = 2





(m−1)/2
∑

k=2n+1−1

βn,kβn,m−k



 (14)

Proof. When m is even, we have

m−2n+1+1
∑

k=2n+1−1

βn,kβn,m−k =

m/2−1
∑

k=2n+1−1

βn,kβn,m−k +

m/2
∑

m/2

βn,kβn,m−k +

m−2n+1+1
∑

m/2+1

βn,kβn,m−k

Letting h = m− k, we obtain

m−2n+1+1
∑

k=2n+1−1

βn,kβn,m−k =

m/2−1
∑

k=2n+1−1

βn,kβn,m−k +
(

βn,m/2

) (

βn,m/2

)

+

2n+1−1
∑

h=m/2−1

βn,m−hβn,h

= 2





m/2−1
∑

k=2n+1−1

βn,kβn,m−k



+
(

βn,m/2

)2

This proves part a).
On the other hand, when m is odd,

m−2n+1+1
∑

k=2n+1−1

βn,kβn,m−k =

(m−1)/2
∑

k=2n+1−1

βn,kβn,m−k +

m−2n+1+1
∑

k=(m+2)/2

βn,kβn,m−k

Letting l = m− k, we have

m−2n+1+1
∑

k=2n+1−1

βn,kβn,m−k =

(m−1)/2
∑

k=2n+1−1

βn,kβn,m−k +

2n+1−1
∑

l=(m−1)/2

βn,m−lβn,l

= 2





(m−1)/2
∑

k=2n+1−1

βn,kβn,m−k





This justifies part b). �
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We now present one final lemma involving the right hand side of (11).

Lemma 6. Define

p(n,m) = 2m− 2n+2 + 4− s(n,m) (15)

for m,n ∈ N. Then

a) p(n,m)− 1 ≥ p(n+ 1,m)

b) p(n,m) ≥ p(n, k) + p(n,m− k) for 0 ≤ k ≤ m.

c) p(0,m) ≥ 2p(0,m/2) for m is even.

d) p(n,m)− 1 ≥ p(0,m− 2n+1 + 1)

Proof. a) Consider the following chain of equivalent inequalities:

p(n,m)− 1 ≥ p(n+ 1,m)

2m− 2n+2 + 4− s(n,m)− 1 ≥ 2m− 2n+3 + 4− s(n,m)

2n+3 − 2n+2 − 1 ≥ s(n,m)− s(n+ 1,m)

2n+2 − 1 ≥ s(n,m)− s(n+ 1,m)

Therefore, it suffices to prove the last inequality above, which follows from transitivity of the two inequalities
2n+2 − 1 > 1 and 1 ≥ s(n,m)− s(n− 1,m), the former being clearly true and the latter as a result of part
a) in Lemma 4.

b) The following inequalities are clearly equivalent:

p(n,m) ≥ p(n, k) + p(n,m− k)

2m− 2n+2 + 4− s(n,m) ≥ 2k − 2n+2 + 4− s(n, k) + 2(m− k)− 2n+2 + 4− s(n,m− k)

s(n,m− k) + s(n, k) + 2n+2 − 4 ≥ s(n,m)

Therefore, it suffices to prove the last inequality above, which follows from transitivity of the two inequalities

2n+2 − 4 ≥ 0

whenever n ≥ 0 and

s(n,m− k) + s(n, k) ≥ s(n,m)

because of the sub-additive property of the sum of digits function (Lemma 3). This establishes part b).

c) This part follows from the equivalent inequalities

p(0,m)− 1 > 2p
(

0,
m

2

)

2m− 22 + 4− s(0,m) > 2
(

2
(m

2

)

− 22 + 4− s
(

0,
m

2

))

2s
(

0,
m

2

)

− 1 > s(0,m)

where the last inequality above follows from Lemma 4.

d) It is straightforward to verify that following inequalities are equivalent:

p(0,m− 2n+1 + 1) ≤ p(n,m)− 1

2(m− 2n+1 + 1)− 22 + 4− s(0,m− 2n+1 + 1) ≤ 2m− 2n+2 + 4− s(n,m)− 1

s(n,m) ≤ s(0,m− 2n+1 + 1) + 1

5



But the last inequality above follows from Lemmas 3 and 4 since

s(n,m) = s(n,m− 2n+1 + 1 + 2n+1 − 1)

≤ s(n,m− 2n+1 + 1) + s(n, 2n+1 − 1)

≤ s(0,m− 2n+1 + 1) + 1

Therefore part d) is true. �

We now have presented all lemmas needed to prove the following theorem.

Theorem 7. Let m,n ∈ N. Then 2p(n,m)βn,m is an integer, i.e.

|ν(βn,m)|≤ p(n,m) (16)

Proof. From (6) we have

2p(n,m)βn,m = 2p(n,m)−1



βn+1,m −

m−2n+1+1
∑

k=2n+1−1

βn,kβn,m−k − β0,m−2n+1+1





= 2p(n,m)−1βn+1,m −

m−2n+1+1
∑

k=2n+1−1

2p(n,m)−1βn,kβn,m−k − 2p(n,m)−1β0,m−2n+1+1 (17)

It suffices to show that each term on the right-hand side of (17) is an integer by induction on m, which we
will do so using properties of p(n,m) established in Lemma 6. Assume that the values of βn,m are arranged
in a two-dimensional array where the rows are indexed by n and the columns indexed by m. Since βn,m = 0
for n ≥ 1 and 1 ≤ m ≤ 2n+1− 2, it follows that each column has at most a finite number of non-zero entries.
Therefore, we shall apply induction by moving upwards along each column from left to right as employed
by Ewing and Schober in their induction arguments in [6]. In particular, given m and n, we assume that
2p(j,k)βj,k is an integer for 0 ≤ j ≤ n and 2n+1 − 1 ≤ k ≤ m − 1 and also 2p(j,m)βj,m is an integer for
j ≥ n+ 1.

Let us now consider the first term 2p(n,m)−1βn+1,m on the right-hand side of (17). Since p(n,m) − 1 ≥

p(n + 1,m) (due to part a) in Lemma 6) and 2p(n+1,m)βn+1,m is an integer by induction, it follows that

2p(n,m)−1βn+1,m is an integer.
Next, we rewrite the summation in (17) according to whether m is even or odd by using Lemma 5. If m

is odd, then
m−2n+1+1

∑

k=2n+1−1

2p(n,m)−1βn,kβn,m−k =

(m−1)/2
∑

k=2n+1−1

2p(n,m)βn,kβn,m−k

Since p(n,m) ≥ p(n, k) + p(n,m− k) for 0 ≤ k ≤ m from part b) of Lemma 6 and

(2p(n,k)βn,k)(2
p(n,m−k)βn,m−k)

is an integer by induction, it follows that each term 2p(n,m)−1βn,kβn,m−k in the summation must be an
integer. On the other hand, if m is even, then

m−2n+1+1
∑

k=2n+1−1

2p(n,m)−1βn,kβn,m−k =

m/2−1
∑

k=2n+1−1

2p(n,m)βn,kβn,m−k + 2p(n,m)−1
(

βn,m/2

)2

By the same argument as before, we have that 2p(n,m)βn,kβn,m−k is an integer. Morever, since p(n,m)− 1 ≥

2p(n,m/2) (due to part c) in Lemma 6) and 2p(n,m/2)βn,m/2 is an integer by induction, it follows that

2p(n,m)−1
(

βn,m/2

)2
must also be an integer. Thus, each term 2p(n,m)−1βn,kβn,m−k in the summation must

also be an integer.
As for the last term 2p(n,m)−1β0,m−2n+1+1 in (17), we know from part d) of Lemma 6 that p(n,m)− 1 ≥

p(0,m − 2n+1 + 1). Since 2p(0,m−2n+1−1)β0,m−2n+1+1 is an integer by induction, it follows by the same

reasoning that 2p(n,m)−1β0,m−2n+1+1 must be an integer. This finishes the proof of Theorem 7. �
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3. Special Values of βn,m

In this section we derive recurrences for special values of βn,m where m is restricted to a certain interval.
Recall that βn,m = 0 for 1 ≤ m ≤ 2n+1− 2. We therefore begin with an unpublished result by Malik Ahmed
and one of the authors regarding βn,m in the interval 2n+1 − 1 ≤ m ≤ 2n+2 − 3.

Theorem 8 (Ahmed-Nguyen). Let n and m be integers such that n ≥ 0 and 2n+1 − 1 ≤ m ≤ 2n+2 − 3.
Then for every p ∈ N, we have

βn,m = βn+p,m+2n+1(2p−1) = −
1

2
β0,m−2n+1+1 = −

1

2
bm−2n+1 (18)

Proof. It follows from (5) that

βn,m = −
1

2
β0,m−2n+1+1 = −

1

2
bm−2n+1 (19)

Next, set

n′ = n+ p,m′ = m+ 2n+1(2p − 1)

Then

m′ − 2n
′+1 + 1 = m− 2n+1 + 1

which proves

βn,m = βn′,m′ (20)

�

As a corollary of Theorem 8, we establish a special case of (7).

Corollary 9. Let n ≥ 1 and 2n+1 ≤ m ≤ 2n+2 − 3. Then 22m+2−2n+2

βn,m is an integer.

Proof. We know from (7) that

22(m−2n+1+1)+3−22β0,m−2n+1+1 = 22m+1−2n+2

β0,m−2n+1+1

is an integer. It follows from Theorem 8 that

22m+2−2n+2

βn,m = 22m+2−2n+2

(

−
1

2
β0,m−2n+1+1

)

= −22m+1−2n+2

β0,m−2n+1+1 (21)

must also be an integer. �

NOTE: Observe that the corollary above fails for m = 2n+1−1. By Theorem 8 we have βn,2n+1−1 = − 1
2β0,0.

But (7) doesn’t apply to β0,0 = 1.

We next focus on deriving recurrences for special values of βn,m where 2n+2 − 2 ≤ m ≤ 2n+2 + 6.

Lemma 10. Let n be a non-negative integer. Then

βn,2n+2−2 = −
1

2

(

β0,2n+1−1 +
1

4

)

(22)

βn,2n+2−1 = −
1

2

(

β0,2n+1 +
1

4

)

(23)

Proof. Recall that βn,m = − 1
2β0,m−2n+1+1 for n≥0 and 2n+1 − 1 ≤ m ≤ 2n+2 − 3. We have

7



βn,2n+2−2 =
1

2



βn+1,2n+2−2 −

2n+1−1
∑

k=2n+1−1

βn,kβn,2n+2−2−k − β0,2n+1−1





=
1

2

[

0− β2
n,2n+1−1 − β0,2n+1−1

]

=
1

2

[

−
1

4
β2
0,0 − β0,2n+1−1

]

= −
1

2

[

β0,2n+1−1 +
1

4

]

and

βn,2n+2−1 =
1

2



βn+1,2n+2−1 −
2n+1

∑

k=2n+1−1

βn,kβn,m−k − β0,2n+1



 (24)

=
1

2

[

βn+1,2n+2−1 − 2
(

βn,2n+1−1βn,2n+1

)

− β0,2n+1

]

(25)

=
1

2

[(

−
1

2
β0,0

)

− 2

((

−
1

2
β0,0

)(

−
1

2
β0,1

))

− β0,2n+1

]

(26)

= −
1

2

[

β0,2n+1 +
1

4

]

(27)

�

In the case where m = 2n+2, we find that βn,m is constant.

Lemma 11. Let n be a non-negative integer. Then βn,2n+2 = 1/16.

Proof. Recall that βn,m = − 1
2β0,m−2n+1+1 for n ≥ 0 and 2n+1 − 1 ≤ m ≤ 2n+2 − 3. We have

βn,2n+2 =
1

2



βn+1,2n+2 −
2n+1+1
∑

k=2n+1−1

βn,kβn,2n+2−k − β0,2n+1+1





=
1

2

[

−
1

2
β0,1 − 2βn,2n+1−1βn,2n+1+1 − β2

n,2n+1 − b0,2n+1

]

=
1

2

[

−
1

2
β0,1 −

1

2
β0,0β0,2 −

1

4
β2
0,1 − 0

]

=
1

2

[

−
1

2
(−1/2)−

1

2
(1)(1/8)−

1

4
(−1/2)2

]

= 1/16

�

We end this section by considering three other special cases.

Lemma 12.

a) Let n ≥ 2 be an integer. Then βn,2n+2+2 = − 1
2β0,2n+1+3.

b) Let n ≥ 2 be an integer. Then βn,2n+2+4 = − 1
2β0,2n+1+5.

c) Let n ≥ 3 be an integer. Then βn,2n+2+6 = − 1
2β0,2n+1+7.

8



Proof. We have

βn,2n+2+2 =
1

2



βn+1,2n+2+2 −
2n+1+3
∑

k=2n+1−1

βn,kβn,2n+2+2−k − β0,2n+1+3





=
1

2



βn+1,2n+2+2 − 2

2n+1

∑

k=2n+1−1

βn,kβn,2n+2+2−k − β2
n,2n+1+1 − β0,2n+1+3





=
1

2



−
1

2
β0,3 −

1

2

1
∑

j=0

β0,jβ0,4−j −
1

4
β2
0,2 − β0,2n+1+3





=
1

2

[

−
1

2
(−1/4)−

1

2
(β0,0β0,4 + β0,1β0,3)−

1

4
(1/8)2 − β0,2n+1+3

]

=
1

2

[

−
1

2
(−1/4)−

1

2
[(1)(15/128) + (−1/2)(−1/4)]−

1

4
(1/8)2 − β0,2n+1+3

]

= −
1

2
β0,2n+1+3

This proves part a). Parts b) and c) can be proven in a similar manner. �

4. New Area Approximations

In this section we describe a parallel processing algorithm to compute the values of βn,m and present new
upper bounds for the area of M that were calculated using this algorithm. Assume as before that the values
of βn,m are arranged in a two-dimensional array with the rows indexed by n and columns indexed by m.
We recall Ewing and Schober’s backwards algorithm for computing the non-trivial values of βn,m recursively
one at a time by moving upwards along each column from left to right as described in our induction proof
of Theorem 7. Thus, the order of computation would be:

β0,1, β0,2, β1,3, β0,3, β1,4, β0,4, ...

Our new method is as follows: we calculate values of βn,m across multiple columns simultaneously in a
parallel fashion while moving up along them as before until we reach a critical row near the top where from
this point on, all remaining column values must be computed one at a time. This is then repeated for the
next set of columns, etc.

To illustrate this method, consider for example the calculation of β1,7 and β1,8 in row n = 1 using the
backward recursion given in (6):

β1,7 =
1

2

[

β2,7 −

4
∑

k=3

β1,kβ1,7−k − β0,4

]

=
1

2
[β2,7 − 2β1,3β1,4 − β0,4]

β1,8 =
1

2

[

β1,8 −

4
∑

k=3

β1,kβ1,8−k − β0,5

]

=
1

2

[

β2,8 − 2β1,3β1,5 − β2
1,4 − β0,4

]

Observe that these two values do not depend on each other and can be computed in parallel. However, this
is not the case for β0,7 and β0,8 in the top row (n = 0) where the latter depends on the former:

β0,7 =
1

2

[

β1,7 −
6

∑

k=1

β0,kβ0,7−k − β0,6

]

=
1

2
[β1,7 − 2β0,1β0,6 − 2β0,2β0,5 − 2β0,3β0,4 − β0,4]

β0,8 =
1

2

[

β1,8 −

7
∑

k=1

β0,kβ0,8−k − β0,7

]

=
1

2

[

β1,8 − 2β0,1β0,7 − 2β0,2β0,6 − 2β0,3β0,5 − β2
0,4 − β0,7

]

In general, the values βn,m, βn,m+1 and βn,m+2 in three consecutive columns can be calculated in parallel
as long as n ≥ 1. This is because βn,m+1 depends only on the values βn,k in row n, where k = 3, 4, ...,m− 2,
which are prior to βn,m. Similarly, βn,m+2 depends only on βn,k where k = 3, 4, ...,m− 1. Since the number
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Table 1. New Upper Bounds for the Area of the Mandelbrot Set

N (millions) AN

0.5 1.72 (Ewing-Schober)
1 1.70393
1.5 1.69702
2 1.69388
2.5 1.69096
3 1.68895
3.5 1.6874
4 1.68633
4.5 1.68447
5 1.68288

Table 2. Run-Times for Calculating bm in Batches of 500,000

Range of m (millions) Run-time to compute bm (days)

2.5-3 9
3-3.5 10.8
3.5-4 12.5
4-4.5 14.4
4.5-5 16.2

of non-zero values in each column increases as m increases, this parallel algorithm becomes more effective
and asymptotically three times as fast in comparison to that of calculating βn,m one at a time. Moreover,
this approach can be extended to calculate the values βn,m, βn,m+1, ..., βn,m+6 in seven consecutive columns

simultaneously as long as n ≥ 2. More generally, if n ≥ N , then up to 2(N+1)−1 columns can be computed
in parallel.

We were able to use this parallel algorithm to calculate the first five million terms of bm and obtain a new
upper bound of A5·106 ≈ 1.68288 for the area of the Mandelbrot set. This algorithm was implemented using
the programming language C++ and message passing interface Open MPI and programmed to calculate the
values of βn,m across four columns in parallel for n ≥ 2 beginning with the first group of columns βn,8, βn,9,
βn,10, βn,11 (we initialized columns βn,0, ..., βn,7 with their known values). Our code was executed on a Linux
cluster and required four processors (1.05 Ghz AMD Opteron 2352 quad-core processors) to execute it since
each column was computed using a different processor. We note that each processor was required to store all
values of βm,n (generated from all four processors) separately in its own RAM. This we believed improved
the performance of our implementation slightly, but at the cost of quadrupling our memory requirements.

Table 1 gives values for the approximations AN , where N ranges from 500,000 to 5 million in increments
of 500,000, based on our computed values of βn,m, and thus bm = β0,m+1. These values were computed in
batches over a five-month period between August-December, 2014, although the actual total run-time was
approximately 3 months. Table 2 gives the reader a sense of the run-time required to compute bm in batches
of 100,000 starting at m = 250, 000.

To check the accuracy of our calculations, we compared our calculated values of bm (in double-precision
floating point format) with known exact values at certain positions. For example, we found our calculated
values to satisfy bm = 0 for all m = (2k+1)2ν, where k and ν are non-negative integers satisfying k+3 ≤ 2v.
This is in exact agreement with Ewing and Schober’s result in [6]. Table 3 gives non-trivial values of bm
between m = 500, 000 and m = 5, 000, 000 in increments of 500, 000 so that the reader may verify our
calculations.

Figure 1 shows a plot of Table 1 that clearly reveals the slow convergence of AN . If the exact value of A
lies closer to 1.50659 as computed by pixel counting, then certainly using AN to closely approximate A is
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Table 3. Calculated values of bm

m bm

500,000 5.5221313 · 10−8

1,000,000 −4.713883 · 10−8

1,500,000 8.4477641 · 10−8

2,000,000 −6.437866 · 10−9

2,500,000 1.6594295 · 10−8

3,000,000 8.150385 · 10−9

3,500,000 −3.911993 · 10−9

4,000,000 2.315128 · 10−9

4,500,000 −8.87746 · 10−9

5,000,000 8.0532 · 10−11

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
N

1.68

1.69

1.7

1.71

1.72

AN

Figure 1. Plot of AN

impractical due to the extremely large number of terms required. On the other hand, if the exact value lies
closer to 1.68, then this would indicate that the boundary of the Mandelbrot set may have positive area.

5. Conclusions

In this paper we presented new results which improve on known upper bounds for the area of the Mandel-
brot set and 2-adic valuations of the series coefficients βn,m given by Ewing and Schober in [6]. Of course,
our calculations of the first five million terms of bm were performed using more powerful computers that
those available to Ewing and Schober two decades ago. Therefore, it would be interesting to find out in the
next two decades what improvements can be made to our results by using computers that will be even more
powerful, unless we are fortunate enough to see the exact area be found before then.
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