THE AREA OF THE MANDELBROT SET AND ZAGIER'S CONJECTURE

PATRICK F. BRAY AND HIEU D. NGUYEN

ABSTRACT. We prove Zagier's conjecture regarding the 2-adic valuation of the coefficients $\{b_m\}$ that appear in Ewing and Schober's series formula for the area of the Mandelbrot set in the case where $m \equiv 2 \mod 4$.

1. INTRODUCTION

The Mandelbrot set M is defined as the set of complex numbers $c \in \mathbb{C}$ for which the sequence $\{z_n\}$ defined by the recursion

$$z_n = z_{n-1}^2 + c \tag{1}$$

with initial value $z_0 = 0$ remains bounded for all $n \ge 0$. Douady and Hubbard [3] proved that M is connected and Shishikura [11] proved that M has fractal boundary of Hausdorff dimension 2. However, it is unknown whether the boundary of M has positive Lebesgue measure, although Julia sets with positive area are known to exist (Buff and Chéritat [2]).

Ewing and Schober [5] derived a series formula for the area of M by considering its complement, \tilde{M} , inside the Riemann sphere $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, i.e. $\tilde{M} = \overline{\mathbb{C}} - M$. It is known that \tilde{M} is simply connected with mapping radius 1 ([3]). In other words, there exists an analytic homeomorphism

$$\psi(z) = z + \sum_{m=0}^{\infty} b_m z^{-m}$$
(2)

which maps the domain $\Delta = \{z : 1 < |z| \le \infty\} \subset \overline{\mathbb{C}}$ onto \tilde{M} . It follows from the classic result of Gronwall [6] that the area of the Mandelbrot set $M = \overline{\mathbb{C}} - \tilde{M}$ is given by

$$A = \pi \left[1 - \sum_{m=1}^{\infty} m |b_m|^2 \right].$$
 (3)

The arithmetic properties of the coefficients b_m have been studied in depth, first by Jungreis [7], then independently by Levin [8, 9], Bielefeld, Fisher, and Haeseler [1], Ewing and Schober [4, 5], and more recently by Shimauchi [10]. In particular, Ewing and Schober [5] proved the following formula for the coefficients b_m .

Theorem 1 (Ewing-Schober [5]). Suppose $m \leq 2^{n+1} - 3$. Define the set of n-tuples

$$J = \{ \mathbf{j} = (j_1, \dots, j_n) : (2^n - 1)j_1 + \dots + (2^2 - 1)j_{n-1} + (2 - 1)j_n = m + 1 \}$$

and given any $\mathbf{j} \in J$, set

$$\alpha_{\mathbf{j}}(k) := \alpha(k) := \alpha = \frac{m}{2^{n-k+1}} - 2^{k-1}j_1 - 2^{k-2}j_2 - \dots - 2j_{k-1}.$$

Then

$$b_m = -\frac{1}{m} \sum_J \prod_{k=1}^n C_{j_k}(\alpha(k))$$
(4)

where $C_{j_k}(\alpha(k))$ is the binomial coefficient

$$C_{j_k}(\alpha(k)) = \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-(j_k-1))}{j_k!}.$$
(5)

Date: September 2, 2017.

Using formula (4) to compute b_m is impractical as it requires determining the set of tuples J, which is computationally hard. However, since it is known that each b_m is rational and has denominator equal to a power of 2, it is then useful to find a formula for its 2-adic valuation. Towards this end, Levin [8] gave such a formula when m is odd, and Shimauchi [11] established an upper bound valid for all m with equality if and only if m is odd.

Definition 2. Let n be a non-negative integer. We define

(a) $\nu(n)$ to be the 2-adic valuation of n.

(b) s(n) (called the sum-of-digits function) to be the sum of the binary digits of n.

Theorem 3 (Levin [8], Shimauchi [11]). Let m be a non-negative integer. Then

 $-\nu(b_m) \le 2(m+1) - s(2(m+1)) \tag{6}$

Moreover, equality holds precisely when m is odd.

In this paper we prove Zagier's conjecture (see [1]) regarding a formula for the 2-adic valuation of b_m when $m \equiv 2 \mod 4$.

Theorem 4 (Zagier's Conjecture [1]). Suppose $m \equiv 2 \mod 4$. Then

$$-\nu(b_m) = \left\lfloor \frac{2}{3}(m+1) \right\rfloor - s\left(\left\lfloor \frac{2}{3}(m+1) \right\rfloor \right) + \epsilon(m), \tag{7}$$

where

$$\epsilon(m) = \begin{cases} 0, & \text{if } m \equiv 22 \mod 24; \\ 1, & \text{otherwise.} \end{cases}$$
(8)

Our proof relies on determining those tuples $\mathbf{j}_{\max} \in J$ that maximize $V(\mathbf{j}) := -\nu (\prod_{k=1}^{n} C_{j_k}(\alpha(k)))$, i.e., $V(\mathbf{j}) < V(\mathbf{j}_{\max})$ for all $\mathbf{j} \in J$. In particular, we show for $m \equiv 2 \mod 4$ that this largest 2-adic valuation $V(\mathbf{j}_{\max})$ is achieved by exactly one tuple \mathbf{j}_{\max} or else by exactly three tuples \mathbf{j}_{\max} , \mathbf{j}'_{\max} , \mathbf{j}''_{\max} in the special case where $m \equiv 22 \mod 24$. To prove that $V(\mathbf{j}) < V(\mathbf{j}_{\max})$ for all $\mathbf{j} \in J$, we derive lemmas to compare the values of $V(\mathbf{j})$ for different types of tuples. For example, if m = 38, then it holds that

V((2,1,0,2)) < V((0,5,1,1)) < V((0,0,13,0)),

where $\mathbf{j}_{\text{max}} = (0, 0, 13, 0)$. We refer to the chain of tuples

$$(2, 1, 0, 2) \rightarrow (0, 5, 1, 1) \rightarrow \mathbf{j}_{\max}$$

as a set of tuple transformations.

As a result of our comparison lemmas (derived in Sections 2 and 3), we have the result

$$-\nu(b_m) = 1 + V(\mathbf{j}_{\max}). \tag{9}$$

This follows from the fact that the 2-adic valuation of the sum of any number of fractions (whose denominators are powers of 2 and whose numerators are odd) is equal to the largest 2-adic valuation of all the fractions, assuming that there are an odd number of fractions with the same largest 2-adic valuation. It remains to calculate $V(\mathbf{j}_{max})$ in each case, which then establishes Zagier's conjecture.

2. TUPLE TRANSFORMATIONS

We begin with preliminary definitions.

Definition 5. Given
$$\mathbf{j} \in J$$
, define

$$\beta_{\mathbf{j}}(k) := \beta(k) := \beta = 2^{n-k+1}\alpha(k) = m - 2^n j_1 - 2^{n-1} j_2 - \dots - 2^{n-k+2} j_{k-1}$$

and

$$B(k) = \beta(\beta - 2^{n-k+1})(\beta - 2 \cdot 2^{n-k+1}) \cdots (\beta - (j_k - 1) \cdot 2^{n-k+1}).$$

Lemma 6. We have

$$\nu(B(k)) = j_k$$

for $1 \le k \le n - \nu(m)$.

Proof. First, we establish that $\nu(\beta(k)) = \nu(m)$ for $1 \le k \le n - \nu(m)$. This follows from

$$\nu(\beta) = \nu(m - 2^{n}j_{1} - 2^{n-1}j_{2} - \dots - 2^{n-k+2}j_{k-1})$$

= $\nu(m - (2^{n}j_{1} - 2^{n-1}j_{2} - \dots - 2^{n-k+2}j_{k-1}))$
= $\nu(m)$.

which holds since $\nu(2^n j_1 - 2^{n-1} j_2 - \dots - 2^{n-k+2} j_{k-1}) \ge n - k + 2 > \nu(m)$. Then by definition we have $B(k) = \beta(\beta - d^{n-k+1})(\beta - 2d^{n-k+1}) \cdots (\beta - (j_k - 1)d^{n-k+1})$

Taking the 2-adic valuation of both sides and expanding the right-hand side gives

$$\nu(B(k)) = \nu(\beta(\beta - 2^{n-k+1})(\beta - 2 \cdot 2^{n-k+1}) \cdots (\beta - (j_k - 1)2^{n-k+1}))$$

= $\nu(\beta) + \nu(\beta - 2^{n-k+1}) + \nu(\beta - 2 \cdot 2^{n-k+1}) + \cdots + \nu(\beta - (j_k - 1)2^{n-k+1})$

Since $n - k + 1 > \nu(m)$, $\nu(\beta - p \cdot 2^{n-k+1}) = 1$ for all integers p. Thus

$$\nu(\beta) + \nu(\beta - 2^{n-k+1}) + \nu(\beta - 2(2^{n-k+1})) + \dots + \nu(\beta - (j_k - 1)2^{n-k+1}) = 1 + 1 + \dots + 1$$

where there are j_k 1's. Thus, $\nu(B(k)) = j_k$ as desired.

Lemma 7. We have

$$-\nu(C_{j_k}(\alpha(k))) = (n-k+1)j_k - s(j_k)$$
(10)

for $1 \le k \le n - \nu(m)$

 $\mathit{Proof.}$ It is clear from Definition 5 that

$$C_{j_k}(\alpha(k)) = \frac{\alpha(\alpha - 1)(\alpha - 2)\cdots(\alpha - (j_k - 1))}{j_k!}$$

= $\frac{\beta(\beta - 2^{n-k+1})(\beta - 2 \cdot 2^{n-k+1})\cdots(\beta - (j_k - 1)2^{n-k+1})}{2^{j_k(n-k+1)}j_k!}$
= $\frac{B(k)}{2^{j_k(n-k+1)}j_k!}$

and thus

$$-\nu(C_{j_k}(\alpha(k))) = -\nu\left(\frac{B(k)}{2^{j_k(n-k+1)}j_k!}\right)$$

= -(\nu(B(k) - \nu(2^{j_k(n-k+1)}j_k!))
= (n-k+1)j_k + j_k - s(j_k) - \nu(B(k))
= (n-k+1)j_k - s(j_k)

since we have from Lemma 7 that $\nu(B(k)) = j_k$ for $1 \le k \le n - \nu(m)$.

We now consider the case where $k > n - \nu(m)$. Define c(x, y) to be the number of carries performed when summing two non-negative integers x and y in binary. It is a well known result that

$$c(x,y) = s(x) + s(y) - s(x+y)$$

Lemma 8. Let $\mathbf{j} \in J$. Then for $k > n - \nu(m)$, we have

$$-\nu(C_{j_k}(\alpha(k))) = \begin{cases} -c(j_k, -\alpha(k) - 1), & \alpha(k) < 0; \\ -\infty, & 0 \le \alpha(k) \le j_k; \\ c(j_k, \alpha(k) - j_k), & \alpha(k) > j_k. \end{cases}$$
(11)

Proof. First, we demonstrate that $\alpha(k)$ is an integer when $k > n - \nu(m)$. By definition, we have

$$\alpha(k) = \frac{m}{2^{n-k+1}} - 2^{k-1}j_1 - 2^{k-2}j_2 - \dots - 2j_{k-1}.$$

Since $\nu(m) \ge n - k + 1$, it follows that m is divisible by 2^{n-k+1} . Thus, $\frac{m}{2^{n-k+1}}$ is an integer, and since the remaining terms are all integers, $\alpha(k)$ must be an integer as well.

If $\alpha(k) < 0$, we have

$$-\nu(C_{j_k}(\alpha(k))) = -\nu\left(\frac{\alpha(\alpha-1)\dots(\alpha-j_k+1)}{j_k!}\right)$$

= $j_k - s(j_k) - \nu((\alpha-j_k+1)\dots(\alpha-1)\alpha)$
= $j_k - s(j_k) - (\nu((-\alpha-j-k+1)!) - \nu(-\alpha-1))$
= $-s(j_k) - s(-\alpha-1) + s(-\alpha-1+j_k)$
= $-c(j_k, -\alpha-1).$

On the other hand, if $0 \leq \alpha(k)$, then $C_{j_k}(\alpha(k)) = 0$, and therefore $\nu(C_{j_k}) = \infty$. Lastly, if $\alpha(k) > j_k$, then we have

$$-\nu(C_{j_k}(\alpha)) = -\nu\left(\frac{\alpha!}{(\alpha - j_k)!j_k!}\right)$$
$$= \alpha - s(\alpha) - (\alpha - j_k) + s(\alpha - j_k) - j_k + s(j_k)$$
$$= s(j_k) + s(\alpha - j_k) - s(\alpha)$$
$$= c(j_k, \alpha(k) - j_k)$$

as desired.

Definition 9. For convenience, define

$$\gamma(m,k) := \gamma(k) = \begin{cases} -c(j_k, -\alpha(k) - 1), & \alpha(k) < 0; \\ \infty, & 0 \le \alpha(k) \le j_k; \\ c(j_k, \alpha(k) - j_k), & \alpha(k) > j_k, \end{cases}$$
(12)

and for any tuple $\mathbf{j} \in J$, define

$$v(m, \mathbf{j}) = \sum_{k=1}^{n-\nu(m)} \left[(n-k+1)j_k - s(j_k) \right]$$
(13)

and

$$V(m, \mathbf{j}) := V(\mathbf{j}) = -\nu \left(\prod_{k=1}^{n} C_{j_k}(\alpha(k))\right).$$
(14)

In the case where $m \equiv 2 \mod 4$ so that $\nu(m) = 1$, we shall simply write

$$v(\mathbf{j}) := v(m, \mathbf{j}) = \sum_{k=1}^{n-1} [(n-k+1)j_k - s(j_k)].$$
(15)

The next lemma follows immediately from Definition 9 and Lemmas 7 and 8.

Lemma 10. We have

$$V(\mathbf{j}) = v(m, \mathbf{j}) + \sum_{k=n-\nu(m)+1}^{n} \gamma(k)$$

hen

and in particular if $m \equiv 2 \mod 4$, then

$$V(\mathbf{j}) = v(\mathbf{j}) + \gamma(n). \tag{16}$$

We now consider tuple transformations that allow us to compare $v(m, \mathbf{j})$ for different types of tuples. **Lemma 11.** Suppose $\nu(m) \ge 1$. Let \mathbf{j} be a J-tuple and $i < n - \nu(m)$ be such that $j_i \ne 0$. Define the tuple $\mathbf{j}' = (j'_1, \ldots, j'_n)$ by

$$j'_{k} = \begin{cases} j_{k}, & k \neq i, i+1, n \\ j_{i} - r, & k = i \\ j_{i+1} + p, & k = i+1 \\ j_{n} + q, & k = n \end{cases}$$

where r is the largest power of 2 less than j_i , and p and q satisfy

$$(2^{n-i} - 1)p + q = (2^{n-i+1} - 1)r$$
(17)

with $q < 2^{n-i} - 1$. Then

$$v(m, \mathbf{j}) < v(m, \mathbf{j}').$$

Proof. It is clear that p and q exist by Euclid's Division Theorem. Then since $j_k = j'_k$ for all $k \neq i, i + 1, n$, the corresponding terms will cancel when we compute the difference $v(\mathbf{j}') - v(\mathbf{j})$. If i < n - 2, then

$$v(m, \mathbf{j}') - v(m, \mathbf{j}) = (n - i)p - (n - i + 1)r + s(j_i) - s(j_i - r) + s(j_{i+1}) - s(j_{i+1} + p)$$

$$\geq (n - i)p - (n - i + 1)r + 1 - s(p)$$

$$\geq \frac{n - i - 1}{2}p - \frac{n - i + 1}{2} - \lceil \log_2(p) \rceil$$

$$\geq 0$$

since r < (p+1)/2 and $p \ge 2$. The remaining case, i = n - 2, can be easily proven by similar means.

Observe that we can apply Lemma 11 repeatedly to transform any tuple $\mathbf{j} \in J$ containing a non-zero element j_i , $1 \leq i \leq n - \nu(m)$, to a tuple $\mathbf{j}' \in J$ with $j'_i = 0$. Thus, any tuple $\mathbf{j} \in J$ can be transformed to a tuple \mathbf{j}' , where all elements $j'_i = 0$ except for $i \geq n - \nu(m)$, with $v(\mathbf{j}) < v(\mathbf{j}')$. We will make use of this fact later on.

Lemma 12. Let **j** be a *J*-tuple where $j_n > 2$, and **j**' be the tuple such that

$$j'_{k} = \begin{cases} j_{k}, & 1 \le k \le n - \nu(m) - 1; \\ j_{n-\nu(m)} + p, & k = n - \nu(m); \\ 0, & n - \nu(m) < k < n; \\ \sum_{k=n-\nu(m)+1}^{n} (2^{n-k+1} - 1)j_{k} - (2^{\nu(m)+1} - 1)p, & k = n, \end{cases}$$

where p is chosen to be as largest as possible so that $j'_n < 2^{\nu(m)+1} - 1$. Then

$$v(m, \mathbf{j}) < v(m, \mathbf{j}')$$

Proof. We have that

$$\begin{aligned} v(m, \mathbf{j}') - v(m, \mathbf{j}) &= (n - \nu(m) + 1)(j_{n-\nu(m)} + p) - s(j_{n-\nu(m)} + p) \\ &- (n - \nu(m) + 1)j_{n-\nu(m)} + s(j_{n-\nu(m)}) \\ &= (n - \nu(m) + 1)p + s(j_{n-\nu(m)}) - s(j_{n-\nu(m)} + p) \\ &= (n - \nu(m) + 1)p + c(j_{n-\nu(m)}, p) - s(p) \\ &\geq (n - \nu(m) + 1)p - s(p) \\ &\geq 0. \end{aligned}$$

In particular, when $m \equiv 2 \mod 4$, Lemma 12 allows us to transform a tuple $\mathbf{j} \in J$, whose elements are all zero except for j_{n-1} and $j_n > 2$, to a tuple $\mathbf{j}' \in J$, whose elements are also all zero but with $j'_n \leq 2$, so that $v(\mathbf{j}) < v(\mathbf{j}')$.

3. ZAGIER'S CONJECTURE

In this section we prove Zagier's conjecture for the case where $m \equiv 2 \mod 4$, which we assume throughout this section. In order to do this, we first derive additional lemmas that allow us to compare $V(\mathbf{j})$ for the tuple transformations described in the previous section.

Lemma 13. If $m + 1 \equiv 0 \mod 3$, then $V(\mathbf{j}) < V(\mathbf{j'})$ for all $\mathbf{j} \neq \mathbf{j'}$, where $\mathbf{j'} = (0, 0, \dots, \frac{m+1}{3}, 0)$.

Proof. By Lemmas 11 and 12, we can transform **j** to a tuple **j**' so that $j'_i = 0$ for all i < n-1 since $\nu(m) = 1$. Moreover, $j'_{n-1} = (m+1)/3$ and $j'_n = 0$ since $m+1 \equiv 0 \mod 3$. It follows that

$$V(\mathbf{j}) = \sum_{k=1}^{n-1} [(n-k+1)j_k - s(j_k)] - c(j_n, -\alpha(n) - 1)$$

$$\leq \sum_{k=1}^{n-1} [(n-k+1)j_k - s(j_k)]] = v(\mathbf{j})$$

$$< v(\mathbf{j}') = V(\mathbf{j}')$$

since $c(j'_n, -\alpha'(n) - 1) = 0$ due to Lemma 10.

Lemma 14. If $m + 1 \equiv 1 \mod 3$, then $V(\mathbf{j}) < V(\mathbf{j}')$ for all $\mathbf{j} \neq \mathbf{j}'$, where $\mathbf{j}' = (0, 0, \dots, \frac{m}{3}, 1)$.

Proof. We have $V(\mathbf{j}) < V(\mathbf{j}')$ by the same reasoning as in the previous lemma.

Lemma 15. If $m + 1 \equiv 2 \mod 3$ and $m \equiv 2 \mod 8$, then $V(\mathbf{j}) < V(\mathbf{j}')$ for all $\mathbf{j} \neq \mathbf{j}'$, where $\mathbf{j}' = (0, 0, \dots, \frac{m-1}{3}, 2)$.

Proof. Again, such a tuple \mathbf{j}' exists because of Lemmas 11 and 12. We first determine the binary representation of $-\alpha(n) - 1$. Since

$$-\alpha(n) - 1 = -\frac{j_n - (1 + j_1 + \dots + j_{n-1})}{2} - 1$$
$$= -\frac{1 - \frac{m-1}{3}}{2} - 1$$
$$= \frac{\frac{m-1}{3} - 1}{2} - 1$$
$$= \frac{\frac{m-1}{3} - 3}{2}$$
$$= \frac{m - 10}{6}$$

and $m \equiv 2 \mod 8$ by assumption, it follows that $-\alpha(n) - 1$ has binary representation $b_n \cdots b_3 100$. It follows that $c(2, -\alpha(n) - 1) = 0$ and thus $V(\mathbf{j}') = v(\mathbf{j}')$ by Lemma 10. Moreover, we have

$$V(\mathbf{j}') = \sum_{k=1}^{n-1} [(n-k+1)j_k - s(j_k)] - c(j_n, -\alpha(n) - 1)$$

= $\frac{2(m-1)}{3} - s\left(\frac{m-1}{3}\right) - c(2, -\alpha(n) - 1)$
= $\frac{2(m-1)}{3} - s\left(\frac{2(m-1)}{3}\right).$

It remains to be shown that $V(\mathbf{j}) < V(\mathbf{j}')$ for all $\mathbf{j} \neq \mathbf{j}'$. This follows from

$$V(\mathbf{j}) = \sum_{k=1}^{n-1} [(n-k+1)j_k - s(j_k)] - c(j_n, -\alpha(n) - 1)$$

$$\leq \sum_{k=1}^{n-1} [(n-k+1)j_k - s(j_k)]] = v(\mathbf{j})$$

$$< v(\mathbf{j}') = V(\mathbf{j}').$$

This proves the lemma.

In order to handle the case $m + 1 \equiv 2 \mod 3$ and $m \equiv 6 \mod 8$ (or equivalently $m \equiv 22 \mod 24$), we will need the following lemma. First, we define the following three special tuples, which exist for this case:

$$\mathbf{j}' = (0, 0, \dots, \frac{m-1}{3}, 2)$$
$$\mathbf{j}'' = (0, 0, \dots, \frac{m-1}{3} - 1, 5)$$
$$\mathbf{j}''' = (0, 0, \dots, 1, \frac{m-1}{3} - 2, 1).$$

Lemma 16. Suppose $m + 1 \equiv 2 \mod 3$ and $m \equiv 6 \mod 8$. Then for all $\mathbf{j} \notin {\mathbf{j}', \mathbf{j}'', \mathbf{j}'''}$, we have

$$V(\mathbf{j}) < V(\mathbf{j}''').$$

Proof. Since $\alpha_{\mathbf{j}'''}(n)$ is odd and $j_n''' = 1$, we have $c(j_n''', -\alpha(n) - 1) = 0$ and thus $V(\mathbf{j}) = v(\mathbf{j})$. Moreover, we have

$$V(\mathbf{j}''') = \sum_{k=1}^{n-1} [(n-k+1)j_k'' - s(j_k'')] - c(j_n'', -\alpha(n) - 1)$$

= $3 \cdot 1 - s(1) + \frac{2(m-7)}{3} - s\left(\frac{m-7}{3}\right)$
= $\frac{2(m-1)}{3} - 2 - s\left(\frac{m-1}{3} - 2\right)$
= $\frac{2(m-1)}{3} - s\left(\frac{m-1}{3}\right) - 1.$

Thus, it suffices to show that $v(\mathbf{j}) < v(\mathbf{j}'')$ since this will imply $V(\mathbf{j}) \leq v(\mathbf{j}) < v(\mathbf{j}') = V(\mathbf{j}')$. Note that for any tuple \mathbf{j} containing an element $j_i \neq 0$ such that $1 \leq i \leq n-3$, we have $v(\mathbf{j}) < v(\mathbf{g})$ for some tuple \mathbf{g} with $g_i = 0$ for all $1 \leq i \leq n-3$ and $g_{n-2} = 2^k$ for some k. To construct such a tuple \mathbf{g} , we simply apply the tuple transformation in Lemma 11 repeatedly.

We now consider 3 cases. First, if $\mathbf{g} = \mathbf{j}'''$, then the theorem holds trivially. If $g_{n-2} > 1$, we proceed in two steps. Let $7(g_{n-2} - 1) = 3p + q$ where q < 3, and let \mathbf{g}' be such that

$$g'_i = 0$$
 for $1 \le i \le n - 3$
 $g'_{n-2} = 1$
 $g'_{n-1} = g_{n-1} + p$
 $g'_n = g_n + q.$

Then we have

$$\begin{aligned} v(\mathbf{g}') - v(\mathbf{g}) &= 2 + 2(g_{n-1} + p) - s(g_{n+1} + p) - 3g_{n-2} + 1 - 2g_{n-1} + s(g_{n-1}) \\ &\geq 2p - 3g_{n-2} - \lceil \log_2(p) \rceil + 3 \\ &\geq \frac{11p}{7} - \lceil \log_2(p) \rceil + \frac{12}{7} \\ &> 0. \end{aligned}$$

Then applying Lemma 12 to \mathbf{g}' completes the proof for this case. If $g_{n-2} = 0$, then we proceed as follows. Let $\frac{m-1}{3} = g_{n-1} + p$. Note that because $\mathbf{g} \notin \{\mathbf{j}', \mathbf{j}'', \mathbf{j}'''\}$, we have $p \ge 2$. Thus,

$$v(\mathbf{j}''') - v(\mathbf{g}) = 2(g_{n-1} + p) - s(g_{n-1} + p) - 1 - 2g_{n-1} + s(g_{n-1})$$

$$\geq 2p - 1 - s(p)$$

$$> 0.$$

This completes the proof.

Lemma 17. If $m + 1 \equiv 2 \mod 3$ and $m \equiv 46 \mod 48$, then $V(\mathbf{j}) < V(\mathbf{j}''')$ for all $\mathbf{j} \neq \mathbf{j}'$, where $\mathbf{j}''' = (0, 0, \dots, 1, \frac{m-7}{3}, 1)$.

Proof. In light of Lemma 16, it suffices to prove that $V(\mathbf{j}') < V(\mathbf{j}'')$ and $V(\mathbf{j}'') < V(\mathbf{j}''')$. We first consider \mathbf{j}' . We have

$$\alpha_{\mathbf{j}''}(n) = m/2 - 2^{n-1}j_1 - 2^{n-2}j_2 - \dots - 2j_{n-1}$$

= m/2 - 2(m-1)/3 = (4-m)/6,

which implies $-\alpha(n) - 1 = (m - 10)/6$ has binary expansion $b_n \dots b_3 110$. Thus, $c(j'_n, -\alpha(n) - 1) > 0$ since $j'_n = 2$. It follows that

$$V(\mathbf{j}') = \sum_{k=1}^{n-1} [(n-k+1)j'_k - s(j'_k)] - c(j'_n, -\alpha(n) - 1)$$

$$< \sum_{k=1}^{n-1} [(n-k+1)j'_k - s(j'_k)]$$

$$= \frac{2(m-1)}{3} - s\left(\frac{m-1}{3}\right)$$

$$= \frac{2(m-1)}{3} - 2 - s\left(\frac{m-1}{3} - 2\right)$$

$$= \frac{2(m-1)}{3} - s\left(\frac{m-1}{3}\right) - 1$$

$$= V(\mathbf{j}''').$$

As for $\mathbf{j}'',$ we have $c(j_n'',-\alpha(n)-1)>0$ since $j_n''=5$ and

$$\alpha_{\mathbf{j}''}(n) = m/2 - 2^{n-1}j_1 - 2^{n-2}j_2 - \dots - 2j_{n-1}$$

= m/2 - 2(m-4)/3 = (16 - m)/6,

which implies $-\alpha(n) - 1 = (m - 22)/6$ has binary expansion $b_n \dots b_3 100$. It follows that

$$V(\mathbf{j}') = \sum_{k=1}^{n-1} [(n-k+1)j'_k - s(j'_k)] - c(j'_n, -\alpha(n) - 1)$$

$$< \sum_{k=1}^{n-1} [(n-k+1)j'_k - s(j'_k)]$$

$$= \frac{2(m-4)}{3} - s\left(\frac{m-4}{3}\right)$$

$$= \frac{2(m-1)}{3} - 2 - s\left(\frac{m-1}{3} - 1\right)$$

$$= \frac{2(m-1)}{3} - s\left(\frac{m-1}{3}\right) - 1$$

$$= V(\mathbf{j}''').$$

This completes the proof.

Lemma 18. If $m + 1 \equiv 2 \mod 3$ and $m \equiv 22 \mod 48$, then

$$V(\mathbf{j}) < V(\mathbf{j}')$$

for all $\mathbf{j} \notin {\mathbf{j}', \mathbf{j}'', \mathbf{j}'''}$. Moreover,

$$V(\mathbf{j}') = V(\mathbf{j}'') = V(\mathbf{j}''') = \frac{2(m-1)}{3} - s\left(\frac{2(m-1)}{3}\right) - 1.$$

Proof. Again, in light of Lemma 16, it suffices to prove that $V(\mathbf{j}') = V(\mathbf{j}'') = V(\mathbf{j}'')$. Write m = 48q + 22 for $q \in \mathbb{N}$ and so that the elements of $\mathbf{j}', \mathbf{j}''$, and \mathbf{j}''' take the form

$$j'_{i} = \begin{cases} 0, & 1 \le i \le n-3\\ 1, & i = n-2\\ 16q+5 & i = n-1\\ 1 & i = n, \end{cases}$$
(18)

$$j_i'' = \begin{cases} 0, & 1 \le i \le n-3\\ 0, & i = n-2\\ 16q+7 & i = n-1\\ 2 & i = n, \end{cases}$$
(19)

and

$$j_i^{\prime\prime\prime} = \begin{cases} 0, & 1 \le i \le n-3\\ 0, & i = n-2\\ 16q+6 & i = n-1\\ 5 & i = n, \end{cases}$$
(20)

It is straightforward to show that

$$\begin{split} \alpha_{\mathbf{j}}(n) &= -(8q+3) < 0 \\ \alpha_{\mathbf{j}'}(n) &= -(8q+3) < 0 \\ \alpha_{\mathbf{j}''}(n) &= -(8q+1) < 0. \end{split}$$

Then

$$V(\mathbf{j}') = 3j'_{n-2} - s(j'_{n-2}) + 2j'_{n-1} - s(j'_{n-1}) - c(j_n, -\alpha_{\mathbf{j}'}(n) - 1)$$

= 3(1) - s(1) + 2(16q + 5) - s(16q + 5) - c(1, 8q + 2)
= 32q + 12 - s(q) - s(5)
= 32q + 10 - s(q).

Similarly,

$$V(\mathbf{j}'') = 3j_{n-2}'' - s(j_{n-2}'') + 2j_{n-1}'' - s(j_{n-1}'') - c(j_n'', -\alpha_{\mathbf{j}''}(n) - 1)$$

= 3(0) - s(0) + 2(16q + 7) - s(16q + 7) - c(2, 8q + 2)
= 32q + 14 - s(q) - s(7) - c(2, 8q + 2)
= 32q + 10 - s(q)

and

$$V(\mathbf{j}''') = 3j_{n-2}''' - s(j_{n-2}'') + 2j_{n-1}'' - s(j_{n-1}'') - c(j_n''', -\alpha_{\mathbf{j}'''}(n) - 1)$$

= 3(0) - s(0) + 2(16q + 6) - s(16q + 6) - c(5, 8q)
= 32q + 12 - s(q) - s(6) - c(5, 8q)
= 32q + 10 - s(q).

Thus, $V(\mathbf{j'}) = V(\mathbf{j''}) = V(\mathbf{j'''}).$

The following theorem summarizes the form of the maximum tuple
$$\mathbf{j}_{\text{max}}$$
 for the case $m \equiv 2 \mod 4$.

Theorem 19. Suppose $m \equiv 2 \mod 4$. The maximum tuple \mathbf{j}_{max} occurs in the following form:

- (1) If $m + 1 \equiv 0 \mod 3$, then $\mathbf{j}_{\max} = (0, ..., 0, p, 0)$ where p = (m + 1)/3.
- (2) if $m + 1 \equiv 1 \mod 3$, then $\mathbf{j}_{\max} = (0, ..., 0, p, 1)$ where p = m/3.
- (3) If $m + 1 \equiv 2 \mod 3$ and
 - (a) If $m \equiv 2 \mod 8$, then $\mathbf{j}_{\max} = (0, ..., 0, p, 2)$ where p = (m-1)/3.
 - (b) If $m \equiv 46 \mod 48$, then $\mathbf{j}_{\max} = (0, ..., 1, p 2, 1)$ where p = (m 1)/3.

(c) If
$$m \equiv 22 \mod 48$$
, then
 $\mathbf{j}_{\max} = (0, ..., 1, (m-7)/3, 1), (0, ..., 0, (m-1)/3, 2), (0, ..., 0, (m-4)/3, 5)$

We now have all the necessary ingredients to prove Zagier's conjecture.

Proof of Theorem 4 (Zagier's Conjecture): We divide the proof into the following cases:

(1) $m + 1 \equiv 0 \mod 3$. (2) $m + 1 \equiv 1 \mod 3$. (3) $m + 1 \equiv 2 \mod 3$ and (a) $m \equiv 2 \mod 8$. (b) $m \equiv 46 \mod 48$. (c) $m \equiv 22 \mod 48$.

Case (1): Write m + 1 = 3p for some positive integer p. Since $m \equiv 2 \mod 4$, it follows that $3p - 1 \equiv 2 \mod 4$ and so $p \equiv 1 \mod 4$. Now, recall that $\mathbf{j}_{\max} = (j_{n-1}, j_n) = (p, 0)$, we have $\alpha(n) = -(1+p)/2$. Then using the relation

$$c(j_n, -\alpha(n) - 1) = s_{(j_n)} + s(-\alpha(n) - 1) - s(j_n - \alpha(n) - 1),$$

we have

$$\begin{aligned} -\nu(b_{2,m}) &= \nu(m) + \sum_{k=1}^{n-1} [(n-k+1)j_k - s(j_k)] - s(j_n) - s(-\alpha(n)-1) + s(j_n - \alpha(n)-1) \\ &= 1 + 2j_{n-1} - s(j_{n-1}) \\ &= 1 + 2p - s(p) \\ &= 1 + 2p - s(2p) \\ &= 1 + \lfloor 2p \rfloor - s(\lfloor 2p \rfloor) \\ &= \epsilon(m) + \lfloor \frac{2}{3}(m+1) \rfloor - s\left(\lfloor \frac{2}{3}(m+1) \rfloor \right). \end{aligned}$$

Case (2): Write m + 1 = 3p + 1 for some positive integer p. Since $m \equiv 2 \mod 4$, it follows that $3p \equiv 2 \mod 4$ and so $p \equiv 2 \mod 4$. Since in this case $\mathbf{j}_{\max} = (j_{n-1}, j_n) = (p, 1)$, we have $\alpha(n) = -p/2$. It follows that

$$\begin{aligned} -\nu(b_{2,m}) &= \nu(m) + \sum_{k=n-1}^{n-1} \left[(n-k+1)j_k - s(j_k) \right] - s(j_n) - s(-\alpha(n)-1) + s(j_n - \alpha(n)-1) \\ &= 1 + 2j_{n-1} - s(j_{n-1}) - s(j_n) - s(p/2 - 1) + s(j_n + p/2 - 1) \\ &= 1 + 2p - s(p) - 1 - s((p-2)/2) + s(p/2) \\ &= 2p - s(p-2) \\ &= 1 + 2p - s(p) \\ &= 1 + 2p - s(2p) \\ &= 1 + \lfloor 2p + 2/3 \rfloor - s(\lfloor 2p + 2/3 \rfloor) \\ &= \epsilon(m) + \left\lfloor \frac{2}{3}(m+1) \right\rfloor - s\left(\lfloor \frac{2}{3}(m+1) \rfloor \right). \end{aligned}$$

Case (3)-(a): Write m+1 = 3p+2 for some positive integer p. Since $m \equiv 2 \mod 8$, it follows that $3p+1 \equiv 2 \mod 8$ and so $p \equiv 3 \mod 8$. Thus, p has binary representation $b_r \dots b_3 011$. Since $\mathbf{j}_{\max} = (j_{n-1}, j_n) = (p, 2)$,

we have $\alpha(n) = (1-p)/2$. It follows that

$$-\nu(b_{2,m}) = \nu(m) + \sum_{k=n-1}^{n-1} \left[(n-k+1)j_k - s(j_k) \right] - s(j_n) - s(-\alpha(n)-1) + s(j_n - \alpha(n)-1)$$

= 1 + 2j_{n-1} - s(j_{n-1}) - s(j_n) - s((p-1)/2 - 1) + s(j_n + (p-1)/2 - 1)
= 1 + 2p - s(p) - s(2) - s((p-3)/2) + s((p+1)/2)
= 2p - s(p) - s(p-3) + s(p+1)
= 2p - s(p) + s(4)
= 1 + (2p+1) - s(2p+1)
= 1 + [2p + 4/3] - s([2p + 4/3])
= \epsilon(m) + \left\lfloor \frac{2}{3}(m+1) \right\rfloor - s\left(\left\lfloor \frac{2}{3}(m+1) \right\rfloor \right).

Case (3)-(b): Write m + 1 = 3p + 2 for some positive integer p. Since $m \equiv 46 \mod 48$, it follows that $3p + 1 \equiv 46 \mod 48$ and so $p \equiv 15 \mod 48$. Thus, p has binary representation $b_r \dots b_5 1111$. Since $\mathbf{j}_{\max} = (j_{n-1}, j_n) = (1, p - 2, 1)$, we have $\alpha(n) = (1 - p)/2$. It follows that

$$\begin{aligned} -\nu(b_{2,m}) &= \nu(m) + \sum_{k=n-1}^{n-1} \left[(n-k+1)j_k - s(j_k) \right] - s(j_n) - s(-\alpha(n)-1) + s(j_n - \alpha(n)-1) \\ &= 1 + 3j_{n-2} - s(j_{n-2}) + 2j_{n-1} - s(j_{n-1}) - s(j_n) - s((p-1)/2 - 1) + s(j_n + (p-1)/2 - 1) \\ &= 1 + 3 \cdot 1 - s(1) + 2(p-2) - s(p-2) - s(1) - s((p-3)/2) + s((p-1)/2) \\ &= 2p - 2 - s(p-2) - s(p-3) + s(p-1) \\ &= 2p - 2 - (s(p) - s(2)) - (s(p) - s(3)) + (s(p) - s(1)) \\ &= 2p - s(p) \\ &= 2p + 1 - s(2p + 1) \\ &= 0 + \lfloor 2p + 4/3 \rfloor - s(\lfloor 2p + 4/3 \rfloor) \\ &= \epsilon(m) + \lfloor \frac{2}{3}(m+1) \rfloor - s\left(\lfloor \frac{2}{3}(m+1) \rfloor \right). \end{aligned}$$

Here, $\epsilon(m) = 0$ since $m = 2m_0$, where $m_0 \equiv -1 \mod 12$.

Case (3)-(c): Write m + 1 = 3p + 2 for some positive integer p. Since $m \equiv 22 \mod 48$, it follows that $3p + 1 \equiv 22 \mod 48$ and so $p \equiv 7 \mod 48$. In this case $\mathbf{j}_{\max} = (j_{n-2}, j_{n-1}, j_n) = (1, p - 2, 1)$ and thus the same argument applies as in Case (3)-(b). This completes the proof of Zagier's conjecture.

References

- [1] B. Bielefeld, Y. Fisher and F. Haeseler, Computing the Laurent series of the map $\Psi : \mathbb{C} \overline{D} \to \mathbb{C} M$, Adv. Appl. Math. 14 (1993), 25–38.
- [2] X. Buff and A. Chéritat, Quadratic Julia sets with positive area, Annals of Math. 176 (2012), No. 2, 673-746.
- [3] A. Douady and J. Hubbard, Iteration des polynomes quadratiques complexes, C.R. Acad. Sci. Paris, 294 (1982), 123–126.
- [4] J. Ewing and G. Schober, On the Coefficients of the Mapping to the Exterior of the Mandelbrot set, Michigan Math. J., 37 (1990), 315–320.
- [5] J. Ewing and G. Schober, The area of the Mandelbrot set, Numerische Mathematik, 61 (1992), 59-72.
- [6] T. H. Gronwall, Some remarks on conformal representation, Annals of Math., 16 (1914-15), 72–76.
- [7] I. Jungreis, The uniformization of the complement of the Mandelbrot set, Duke Math. J., 52 (1985), 935–938.
- [8] G. M. Levin, Theory of iterations of polynomial families in the complex plane, Teor. Funktsii Funktsional. Anal. i Prilozhen 51 (1989), 94-106 (Russian), English translation in J. Soviet Math. 52 (1990), 3512-5322.
- [9] G. M. Levin, On the Laurent coefficients of the Riemann map for the complement of the Mandelbrot set, arXiv:1401.5422.
- [10] H. Shimauchi, A remark on Zagier's observation of the Mandelbrot set, Osaka J. Math. 52 (2015), 737-746.
- [11] M. Shishikura, The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Ann. Math. 147 (1998) 225-267.