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A DIGITAL BINOMIAL THEOREM FOR SHEFFER SEQUENCES

TOUFIK MANSOUR AND HIEU D. NGUYEN

Abstract. We extend the digital binomial theorem to Sheffer polynomial sequences by
demonstrating that their corresponding Sierpiński matrices satisfy a multiplication property
that is equivalent to the convolution identity for Sheffer sequences.

1. Introduction

The binomial theorem is a fundamental result in mathematics:

(x+ y)n =

n
∑

k=0

(

n

k

)

xkyn−k. (1)

One generalization of the binomial theorem, due to Callan [2] (see also [6]), expresses the
exponents appearing in (1) in terms of the binary sum-of-digits function s(m):

(x+ y)s(n) =
∑

0≤m≤n
(m,n−m) carry-free

xs(m)ys(n−m), (2)

where a pair of non-negative integers (j, k) is said to be carry-free if their sum in binary
involves no carries. We refer to (2) as the digital binomial theorem.

Several extensions of the digital binomial theorem have recently been found. For example,
a non-binary version is given in [7] for any integer base b > 2:

N−1
∏

i=0

(

x+ y + ni − 1

ni

)

=
∑

0≤m�bn

(

N−1
∏

i=0

(

x+mi − 1

mi

)N−1
∏

i=0

(

y + ni −mi − 1

ni −mi

)

)

. (3)

Here, ni and mi denote the i-th digit in the base-b expansion of n and m, respectively. Also,
m �b n denotes the fact that mi ≤ ni for all i. Another example is a q-analog given in [4]:

N−1
∏

i=0

(

x+ qiy + ni − 1

ni

)

=
∑

0≤m≤n
(m,n−m) carry-free

qzn(m)xs(m)ys(n−m). (4)

In this paper, we present a digital binomial theorem for Sheffer sequences and those of
binomial type by considering a polynomial generalization of (1). Let f(t) be a delta series
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and g(t) be an invertible series, i.e.,

f(t) =

∞
∑

k=0

akt
k (a0 = 0, a1 6= 0),

g(t) =

∞
∑

k=0

bkt
k (b0 6= 0).

The polynomial sequence sn(x), n = 0, 1, . . . , is said to be Sheffer for (g(t), f(t)) if it has
generating function ([8, Theorem 2.3.4, p. 18])

1

g(f̄(t))
exf̄(t) =

∞
∑

n=0

sn(x)

n!
tn (5)

where f̄(t) is the compositional inverse of f(t). The Sheffer sequence sn(x) is known to
satisfy the convolution identity ([8, Theorem 2.3.9, p. 21])

sn(x+ y) =

n
∑

k=0

(

n

k

)

pk(x)sn−k(y). (6)

Here, pn(x) is the polynomial sequence associated to sn(x), i.e., pn(x) has generating function

exf̄(t) =
∞
∑

n=0

pn(x)

n!
tn.

It is known that pn(x) is of binomial type, i.e., pn(x) satisfies the binomial identity (([8,
Theorem 2.4.7, p. 26])

pn(x+ y) =
n
∑

k=0

(

n

k

)

pk(x)pn−k(y). (7)

In the special case where f̄(t) = t in (5) so that pn(x) = xn, the Sheffer sequence sn(x) is
then called an Appell sequence. There are many well-known examples of Sheffer sequences,
e.g., the Bernoulli, Hermite (probabilistic version), and Laguerre polynomials defined by the
generating functions

t

et − 1
exp(xt) =

∞
∑

n=0

Bn(x)

n!
tn,

exp(xt− t2/2) =
∞
∑

n=0

Hn(x)

n!
tn,

and
1

(1− t)α+1
exp

(

−
xt

1− t

)

=
∞
∑

n=0

Lα
n(x)

n!
tn,

respectively. Observe that Bn(x) and Hn(x) are both Appell sequences. It is well known
that all three Sheffer sequences satisfy the convolution identities

Bn(x+ y) =
n
∑

k=0

(

n

k

)

xkBn−k(y),

2



Hn(x+ y) =
n
∑

k=0

(

n

k

)

xkHn−k(y),

and

Lα
n(x+ y) =

n
∑

k=0

L−1
k (x)Lα

n−k(y),

respectively. These polynomials also have extensions that are also Sheffer sequences, e.g.,
Bernoulli polynomials of higher order [5] and generalized Hermite polynomials [10].

If we renormalize a Sheffer sequence sn(x) and its associated sequence pn(x) by defining
s̄n(x) = sn(x)/n! and p̄n(x) = pn(x)/n!, then (6) and (7) are equivalent to

s̄n(x+ y) =
n
∑

k=0

p̄k(x)s̄n−k(y) (8)

and

p̄n(x+ y) =
n
∑

k=0

p̄k(x)p̄n−k(y), (9)

respectively. Identities (8) and (9) form the basis for our main result.

Theorem 1. Let n be a non-negative integer with base b expansion n = nN−1b
N−1+· · ·+n0b

0

and {sn(x)} be a Sheffer polynomial sequence with associated sequence {pn(x)}. Then

N−1
∏

i=0

s̄ni
(xi + yi) =

∑

0≤m�bn

(

N−1
∏

i=0

p̄mi
(xi)

N−1
∏

i=0

s̄ni−mi
(yi)

)

(10)

and
N−1
∏

i=0

p̄ni
(xi + yi) =

∑

0≤m�bn

(

N−1
∏

i=0

p̄mi
(xi)

N−1
∏

i=0

p̄ni−mi
(yi)

)

, (11)

where m = mN−1b
N−1 + · · ·+m0b

0.

In the case where x0 = . . . = xN−1 and y0 = . . . = yN−1, we obtain as a corollary the
following result:

Corollary 2. For n = bN − 1, we have

s̄b−1(x+ y)N =
∑

0≤m≤n

(

N−1
∏

i=0

p̄mi
(x)

N−1
∏

i=0

s̄b−1−mi
(y)

)

(12)

and

p̄b−1(x+ y)N =
∑

0≤m≤n

(

N−1
∏

i=0

p̄mi
(x)

N−1
∏

i=0

p̄b−1−mi
(y)

)

(13)

If we specialize to Bernoulli polynomials by setting sn(x) = Bn(x) and pn(x) = xn, then
(12) gives the following result.
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Theorem 3. For n = bN − 1, we have

Bb−1(x+ y)N =
∑

0≤m≤n

(

xsb(m)

N−1
∏

i=0

Bb−1−mi
(y)

)

(14)

where sb(m) is the base-b sum-of-digits function.

Similar formulas can be obtained for other special polynomials such as Hermite and La-
guerre polynomials. Also, we remark that setting y = 0 in (14) yields a formula for higher
powers of Bernoulli polynomials in terms of Bernoulli numbers Bn := Bn(0) and the sum-
of-digits function:

Bb−1(x)
N =

∑

0≤m≤n

(

xsb(m)

N−1
∏

i=0

Bb−1−mi

)

.

The proof of Theorem 1 will be given in the next section where we investigate a Sheffer
sequence analog of the Sierpiński matrix and use its multiplicative property to derive (10)
and (11).

2. Sierpinski Matrices of Sheffer Type

Throughout this paper we assume that b is an integer greater than 1. We begin by
introducing the notion of digital dominance as defined in [1] (see also [7]).

Definition 4. Let m and n be non-negative integers with base b expansions m = mN−1b
N−1+

· · ·+m0b
0 and n = nN−1b

N−1 + · · ·+ n0b
0, respectively. We denote m �b n to mean that m

is digitally less than n in base b, i.e., mk ≤ nk for all k = 0, . . . , N − 1.

Next, we define a sequence of generalized Sierpiński matrices corresponding to the Sheffer
sequence sn(x) and its associated sequence pn(x).

Definition 5. Let N be a non-negative integer. Denote xN = (x0, . . . , xN−1). If N = 0, we
set Sb,0(x0) = Pb,0(x0) = 1. For N > 0, we define the N-variable Sierpiński matrices

Sb,N(xN) = (αN(j, k,xN))

matrices

Pb,N(xN) = (βN (j, k,xN))

of dimension bN × bN by

αN(j, k,xN ) =















∏N−1
i=0 s̄di(xi)

if 0 ≤ k ≤ j ≤ bN − 1
and k �b j;

0, otherwise,

(15)

and

βN(j, k,xN ) =















∏N−1
i=0 p̄di(xi)

if 0 ≤ k ≤ j ≤ bN − 1
and k �b j;

0, otherwise,

(16)

respectively, where j − k = d0b
0 + d1b

1 + . . .+ dN−1b
N−1 is the base-b expansion of j − k.

The following lemma gives a recurrence for Sb,N(xN ) and Pb,N(xN).
4



Lemma 6. The generalized Sierpiński matrices Sb,N(xN ) and Pb,N(xN) satisfy the recurrence

Sb,N+1(xN+1) = Sb,1(xN)⊗ Sb,N(xN), (17)

and

Pb,N+1(xN+1) = Pb,1(xN )⊗ Pb,N(xN ), (18)

respectively, where we define

Sb,1(x) =













1 0 0 · · · 0
s̄1(x) 1 0 · · · 0
s̄2(x) s̄1(x) 1 · · · 0
...

...
...

. . .
...

s̄b−1(x) s̄b−2(x) s̄b−3(x) · · · 1













=

{

s̄j−k(x), if 0 ≤ k ≤ j ≤ b− 1;
0, otherwise

and

Pb,1(x) =













1 0 0 · · · 0
p̄1(x) 1 0 · · · 0
p̄2(x) p̄1(x) 1 · · · 0
...

...
...

. . .
...

p̄b−1(x) p̄b−2(x) p̄b−3(x) · · · 1













=

{

p̄j−k(x), if 0 ≤ k ≤ j ≤ b− 1;
0, otherwise.

Proof. Following [4], we shall prove (17) by induction on N . It is clear that (17) holds for
N = 0. Next, assume that (17) holds for N − 1. To prove that(17) holds for N , we express
SN+1(xN+1) a b× b matrix of blocks (Ap,q)0≤p,q≤b−1:

SN+1(xN+1) =





A0,0 . . . A0,b−1
...

. . .
...

Ab−1,0 . . . Ab−1,b−1



 ,

where each Ap,q is a square matrix of size bN . We consider two cases depending on the
position of Ap,q:

Case 1. p < q. Then by definition of Sb,N+1(xN+1) we have that αN+1(p, q,xN+1) = 0, which
implies Ap,q = 0.

Case 2. p ≥ q. Let αN+1(j, k,xN+1) be an arbitrary entry of Ap,q. Then pbN ≤ j ≤ (p+1)bN−
1 and qbN ≤ k ≤ (q+1)bN −1. Set j′ = j−pbN and k′ = k−qbN . If j < k, then by definition
αN+1(j, k,xN ) = 0. Therefore, we assume j ≥ k. Let j − k = d0b

0 + d1b
1 + · · · + dNb

N ,
where dN = p− q. Then j′ − k′ = d0b

0 + d1b
1 + · · ·+ dN−1b

N−1. Since k �b j if and only if
k′ �b j

′,we have

αN+1(j, k,xN+1) =







∏N

i=0 s̄di(xi) if 0 ≤ k ≤ j ≤ bN+1 − 1 and k �b j;

0 otherwise.

= s̄dN (xN )αb,N(j
′, k′,xN).

It follows that
Ap,q = s̄p−q(xN)Sb,N(xN , rN)

5



and hence Sb,N+1(xN+1) = Sb,1(xN , rN)⊗Sb,N(xN , rN). This proves (17). The proof for (18)
is analogous and will be omitted.

�

The generalized Sierpiński matrices Sb,N(xN ) and Pb,N(xN) satisfy the following multi-
plicative property:

Theorem 7. Let N be a non-negative integer. Then

Pb,N(xN)Sb,N(yN) = Sb,N(xN + yN) (19)

and

Pb,N(xN )Pb,N(yN ) = Pb,N(xN + yN ), (20)

where we define

xN + yN = (x0 + y0, x1 + y1, . . . , xN−1 + yN−1).

Proof. We shall prove (19) using induction. To prove that (19) holds for the base case
N = 1, let γ(j, k) denote the (j, k)-entry of T = Pb,1(x1)Sb,1(y1). Since T is lower-triangular,
it follows that γ(j, k) = 0 if j < k. Therefore, we assume j ≥ k. By definition of Sb,1(x1)
and Pb,1(y1), we have

γ(j, k) =

j
∑

i=k

p̄j−i(x0)s̄i−k(y0) =

j−k
∑

i=0

p̄i(x0)s̄j−k−i(y0).

Since sn(x) is a Sheffer sequence, it follows from (6) that

γ(j, k) = s̄j−k(x0 + y0),

or equivalently,
Pb,1(x1, r1)Sb,1(y1, r1) = Sb,1(x1 + y1, r1).

This proves (19) for N = 1.
Next, assume that (19) holds for arbitrary N . To prove that (19) holds for N + 1, we

employ Lemma 6 and the mixed-property of a Kronecker product:

Pb,N+1(xN+1)Sb,N+1(yN+1) = (Pb,1(xN )⊗ Pb,N(xN )(Sb,1(yN)⊗ Sb,N(yN))

= (Pb,1(xN )Sb,1(yN))⊗ (Pb,N(xN)Sb,N(yN )).

Moreover, by the induction hypothesis and Lemma 6 again, we obtain

Pb,N+1(xN+1)Sb,N+1(yN+1) = Sb,1(xN + yN)⊗ Sb,N(xN + yN)

= Sb,N+1(xN+1 + yN+1).

Hence, (19) holds for N + 1. The proof of (20) is similar and will be omitted. �

Proof of Theorem 1. We equate the matrix entries at position (n, 0) on both sides of (19) to
obtain

αN(n, 0,xN + yN ) =
∑

0≤m�bn

βN(n,m,xN )αN(m, 0,yN)

=
∑

0≤m�bn

βN(n, n−m,xN )αN(n−m, 0,yN).

This yields (10) as desired. The derivation of (11) is similar and left for the reader to
verify. �
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We conclude with two ideas on how to extend Theorem 1. The first is to iterate (10) and
(11) to obtain a trinomial version:

N−1
∏

i=0

s̄ni
(xi + yi + zi) =

∑

0≤m�bn

(

N−1
∏

i=0

p̄mi
(xi + yi)

N−1
∏

i=0

s̄ni−mi
(zi)

)

=
∑

0≤m�bn

∑

0≤l�bm

(

N−1
∏

i=0

p̄li(xi)

N−1
∏

i=0

p̄mi−li(yi)

N−1
∏

i=0

s̄ni−mi
(zi)

)

and similarly,

N−1
∏

i=0

p̄ni
(xi + yi + zi) =

∑

0≤m�bn

∑

0≤l�bm

(

N−1
∏

i=0

p̄li(xi)
N−1
∏

i=0

p̄mi−li(yi)
N−1
∏

i=0

p̄ni−mi
(zi)

)

where l = lN−1b
N−1 + · · ·+ l0b

0. Of course, we can also iterate repeatedly to obtain to the
multinomial formulas

N−1
∏

i=0

sni
(x

(1)
i + · · ·+ x

(d)
i )

=
∑

0≤m(d−1)�bn

. . .
∑

0≤m(1)�bm
(2)

(

N−1
∏

i=0

p̄
m

(1)
i

(x
(1)
i ) · · ·

N−1
∏

i=0

p̄
m

(d−1)
i

−m
(d−2)
i

(x
(d−1)
i )

N−1
∏

i=0

s̄
ni−m

(d−1)
i

(x
(d)
i )

)

and

N−1
∏

i=0

pni
(x

(1)
i + · · ·+ x

(d)
i )

=
∑

0≤m(d−1)�bn

. . .
∑

0≤m(1)�bm
(2)

(

N−1
∏

i=0

p̄
m

(1)
i

(x
(1)
i ) · · ·

N−1
∏

i=0

p̄
m

(d−1)
i

−m
(d−2)
i

(x
(d−1)
i )

N−1
∏

i=0

p̄
ni−m

(d−1)
i

(x
(d)
i )

)

where m(j) = m
(j)
N−1b

N−1 + · · ·+m
(j)
0 b0.

The second idea is to view the binomial convolution identity for Sheffer sequences in the
context of umbral calculus and linear functionals on the vector space of polynomials. Define
the product of two such linear functionals L and M by

〈LM |xn〉 =

n
∑

k=0

(

n

k

)

〈L|xk〉〈M |xn−k〉. (21)

Then Roman and Rota [9, Prop. 3.3, p. 102] proved that for any polynomial sequence pn(x)
of binomial type, we have

〈LM |pn(x)〉 =
n
∑

k=0

(

n

k

)

〈L|pk(x)〉〈M |pn−k(x)〉. (22)

7



The digital version of (22) and its multinomial generalization then becomes clear and extends
[9, Prop. 3.4, p. 103]; (see also [3, Eq. (17), p. 874]):

〈LM |pn(x)〉 =

n
∑

m=0

(

N−1
∏

i=0

〈L|pmi
(x)〉

N−1
∏

i=0

〈M |pni−mi
(x)〉

)

and

〈L1 · · ·Ld|pn(x)〉

=
∑

0≤m(d−1)�bn

. . .
∑

0≤m(1)�bm
(2)

(

N−1
∏

i=0

〈L1|pm(1)
i

(x)〉 · · ·

N−1
∏

i=0

〈Ld|pm(d−1)
i

−m
(d−2)
i

(x)〉

N−1
∏

i=0

〈Ld|pni−m
(d−1)
i

(x)〉

)

.
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