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1New Multiple Insertion-Deletion Correcting
Codes for Non-Binary Alphabets

Tuan A. Le and Hieu D. Nguyen

Abstract

We generalize Helberg’s number-theoretic construction ofmultiple insertion-deletion correcting binary codes to
non-binary alphabets and describe a linear decoding algorithm for correcting multiple deletions.

I. I NTRODUCTION

Helberg codes [4] are binary codes capable of correcting multiple insertion-deletion errors. These number-
theoretic codes generalize Levenshtein codes, first constructed by Varshamov and Tenengo’lts [13] to correct a
single asymmetrical error and later proved by Levenshtein [7] to be capable of also correcting a single insertion
or deletion error. Levenshtein’s proof included an elegantlinear decoding algorithm to correct a single deletion.
Levenshtein codes are asymptotically optimal; however, Helberg codes correcting more than one insertion or deletion
have a low rate [10].

Other special binary codes capable of correcting insertions and deletions include run-length limited codes by
Palunc̆ić, Abdel-Ghaffar, Ferreira, and W. A. Clarke [10], repetition codes by Landjev and Haralambiev [8], and
repetition error-correcting codes by Dolecek and Anantharam [3]. There are of course codes that can correct
insertion-deletion errors with high probability over binary symmetric channels such as concatenated codes by
Schulman and Zuckerman [11] and watermark codes by Davey andMacKay [2]. These codes differ from Helberg
and other aforementioned codes, which guarantee correction up to a fixed maximum of insertions and/or deletions
(or indels for short). We refer the reader to [1] and [10] for an overview of insertion-deletion correcting codes and
their applications.

A non-binary generalization of the Levenshtein code is the Tenengol’ts code [12], which uses a modular relation
to determine the value of the inserted or deleted non-binarysymbol and an associated Levenshtein code to determine
the position of that symbol. Tenengolts also gave a systematic form of his code that appends the three-bit string
011 to each codeword to serve as check bits for detecting either an insertion or deletion and as a separator between
codewords. A generalization of the Tenengol’ts code to one capable of correcting multiple indels was constructed
by Paluncic, T. G. Swart, J. H. Weber, H. C. Ferreira, and W. A.Clarke [9]. As with the Tenengol’ts code, their code
uses a set of modular relations to determine the values of thedeleted symbols and an associated binary multiple
insertion-deletion correcting code to determine the positions of the deleted symbols. However, this information
does not uniquely specify which values should be inserted atthese positions; thus, their construction involves a
purging process that requires removing unwanted codewordsthat yield the same deleted codeword. An upper bound
was derived for the number of such codewords that can exist, but no efficient algorithm was given to purge these
unwanted codewords. A lower bound for the cardinality of these codes was established, proving that they are
asymptotically optimal, but assumes a conjecture regarding the cardinality of the associated binary code.

In this paper we extend Helberg’s construction of his codes [4], [5] to non-binary alphabets. Moreover, we present
a linear decoding algorithm to correct codewords that suffer only deletions. Our proof that theseq-ary codes are
capable of correcting multiple insertion-deletion errorsfollows the one given by Abdel-Ghaffar, Palunc̆ić, Ferreira,
and Clarke [1] for Helberg codes, which we adapt for non-binary alphabets. The proof relies on an argument
by contradiction: suppose two codewords with the same residue produce the same deleted codeword. Then the
difference in their moments must be strictly between 0 and the modulus, which gives a contradiction since the two
codewords are congruent.

T. Le and H. Nguyen are with the Department of Mathematics, Rowan University, Glassboro, NJ 08012 USA (let5@students.rowan.edu,
nguyen@rowan.edu).
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To precisely describe our results, letA = {0, 1, ..., q − 1} be aq-ary alphabet andx = (x1, ..., xn) ∈ An be a
codeword of lengthn. We shall refer toxi as thei-th symbol ofx. Fix d to be a positive integer and setp = q− 1.
Generalizing [5], we define the sequence of weightsW (q, d) = {w1(q, d), w2(q, d), ...} as follows. First, initialize
wi(q, d) = 0 if i ≤ 0. Then fori ≤ 1, definewi(q, d) recursively by

wi(q, d) = 1 + p

d
∑

j=1

wi−j(q, d).

When it is clear, we shall writewi for short instead ofwi(q, d). Next, we define the truncated codeword(x)k =
(x1, . . . , xk) to be one consisting of the firstk symbols ofx and its moment byMk(x) := M((x)k). We shall
also writeM(xi) = wixi to refer to the moment of the symbolxi.

Our newq-ary codes capable of correcting multiple insertion-deletion errors are defined as follows.

Definition 1. Let m andr be fixed integers satisfyingm ≥ wn+1 and0 ≤ r < m. We define the codeCn(q, d,m, r)
to be the set of codewords of lengthn whose moments have residuer modulom, i.e.,

Cn := Cn(q, d,m, r) = {x ∈ An : M(x) ≡ r mod m}.

To simplify the notation, we shall sometimes writeCn instead ofCn(q, d,m, r). In the case of a binary alphabet
whereq = 2, the codesCn(2, d,m, r) are referred to Helberg codes [5].

Given two codewordsx andy of lengthn, we shall say thatx andy arecongruentand writex ∼= y to denote
M(x) ≡ M(y) mod m. In that case,x,y ∈ Cn(q, d,m, r) for some residuer where

r ≡ M(x) ≡ M(y) mod m.

Moreover, if we define∆(x,y) = M(x)−M(y), thenx ∼= y is equivalent to∆(x,y) ≡ 0 mod m.
Define S(n) = {1, ..., n}. Let D be a non-empty subset ofS(n) with |D|≤ d. Setn′ = n − |D| and define

S′ = S(n)−D = {i1, ..., in′} with i1 < i2 < ... < in′ . Moreover, definex(D) = (xi1 , ..., xin′
) to be the codeword

obtained by deleting the elements ofx indexed byD. We shall refer tox(D) as adeleted codewordof x. We also
define theindexof x(D) to be difference in moments between the original codeword and its deleted codeword:

I := I(x(D)) = M(x)−M(x(D)).

We prove in Section II that the codeCn(q, d,m, r) is capable of correcting up tod deletion errors. In particular,
let x,y ∈ Cn(q, d,m, r) be two distinct codewords and suppose there exists subsetsD and E of S(n) such
that |D|= |E|≤ d and x(D) = y(E). We show that0 < ∆(x,y) < m, which is a contradiction sincex ∼= y.
Thus, no such subsets exist. Hence,Cn(q, d,m, r) is a d-deletion correcting code. By a result of Levenshtein [7],
Cn(q, d,m, r) is also capable of correcting a total ofd indels.

In Section III, we present a linear search algorithm to decode codewords inCn that suffer only deletions. Suppose
a codewordx is transmitted, but is corrupted so that the received codeword, denoted byx′, consists of deletion
errors. The goal of our algorithm to find the correct positions to re-insert intox′ the symbols that were deleted
so that the indexI reduces to zero. In particular, we start with the assumptionthat our deleted symbols should be
inserted at the right end ofx′. If these symbols are not in their correct positions, then weshift them to the left as
far as possible and update the indexI by subtracting the change in theweight of each moving symbol from the
current value ofI. The algorithm terminates whenI = 0. For the correction of one deletion error, the algorithm
essentially performs an exhaustive trial-by-error search. However, for two or more deletion errors, the algorithm is
recursive in the following sense: assuming thatd-deletion errors have occurred, the algorithm corrects therightmost
deleted bit, after which the decoding reduces to the algorithm for correcting(d − 1)-deletion errors. Moreover,
for d ≥ 2, the algorithm is efficient because its complexity is linear, namelyO(n), wheren is the length of the
transmitted codeword.

Lastly, in the Appendix B, we present values for the size of the largest codeCn(q, d,m, r) for certain values of
q, d, andn. These values were found through exhaustive computer search.
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II. GENERALIZED HELBERG CODES

Our proof thatCn(q, d,m, r) is ad-deletion error-correcting code follows the proof given in[1], where we adapt
their arguments forq-ary alphabets. We shall need the following lemma, which allows us to replace the rightmost
non-zero bit with the value 0 in any two codewords that are congruent and have the same deleted codeword. This
assumes that the rightmost nonzero bit is the same for both codewords.

Lemma 2. Let x andy be two codewords of lengthn with the following two properties:

(1) x ∼= y.
(2) x(D) = y(E) for some subsetsD andE of {1, ..., n} with |D|= |E|≤ d.

Suppose there exists a positive integerL such thatxL = yL > 0 and xi = yi = 0 for all i > L. Then there exist
codewords̃x and ỹ wherex̃i = xi, ỹi = yi for all i 6= L and x̃L = ỹL = 0 such thatx̃ and ỹ have the same two
properties asx andy, namely

(i) x̃ ∼= ỹ.
(ii) x̃(D̃) = ỹ(Ẽ) for some sets̃D and Ẽ having the same size asD andE.

Proof: Define x̃ and ỹ according to the lemma. Sincexi − yi = x̃i − ỹi for all i = 1, ..., n, it follows that
M(x)−M(y) = M(x̃)−M(ỹ). But x ∼= y; hence,̃x ∼= ỹ. This proves (i). To prove (ii), we consider four cases:

Case I: AssumeL ∈ D ∩ E. In this case, the nonzero bitsxL and yLare deleted fromx andy, respectively, to
obtainx(D) andy(E). DefineD̃ = D and Ẽ = E. Sincex(D) = y(E), it follows that x̃(D̃) = ỹ(Ẽ) since the zero
bits x̃L and ỹL are deleted from̃x and ỹ, respectively, as well.

Case II: AssumeL 6∈ D ∪ E. Sincex(D) = y(E), it follows that xL and yL appear inx(D) and y(E) as the
rightmost nonzero bit, respectively. But then replacingxL andyL by x̃L and ỹL, respectively, yields̃x(D) = ỹ(E).
Thus, it suffices to again definẽD = D and Ẽ = E.

Case III: AssumeL ∈ D−E. In this case, the bitxL is deleted fromx to obtainx(D), but the bityL is not deleted
from y and therefore appears iny(E). Let z denote the number of bits to the right ofyL in y(E), which must all
be 0 sinceyi = 0 for all i > L. Then the number of bits to the right ofyL that are deleted fromy to obtainỹ(E)

equalsz′ = n− L − z. Let K denote the position of the rightmost nonzero bitxK of x(D). Sincex(D) = y(E),
it follows that xK = yL = xL and that the number of zeros to the right ofxK in x(D) also equalsz. Therefore,
the number of bits to the right ofxK that are deleted fromx to obtainx(D) equalsn −K − z. We now define
D′ = {K,K + 1, ..., L− 1, L+ 1, ..., L+ z′} where we excludeL. It follows thatx(D′) = x(D) with |D′|= |D|.
SinceL 6∈ D′ ∪ E, this reduces to Case II whereD is replaced byD′.

Case IV: AssumeL ∈ E−D. The argument in this case is the same as Case III with the roles ofD andE reversed.

Theorem 3. Let x andy be two codewords of lengthn that satisfy properties (1) and (2) in Lemma 2. Then

0 < |∆(x,y)|< m.

Proof: We shall first prove that|∆(x,y)|< m. To begin, we rewrite∆(x,y) as follows:

∆(x,y) = M(x)−M(y)

=
∑

i∈D

wixi −
∑

j∈E

wjyj +

n′

∑

k=1

(wik − wjk)xik ,

wheren′ = n− |D|. This yields the bound

∆(x,y) ≤
∑

i∈D

wixi +

n′

∑

k=1

(wik − wjk)xik .
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Next, we partitionS(n′) = {1, 2, ..., n′} into those elementsk whereik ≤ jk and those whereik > jk to obtain

∆(x,y) ≤
∑

i∈D

wixi +
∑

k∈S(n′)
ik≤jk

(wik − wjk )xik

+
∑

k∈S(n′)
ik>jk

(wik − wjk )xik

≤
∑

i∈D

wixi +
∑

k∈S(n′)
ik>jk

(wik − wjk )xik

≤
∑

i∈D

pwi +
∑

k∈S(n′)
ik>jk

p(wik − wjk )

=
∑

i∈D

pwi +
∑

k∈S(n′)
ik>jk

pwik −
∑

k∈S(n′)
ik>jk

pwjk .

We now add and subtract as follows:

∆(x,y) ≤
∑

i∈D

pwi +
∑

k∈S(n′)
ik>jk

pwik +
∑

k∈S(n′)
ik≤jk

pwik

−
∑

k∈S(n′)
ik≤jk

pwik −
∑

k∈S(n′)
ik>jk

pwjk

=

n
∑

i=1

pwi −

n′

∑

k=1

pwmin(wik
,wjk

)

≤

n
∑

i=1

pwi −

n′

∑

k=1

pwk

≤

n
∑

i=n′+1

pwi =

n−n′

∑

j=1

pwn+1−j

≤ p

d
∑

j=1

wn+1−j = wn+1 − 1

< m.

On the other hand, by reversing the roles ofx andy, we obtain∆(y,x) < m, which implies∆(x,y) = −∆(y,x) >
−m. Hence,|∆(x,y)|< m as desired.

Next, we prove that∆(x,y) 6= 0 by considering four different cases. By Lemma 1 we can assumewithout loss
of generality that there exists an integerL ∈ {1, ..., n} such thatxL > yL andxi = yi = 0 for all i > L.

Case I: AssumeL ∈ D ∩ E. Thenik 6= L for all k = 1, ..., n′. Decompose

∆(x,y) =
∑

i∈D

wixi −
∑

j∈E

wjyj +

n′

∑

k=1

(wik − wjk)xik .
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The first two summations on the right-hand side is bounded below by
∑

i∈D

wixi −
∑

j∈E

wjyj

= wLxL +
∑

i∈D
i≤L−1

wixi − wLyL −
∑

j∈E
j≤L−1

wjyj

≥ wL −
∑

j∈E
j≤L−1

wjyj

The third summation is bounded below by

n′

∑

k=1

(wik − wjk)xik

=
∑

k∈S(n′)
ik<jk

(wik − wjk)xik +
∑

k∈S(n′)
ik≥jk

(wik − wjk)xik

≥
∑

k∈S(n′)
ik<jk,ik≤L−1

(wik − wjk )xik ,

where we have used the fact thatik 6= L andxik = 0 for ik > L. It follows that

∆(x,y)

≥ wL −
∑

j∈E
j≤L−1

wjyj +
∑

k∈S(n′)
ik<jk,ik≤L−1

p(wik − wjk)

sincexik ≤ p. Next, we use the decomposition

L−1
∑

j=1

pwj =
∑

j∈E
j≤L−1

pwj +
∑

k∈S(n′)
ik<jk,ik≤L−1

pwjk (1)

+
∑

k∈S(n′)
ik≥jk,ik≤L−1

pwjk

to obtain

∆(x,y) ≥ wL −

L−1
∑

j=1

pwj +
∑

k∈S(n′)
ik<jk,ik≤L−1

pwik

+
∑

k∈S(n′)
ik≥jk,ik≤L−1

pwjk .

This equivalent to

∆(x,y) ≥ wL −

L−1
∑

j=1

pwj +
∑

k∈S(n′)
ik≤L−1

pwmin(ik,jk).
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Sincek ≤ min(ik, jk), we have

∆(x,y) ≥ wL −

L−1
∑

j=1

pwj +

min(n′,L−1)
∑

k=1

pwk

= wL −

L−1
∑

i=min(n′,L−1)

pwi

≥ wL −

L−1
∑

i=L−d

pwi

≥ 1,

where we have used the fact thatL− d ≤ min(n′, L− 1). Also, recall thatL ≤ n = n′ + d andd ≥ 1.
Case II: AssumeL ∈ D − E. Recall thatxL > yL andxi = yi = 0 for i > L. SinceL /∈ E, it follows that

∆(x,y) =
∑

i∈D

wixi −
∑

j∈E

wjyj +

n′

∑

k=1

(wik − wjk)xik

= wLxL +
∑

i∈D
i≤L−1

wixi −
∑

j∈E
j≤L−1

wjyj

+
n′

∑

k=1

(wik − wjk)xik .

Analogously, we partitionS(n′) into those elementsk whereik < jk and those whereik ≥ jk to obtain

∆(x,y)

≥ wLxL −
∑

j∈E
j≤L−1

wjyj +
∑

k∈S(n′)
ik<jk

(wik − wjk)xik

+
∑

k∈S(n′)
ik≥jk

(wik − wjk)xik

≥ wLxL −
∑

j∈E
j≤L−1

wjyj +
∑

k∈S(n′)
ik<jk

(wik − wjk)xik

≥ wL −
∑

j∈E
j≤L−1

wjyj

+
∑

k∈S(n′)
ik<jk,ik≤L−1

(wik − wjk )xik

The rest of the argument now follows the same as that in Case I to establish that∆(x,y) ≥ 1.

Case III. AssumeL ∈ E−D. The argument in this case is the same as Case II by switching the roles ofD andE.

Case IV. AssumeL 6∈ D ∪E. TheniK = L for someiK ∈ S′. We claim thatjK ≤ iK − 1. Sincex(D) = y(E), it
follows thatxiK = yjK . On the other hand, we haveyiK < xiK andyi = 0 for all i ≥ L = iK . Thus,jK ≤ iK −1.

6



We now proceed similarly as in previous cases:

∆(x,y)

=
∑

i∈D
i≤L−1

wixi −
∑

j∈E
j≤L−1

wjyj +
n′

∑

k=1

(wik − wjk)xik

≥ −
∑

j∈E
j≤L−1

wjyj +
∑

k∈S(n′)
ik<jk

(wik − wjk)xik

+
∑

k∈S(n′)
ik≥jk

(wik − wjk)xik

≥ −
∑

j∈E
j≤L−1

wjyj +
∑

k∈S(n′)
ik<jk,ik≤L−1

(wik − wjk )xik

+ (wiK − wjK )xiK .

Next, sincexi ≤ p for all i ∈ N, we have

∆(x,y)

= wL − pwjK −
∑

j∈E
j≤L−1

pwj

+
∑

k∈S(n′)
ik<jk,ik≤L−1

pwik −
∑

k∈S(n′)
ik<jk,ik≤L−1

pwjk .

Again, using (1), we obtain the lower bound

∆(x,y) ≥ wL −
L−1
∑

j=1

pwj +
∑

k∈S(n′)
ik<jk,ik≤L−1

pwik

+
∑

k∈S(n′)
ik≥jk,ik≤L−1

pwjk .

The rest of the proof is the same as that in Case I. Therefore,∆(x,y) ≥ 1. Hence,0 < |∆(x,y)|< m as desired.

Theorem 4. The codeCn(q, d,m, r) is a d-insertion-deletion correcting code.

Proof: Suppose on the contrary thatCn(q, d,m, r) is not capable of correcting up tod deletions. Then there
exist two codewordsx,y ∈ Cn(q, d,m, r) and subsetsD andE with |D|= |E|≤ d such thatx(D) = y(E). By
Theorem 3, we have0 < |∆(x,y)|< m. It follows thatx 6∼= y, a contradiction. Thus,Cn(q, d,m, r) is capable of
correcting up tod deletions, and therefore, can correct up tod insertion-deletion errors as well due to a result of
Levenshtein [7].

III. D ECODING OFGENERALIZED HELBERG CODES

In this section, we describe a linear decoding algorithm to correct deletion errors in a generalized Helberg
codewordx ∈ Cn(2, d,m, r) wherec deletions have occurred withc ≤ d. We first present an algorithm to correct
one deletion and then provide a recursive algorithm to correct two or more deletions.
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A. Decoding One Deletion

In the decoding of one deletion, our algorithm is the same as exhaustive trial-by-error search. Letx ∈ Cn(q, d,m, r)
andx′ be the deleted codeword obtain fromx by deleting one symbol. We assumed ≥ 2; otherwise, ifd = 1,
Levenshtein decoding should be used. Thenx′ has lengthn − 1. We definex̃ = (x̃1, . . . , x̃n) to be the initial
decoding ofx′ where we append a variable symbolδ to x′ at initial positionP = n, i.e., the right-most position:

x̃ = (x′
1, x

′
2, . . . , x

′
n−1, δ).

Let I = M(x) −M(x′) denote the index (Lemma 10 in Appendix A shows that it possible to determineM(x)
from M(x′)). We then attempt to decodẽx in order to obtain the original codewordx so thatM(x̃) = M(x)
by either inserting a value forδ or shifting this deleted symbol to the left ofx′

P−1. The decision is based on the
following condition, which compares the current indexI and the moment ofδ at positionP :

Algorithm D1 (Decode One Deletion): Let P = n. If I = σ · wP for some valueσ ∈ {0, 1, . . . , p}, then δ
is in its correct position as the symbol that was deleted fromx. To decode, setδ = σ. Otherwise, shiftx′

P−1 to
the right of δ (equivalent to shiftingδ to the left one position), updateI → I − x′

P−1(wP − wP−1), and update
P → P − 1. This is repeated until the the correct position and value for δ is found.

It is clear that algorithm D1 will correctly decodex′ since it essentially performs an exhaustive search (assuming
thatx exists). We illustrate this algorithm in the following example.

Algorithm D1 (Decode One Deletion)
1: x̃ = x′

1x
′
2x

′
3...x

′
n−1δ ⊲ Initialize x̃ by appending variable symbolδ to x′ at positionn, whereδ is to be

determined.
2: for P = n to 1 do ⊲ P denotes position ofδ
3: for σ = q − 1 to 0 do ⊲ σ denotes test value forδ
4: if I = σ · wP then
5: δ = σ
6: STOP
7: end if
8: end for
9: x̃ = x′

1x
′
2x

′
3 . . . x

′
P−2δx

′
P−1x

′
P+1 . . . x

′
n−1 ⊲ Shift x′

P−1 to the right ofδ and updatẽx
10: I = I − x′

P−1(wP − wP−1) ⊲ Update the index
11: end for

Example 5. Suppose the ternary codewordx = (1, 2, 2, 0, 2, 2, 1, 2) ∈ C8(3, 2, w9, 23) was transmitted andx′ =
(1, 2, 2, 0, 2, 1, 2) was received so that one deletion occurred. We wish to decodex′ to recoverx. The weightswi

corresponding to this codebook are defined by the recursionwi = 1 + 2(wi−1 + wi−2). The first 10 weights are
given in Table I. In particular,w9 = 3861.

TABLE I
WEIGHTSwi FORd = 2, q = 3

i wi i wi

1 1 6 189
2 3 7 517
3 9 8 1413
4 25 9 3861
5 69 10 10549

Sincem = w9 = 3861, r = 23, andM(x′) = 1386, andM(x′) > r, it follows from Lemma 10 in Appendix A
thatM(x) = 3884. Thus, the indexI = M(x) −M(x′) = 2498. As defined earlier, let̃x be our initial decoding

8



for x′ where we initially insert a variable symbolδ at the right-most position ofx′, namely at positionP = 8:

x̃ = (1, 2, 2, 0, 2, 1, 2, δ).

According to algorithm D1, sinceI 6= σ · w8 for all σ ∈ {0, 1, 2}, we shift x̃7 = 2 to the right of δ, update
P → P − 1 = 7, and update the indexI → I − x7(w8 − w7) = 706 so thatx̃ now appears as

x̃ = (1, 2, 2, 0, 2, 1, δ, 2).

Again, sinceI 6= σ ·w7 for all σ ∈ {0, 1, 2}, we shift x̃6 = 1 to the right ofδ, updateP → P − 1 = 6, and update
I → I − x6(w7 − w6) = 378. Then

x̃ = (1, 2, 2, 0, 2, δ, 1, 2).

We now find thatI = σ ∗ w6 = 378 for σ = 2. In that case, we setδ = 2 and setI = 0. This gives the original
codeword

x̃ = (1, 2, 2, 0, 2, 2, 1, 2) = x

and completes the decoding.

B. Decoding Two Deletions

For binary Helberg codes capable of correcting two deletions, we shall describe a recursive algorithm to decode
a codeword where two symbols have been deleted by reducing the problem to that of correcting one deletion, a
problem that was solved in the previous sub-section.

Supposex′ is obtained fromx ∈ Cn(2, 2,m, r) after deleting two symbols fromx. Then to decodex′, whose
length isn− 2, we again definẽx to be an initial decoding ofx where we insert two variable symbolsδ1 andδ2
at the right end ofx′, namely at positionsP − 1 andP , where we initially setP = n:

x̃ = (x′
1, x

′
2, . . . , x

′
n−2, δ1, δ2).

We calculateI = M(x) −M(x′) (use Lemma 10 in Appendix A to determineM(x)). Our algorithm essentially
determines whether to setδ2 equal to an alphabet symbol (0 or 1), in which case the decoding reduces to the
one-deletion algorithm D1, or shiftx′

P−2 (initially x′
n−1) to the right of δ2. The following conditions describe

when each action is executed.

Algorithm D2-Binary (Decode Two Deletions):Let P = n. If

I = σ1wP−1 + σ2wP (2)

for someσ1, σ2 ∈ {0, 1}, then δ1 and δ2 are in their correct positions as symbols that were deleted from x. To
decode, setδ1 = σ1 andδ2 = σ2.

Otherwise, we assume that eitherδ1 or δ2 (or both) are NOT in their correct positions in what follows.Then
1) ForwP > I:

a) If x′
P−2 = 0, then shiftx′

P−2 to the right ofδ2, i.e., to the right ofδ2.
b) If x′

P−2 = 1 and

i) I < wP − wP−2, then setδ2 = 0 and update the indexI → I − (wP−1 − wP−2).
ii) I ≥ wP − wP−2, then shiftx′

P−2 to the right ofδ2 and update the indexI → I − (wP − wP−2).

2) ForwP < I:

a) If x′
P−2 = 0, then setδ2 = 1 and updateI → I − wP .

b) If x′
P−2 = 1, then shiftx′

n−2 to the right ofδ2 and updateI → I − (wP − wP−2).

UpdateP → P − 1 and repeat algorithm until the correct position and value for δ2 is found. If δ2 is found butδ1
remains unknown, then apply the one-deletion algorithm D1 to determineδ1.

Proof of Algorithm D2-Binary: To prove conditions (1) and (2) are valid, we argue as follows.
(1) SupposewP > I. We consider two cases:

(a) x′
P−2 = 0. We consider two situations and show thatx′

P−2 should be shifted to the right ofδ2 in both
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situations:
(i) δ2 is in its correct position as the right-most deleted symbol.In that case, sincewP > I, there is only one
choice of symbol forδ2, namelyδ2 = 0; otherwise, ifδ2 = 1, then the moment for̃x will exceed that ofx up to
positionP , regardless of the position ofδ1 in the final decoding for̃x:

MP (x̃) ≥ MP (x
′) +M(δ2) = MP (x

′) + wP δ2

> MP (x
′) + I = MP (x).

But observe that settingδ2 = 0 is equivalent to shiftingx′
P−2 = 0 to the right ofδ2. Thus, we choose to shift

instead.
(ii) δ2 is NOT in its correct position as the right-most deleted symbol. In that case, we are forced to shiftx′

P−2 to
the right ofδ2.

(b) x′
P−2 = 1. We consider two sub-cases:

(i) I < wP − wP−2. We claim thatδ2 is in its correct position as the right-most deleted symbol.Otherwise, we
are forced to shiftx′

P−2 to the right ofδ2, but then the moment of̃x will exceed that ofx up to positionP :

MP (x̃) ≥ MP (x
′) + (wP − wP−2)

≥ MP (x)− I + (wP − wP−2) > MP (x).

Thus,δ2 is in its correct position and moreover,δ2 = 0, sincewP > I.
(ii) I ≥ wP − wP−2. We claim thatδ2 is NOT in its correct position. Otherwise,δ2 = 0 sincewP > I and so

x̃ = (x′
1, x

′
2, . . . , x

′
P−2, δ1, δ2 = 0, x′

P+1, . . . , x
′
n).

But then the moment of̃x, which is maximized ifδ1 = 1, will always be strictly less than the moment ofx up to
positionP :

MP (x̃) ≤ MP (x
′) + wP−1 < MP (x

′) + wP − wP−2

< MP (x
′) + I = MP (x).

Thus,δ2 is not in its correct position. Therefore,x′
P−2 should be shifted to the right ofδ2.

(2) SupposewP < I. We again consider two cases:

(a) x′
P−2 = 0. We claim thatδ2 is in its correct position as the right-most deleted symbol.Otherwise, ifδ2 is

not in its correct position, then we are forced to shiftx′
P−2 to the right ofδ2, in which case

x̃ = (x′
1, x

′
2, . . . , x

′
P−3, δ1, δ2, x

′
P−2 = 0, . . . , x′

n).

But then the moment of̃x, which is maximized ifδ1 = δ2 = 1, will always be less than the moment ofx up to
positionP :

MP (x̃) ≤ MP (x
′) + (wP−2 + wP−1)

≤ MP (x
′) + wP < MP (x

′) + I = MP (x).

Thus,δ2 is in its correct position. Next, we claim thatδ2 = 1. Otherwise, ifδ2 = 0, then the moment of̃x, which
is maximized ifδ1 = 1, will always be less than the moment ofx up to positionP :

MP (x̃) ≤ MP (x
′) + wP−1 < MP (x

′) + wP

< MP (x
′) + I = MP (x).

(b) x′
P−2 = 1. We consider two situations and show thatx′

P−2 should be shifted to the right ofδ2 in both
situations:
(i) δ2 is in its correct position. We claim thatδ2 = 1. Otherwise, ifδ2 = 0, then the moment of̃x, which is
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maximized ifδ1 = 1, will always be less than the moment ofx up to positionP :

MP (x̃) ≤ MP (x
′) + (wP−2 + wP−1)

< MP (x
′) + wP < MP (x

′) + I = MP (x).

Thus, δ2 = 1. But observe that settingδ2 = 1 is equivalent to shiftingx′
P−2 = 1 to the right ofδ2. Thus, we

choose to shift instead.
(ii) δ2 is NOT in its correct position. In that case, we are forced to shift x′

P−2 to the right ofδ2.
This completes the proof.

We now demonstrate algorithm D2-Binary in the following example to show how the problem of decoding two
deletions can be reduced to that of decoding one deletion.

Algorithm D2-Binary (Decode Two Deletions)

1: x̃ = x′
1x

′
2 . . . x

′
n−2δ1δ2 ⊲ Initialize x̃ by appending variable symbolsδ1 andδ2 to x′ at positionsn− 1 andn

respectively, whereδ1 andδ2 are to be determined.
2: for P = n to 1 do ⊲ P denotes position ofδ2
3: for σ1, σ2 = q − 1 to 1 do ⊲ Double nested for loop
4: if I = σ1wP−1 + σ2wP then
5: δ1 = σ1, δ2 = σ2

6: STOP
7: end if
8: end for
9: if wP > I then

10: if (x′
P−2 = 0) or (x′

P−2 = 1 andI ≥ wP − wP−2) then
11: x̃ = x′

1x
′
2...x

′
P−3δ1δ2x

′
P−2x

′
P+1...x

′
n−2 ⊲ Shift x′

P−2 to the right ofδ2 and updatẽx
12: I = I − x′

P−2(wP − wP−2) ⊲ Update the index
13: else
14: x′ = x′

1x
′
2...x

′
P−2δ10x

′
P+1...x

′
n−2 ⊲ Insert0 for δ2 and updatẽx

15: Call algorithm D1 to decodeδ1
16: STOP
17: end if
18: else ⊲ wP < I
19: if x′

P−2 = 0 then
20: x′ = x′

1x
′
2...x

′
P−2δ11x

′
P+1...x

′
n−2 ⊲ Insert1 for δ2 and updatẽx

21: I = I − wP ⊲ Update the index
22: else ⊲ x′

P−2 = 1
23: x′ = x′

1x
′
2...x

′
P−3δ1δ2x

′
P−2x

′
P+1...x

′
n−2 ⊲ Shift x′

P−2 to the right ofδ2 and updatẽx
24: I = I − x′

P−2(wP − wP−2) ⊲ Update the index
25: Call algorithm D1 to decodeδ1
26: STOP
27: end if
28: end if
29: end for

Example 6. Supposex ∈ C10(2, 2, w11, 62) was transmitted andx′ = (1, 1, 0, 1, 0, 1, 0, 1) was received so that two
deletions occurred. The weightswi are defined bywi = 1+wi−1+wi−2 (see Table II). Thereforem = w11 = 232
andM(x′) = 84.

SinceM(x′) > r = 62, it follows thatM(x) = r +m = 294. Thus,I = M(x)−M(x′) = 210. We initialize

x̃ = (1, 1, 0, 1, 0, 1, 0, 1, δ1, δ2)

and apply algorithm D2. Since (2) fails, we comparew10 = 143 with I. As w10 < I andx′
8 = 1, we shiftx′

8 to
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TABLE II
WEIGHTSwi FORd = 2, q = 2

i wi i wi

1 1 7 33
2 2 8 54
3 4 9 88
4 7 10 143
5 12 11 232
6 20 12 376

the right ofδ2 and update the index:I → I − (w10 − w8) = 121. Then x̃ takes the form

x̃ = (1, 1, 0, 1, 0, 1, 0, δ1, δ2, 1).

Again, since (2) fails, we comparew9 = 88 with I. As w9 < I and x′
7 = 0, we setδ2 = 1 and update

I → I − w9 = 33 so that
x̃ = (1, 1, 0, 1, 0, 1, 0, δ1, 1, 1).

From here, we apply algorithm D1 to determineδ, which yieldsδ1 = 1 at position7. Thus,

x̃ = (1, 1, 0, 1, 0, 1, 1, 0, 1, 1) = x.

C. Decoding Multiple Deletions

Supposex′ is obtained fromx ∈ Cn(q, d,m, r) after deletingc symbols fromx, where2 ≤ c ≤ d. Then to
decodex′, whose length isn − c, we again definẽx to be an initial decoding ofx where we insertc variable
symbolsδ1, . . . , δc at the right end ofx′, namely at positionsP − c+ 1, . . . , P , where we initially setP = n:

x̃ = (x′
1, x

′
2, . . . , x

′
n−c, δ1, . . . , δc).

We calculateI = M(x) −M(x′) (use Lemma 10 in Appendix A to determineM(x)). As before, our algorithm
essentially determines whether to set the right-most symbol δc equal to an alphabet symbol (0, . . . , q− 1), in which
case the decoding reduces to algorithm DM forc − 1 deletions, or shiftx′

P−c (initially x′
n−1) to the right ofδc.

The following conditions describe when each action is executed.

Algorithm DM (Decode Multiple Deletions): Let P = n. If

I = σ1wP−c+1 + σ2wP−c+2 + . . .+ σcwP (3)

for a set of valuesσ1, . . . , σc ∈ {0, 1, . . . , p}, thenδ1, . . . , δc are in their correct positions as symbols that were
deleted fromx. To decode, setδi = σi for i = 1, . . . , c. Otherwise, we assume that at least one of the symbols
δ1, . . . , δc are NOT in their correct positions in what follows: Define

σmax = max{σ : σ(wP − wP−c) < I, σ = 0, 1, . . . , p}.

Then

1) ForwP > I:

a) If x′
P−c = 0, then shiftx′

P−c to the right ofδc, update the positionP → P − 1, and repeat algorithm.
b) If x′

P−c ≥ 1 and

i) I < wP − wP−c, then setδc = 0 and apply algorithm DM on the truncated codeword(x̃)P−1 =
(x′

1, . . . , x
′
P−c, δ1, . . . , δc−1) with index I to correctc− 1 deletions.

ii) I ≥ wP − wP−c, then shiftx′
P−c to the right ofδc, update the indexI → I − x′

P−c(wP − wP−c),
update the positionP → P − 1, and repeat algorithm.

2) ForwP < I:
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a) If x′
P−c > σmax, then setδc = σmax, update the indexI → I − σmaxwP , and apply algorithm DM on the

truncated codeword(x̃)P−1 = (x′
1, . . . , x

′
P−c, δ1, . . . , δc−1) with index I to correctc− 1 deletions.

b) If x′
P−c < σmax and

i) σmaxwP ≤ I, then setδc = σmax, update the indexI → I − σmaxwP , and apply algorithm DM on the
truncated codeword(x̃)P−1 = (x′

1, . . . , x
′
P−c, δ1, . . . , δc−1) with index I to correctc− 1 deletions.

ii) σmaxwP > I, then shiftx′
P−c to the right ofδc, update the positionP → P − 1, and repeat algorithm.

c) If x′
P−c = σmax, then shiftx′

P−c to the right ofδc, update the indexI → I − σmax(wP − wP−c), update
the positionP → P − 1, and repeat algorithm.

Proof: We prove that the conditions (1) and (2) in algorithm DM give acorrect decoding ofx′.
(1) SupposewP > I. We consider two cases:

(a) x′
P−c = 0. We consider two situations and show thatx′

P−c should be shifted to the right ofδc in both
situations:
(i) δc is in its correct position as the right-most deleted symbol.In that case, sincewP > I, there is only one choice
of symbol forδc, namelyδc = 0; otherwise, ifδc ≥ 1, then the moment for̃x will exceed that ofx up to position
P , regardless of the position and values of the other symbolsδ1, . . . , δc−1 in the final decoding for̃x:

MP (x̃) ≥ MP (x
′) +M(δc) = MP (x

′) + wP δc

> MP (x
′) + I = MP (x).

But observe that settingδc = 0 is equivalent to shiftingx′
P−c = 0 to the right ofδc (and later settingδ1, . . . , δc−1

equal to appropriate values determined by our algorithm). Thus, we choose to shift instead.
(ii) δc is NOT in its correct position as the right-most deleted symbol. In that case, we are forced to shiftx′

P−c to
the right ofδc.

(b): x′
P−c ≥ 1. We consider two sub-cases:

(i) I < wP −wP−c. We claim thatδc is in its correct position as the right-most deleted symbol.Otherwise, we are
forced to shiftx′

P−c to the right ofδc, but then the moment ofx′ will exceed that ofx up to positionP , regardless
of the position and values of the other symbolsδ1, . . . , δc−1:

MP (x̃) ≥ MP (x
′) + x′

P−c(wP − wP−c)

≥ MP (x) − I + (wP − wP−c) > MP (x).

Thus,δc is in its correct position and moreover,δc = 0 sincewP > I.
(ii) I ≥ wP − wP−c. We claim thatδc is NOT in its correct position. Otherwise,δc = 0 sincewP > I and so

x̃ = (x′
1, x

′
2, . . . , x

′
P−c, δ1, . . . , δc−1, 0, x

′
P+1, . . . , x

′
n).

But then the moment of̃x, which is maximized ifδ1 = . . . = δc−1 = p (recall p = q − 1), will always be strictly
less than the moment ofx up to positionP :

MP (x̃) ≤ MP (x
′) + p(wP−c+1 + . . .+ wP−1)

< MP (x
′) + wP − p(wP−c + . . .+ wP−d)

< MP (x) + wP − wP−c

≤ MP (x
′) + I = MP (x).

Thus,δc is not in its correct position. Therefore,x′
P−c should be shifted to the right ofδc.

(2) SupposewP < I. We first prove that ifδc is in its correct position, thenδc = σmax. We rule out all other
possible values as follows:
(i) Supposeδc = σ < σmax. But then the moment of̃x up to positionP , which is maximized ifδ1 = . . . = δc−1 = p,
will always be less than the moment ofx because of the following calculation (recall the recurrence satisfied by
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wP and the fact thatσmax(wP − wP−c) < I):

MP (x̃)

≤ MP (x
′) + p(wP−c+1 + . . .+ wP−1) + σ · wP

< MP (x
′) + (σ + 1)wP − p(wP−c + . . .+ wP−d)

< MP (x) + σmax(wP − wP−c)

< MP (x
′) + I = MP (x).

(ii) Supposeδc = σ > σmax. But then the moment of̃x up to positionP , which is minimized ifδ1 = . . . = δc−1 = 0,
will always be greater than the moment ofx because of a similar calculation:

MP (x̃) ≥ MP (x
′) + σ · wP

> MP (x
′) + σ(wP − wP−c)

≥ MP (x
′) + I = MP (x).

Thus,δc = σmax if it is in its correct position.
Next, we consider three cases:

(a) x′
P−c > σmax. We claim thatδc is in its correct position. Otherwise, we are forced to shiftx′

P−c to the
right of δc, but then the moment of̃x, which is minimized ifδ1 = . . . = δc−1 = 0, will always be greater than the
moment ofx up to positionP :

MP (x̃) ≥ MP (x
′) + x′

P−c(wP − wP−c)

> MP (x
′) + I = MP (x).

Thus,δc is in its correct position and as we argued previously,δc = σmax.

(b) x′
P−c < σmax. We consider two sub-cases:

(i) σmaxwP ≤ I. We claim thatδc is in its correct position. Otherwise, we are forced to shiftx′
P−c to the right of

δc, but then the moment of̃x, which is maximized ifδ1 = . . . = δc−1 = p, will always be less than the moment
of x up to positionP . This is because

MP (x̃) ≤ MP (x
′) + p(wP−c + . . .+ wP−1)

+ x′
P−c(wP − wP−c)

< MP (x
′) + wP − p(wP−c−1 . . .+ wP−d)

+ x′
P−c(wP − wP−c)

< MP (x
′) + (1 + x′

P−c)wP

Next, we use the fact thatx′
P−c < σmax to obtain

MP (x̃) ≤ MP (x
′) + σmaxwP

≤ MP (x
′) + I = MP (x).

Thus, we setδc = σmax.

(ii) σmaxwP > I. We claim thatδc is NOT in its correct position. Otherwise, ifδc is in its correct position, then
we must haveδc = σmax and so the moment of̃x up to positionP , which is minimized ifδ1 = . . . = δc−1 = 0,
will always be greater than the moment ofx:

MP (x̃) ≥ MP (x
′) + σmaxwP

> MP (x
′) + I = MP (x).
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Thus, we shiftx′
P−c to the right ofδc.

(c) x′
P−c = σmax. In this case, observe that ifδc is in its correct position, thenδc = σmax, but this same

result can be achieved by shiftingx′
P−c to the right ofδc (and later settingδ1, . . . , δc−1 equal to appropriate values

determined by our algorithm). Thus, we choose to shift instead. This completes the proof.
We demonstrate algorithm DM with the following example.

Example 7. Suppose a ternary codewordx ∈ C8(3, 2, w9, 23) of length 8 was transmitted and the deleted codeword
receivedx′ = (1, 2, 2, 0, 1, 2) was received where two symbols were deleted. We havem = w9 = 3861; see Table
I for a list of the weightswi.

SinceM(x′) = 504 > r, it follows from Lemma 10 thatM(x) = m + r = 3884. Thus, the indexI =
M(x)−M(x′) = 3380. We now apply algorithm DM by defining our initial decoding as

x̃ = (1, 2, 0, 2, 1, 2, δ1, δ2).

Since (3) fails, we comparew8 = 1413 with I. As w8 < I, we computeσmax = 2. Sincex′
6 = 2 = σmax, we shift

x′
6 to the right ofδ2 and updateI → I − x′

6(w8 − w6) = 932 so that

x̃ = (1, 2, 0, 2, 1, δ1, δ2, 2).

Again, since (3) fails, we comparew7 = 517 with I. As w7 < I, we calculateσmax = 2. Sincex′
5 = 1 < σmax

andσmaxw7 = 1034 > I, we shiftx′
5 to the right ofδ2 and updateI → I − x′

5(w7 − w5) = 484 so that

x̃ = (1, 2, 0, 2, δ1, δ2, 1, 2).

Since (3) fails again, we comparew6 = 189 with I. As w6 < I, we calculateσmax = 2. Sincex′
4 = 2 = σmax,

we shift x′
6 to the right ofδ2 and updateI → I − x′

4(w6 − w4) = 156 so that

x̃ = (1, 2, 0, δ1, δ2, 2, 1, 2).

Again, since (3) fails, we comparew5 = 69 with I. As w5 < I, we calculateσmax = 2. Sincex′
3 = 0 < σmax and

σmaxw5 = 138 < I, we setδ2 = σmax = 2 and update the indexI → I − σmaxw5 = 18. This yields

x̃ = (1, 2, 0, δ1, 2, 2, 1, 2).

It remains to apply algorithm D1 on the truncated codeword(x̃)4 = (1, 2, 0, δ1) with I = 18 to decodeδ1.
Following Example 5, we find thatδ1 = 2 should be inserted at position 3. Hence, our final decoding is

x̃ = (1, 2, 2, 0, 2, 2, 1, 2) = x.

IV. A PPENDIX

A. Useful Lemmas

In this appendix, we aim to show that the moment of a codeword is strictly less than twice the modulus defining
its codebook. This allows us to precisely determine its moment based on the moment of the deleted codeword.

Lemma 8. For d ≥ 2,

n
∑

i=1

wi =

p

(

d−1
∑

i=0

(d− i)wn−i

)

− n

pd− 1
. (4)

Proof: We argue by induction onn. It is straightforward to verify that (4) holds forn = 1. Next, assume that
(4) holds for arbitraryn. Then forn+ 1, since

n+1
∑

i=1

wi =
n
∑

i=1

wi + wn+1,
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it follows from the inductive hypothesis and the recurrencefor wn+1 that

n+1
∑

i=1

wi

=

p

(

d−1
∑

i=0

(d− i)wn−i

)

− n

pd− 1
+

pd(wn+1)− wn+1

pd− 1

=

p

(

d−2
∑

i=0

(d− i− 1)wn−i

)

+ pd(wn+1)− (n+ 1)

pd− 1
,

Then re-index the summation on the right-hand side and simplifying yields

n+1
∑

i=1

wi =

p

(

d−1
∑

i=0

(d− i)wn+1−i

)

− (n+ 1)

pd− 1
.

Hence, (4) holds forn+ 1.

Lemma 9. For d ≥ 2,
n
∑

i=1

wi <
d

pd− 1
wn+1. (5)

Proof: It follows from Lemma 8 that

n
∑

i=1

wi =

p

(

d−1
∑

i=0

(d− i)wn−i

)

− n

pd− 1

<

pd

(

d−1
∑

i=0

wn−i

)

− n

pd− 1
=

d(wn+1 − 1)− n

pd− 1

<
d

pd− 1
wn+1.

This proves (5).

Lemma 10. Let x ∈ Cn(q, d,m, r). Supposex′ is obtained by deletingc symbols fromx, where c ≤ d. If
M(x′) > r, thenM(x) = r +m. Otherwise, ifM(x′) ≤ r, thenM(x) = r.

Proof: Recall from our definition ofx thatM(x) ≡ r (mod m). We claim that

M(x) < 2m. (6)

This follows from Lemma 9:

M(x) ≤ p

n
∑

i=1

wi <
ps

ps− 1
wn+1 ≤ 2wn+1 ≤ 2m,

where we have used the fact thatps/(ps− 1) ≤ 2 sinced ≥ 2 andp ≥ 1.
If M(x′) > r, thenM(x) > r sinceM(x) ≥ M(x′). It follows from (6) thatM(x) = r + m. On the other

hand, ifM(x′) ≤ r, then we claim thatM(x) = r. To prove this, assume on the contrary thatM(x) = r +m.
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TABLE III
BINARY 2-DELETION CODES: VALUES OFNn(2, 2) AND Rn(2, 2)

n Nn(2, 2) Rn(2, 2)

1 1 0, 1
2 1 0, 1, 2, 3
3 2 0
4 2 0, 1, 2, 7
5 2 0, 1, 2, 3, 4, 5, 6,

7, 12, 13, 14, 19
6 3 0, 1, 6, 7, 12, 13
7 4 12, 13
8 5 12, 33
9 6 12, 33, 39, 45, 66
10 8 66
11 9 65, 66, 99, 100, 120,

121, 154, 155
12 11 65, 66, 99, 154, 155, 175,

176, 181, 182, 187, 188,
208, 209, 264, 297, 298

13 15 297, 298
14 18 297, 441, 475, 496, 530, 674
15 22 297, 441, 674, 763, 784, 790,

796, 817, 906, 1139, 1283
16 30 1283

Then

M(x)−M(x′) ≤ p(wn−c+1 + . . . wn)

< wn+1 − p(wn−d+1 + . . .+ wn−c)

< m.

It follows that
M(x′) > M(x)−m = r,

which is a contradiction.

B. Sizes of Generalized Helberg Codes

We present values for the size of the largest code in terms of the codeword length. Given positive integersq, d,
n r, andm = wn+1, we denote the size of the largest codeCn(q, d, wn+1, r) by

Nn(q, d) = max
r=0,1,...,wn+1−1

{|Cn(q, d, wn+1, r)|}.

Also, let Rn(q, d) denote the set of valuesr for which |Cn(q, d, wn+1, r)|= Nn(q, d).
Through exhaustive computer search, we computed the valuesof Nn(q, d) andRn(q, d) for certain values of

q, d, andn. Table III gives values forNn(2, 2) andRn(2, 2) for binary 2-deletion codes (q = 2, d = 2) with n
ranging from 1 to 15. Tables IV and V give values for ternary 2-deletion codes (q = 3, d = 2) and quaternary
2-deletion codes (q = 4, d = 2), respectively, but over a shorter range forn.
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2 1 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15
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5 3 0, 1, 61, 62
6 4 61, 62, 122, 123, 183, 184
7 5 61, 880
8 6 61, 122, 183, 880, 941, 1760,

1821, 2640, 2701, 3398,
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