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THE AREA OF THE MANDELBROT SET AND ZAGIER’S CONJECTURE

PATRICK F. BRAY AND HIEU D. NGUYEN

Abstract. We prove Zagier’s conjecture regarding the 2-adic valuation of the coefficients {bm} that appear
in Ewing and Schober’s series formula for the area of the Mandelbrot set in the case where m ≡ 2 mod 4.

1. Introduction

The Mandelbrot setM is defined as the set of complex numbers c ∈ C for which the sequence {zn} defined
by the recursion

zn = z2n−1 + c (1)

with initial value z0 = 0 remains bounded for all n ≥ 0. Douady and Hubbard [3] proved thatM is connected
and Shishikura [11] proved that M has fractal boundary of Hausdorff dimension 2. However, it is unknown
whether the boundary ofM has positive Lebesgue measure, although Julia sets with positive area are known
to exist (Buff and Chéritat [2]).

Ewing and Schober [5] derived a series formula for the area ofM by considering its complement, M̃ , inside

the Riemann sphere C = C ∪ {∞}, i.e. M̃ = C−M . It is known that M̃ is simply connected with mapping
radius 1 ([3]). In other words, there exists an analytic homeomorphism

ψ(z) = z +

∞
∑

m=0

bmz
−m (2)

which maps the domain ∆ = {z : 1 < |z| ≤ ∞} ⊂ C onto M̃ . It follows from the classic result of Gronwall

[6] that the area of the Mandelbrot set M = C− M̃ is given by

A = π

[

1−
∞
∑

m=1

m|bm|2

]

. (3)

The arithmetic properties of the coefficients bm have been studied in depth, first by Jungreis [7], then
independently by Levin [8, 9], Bielefeld, Fisher, and Haeseler [1], Ewing and Schober [4, 5], and more recently
by Shimauchi [10]. In particular, Ewing and Schober [5] proved the following formula for the coefficients bm.

Theorem 1 (Ewing-Schober [5]). Suppose m ≤ 2n+1 − 3. Define the set of n-tuples

J = {j = (j1, . . . , jn) : (2
n − 1)j1 + . . .+ (22 − 1)jn−1 + (2− 1)jn = m+ 1}

and given any j ∈ J , set

αj(k) := α(k) := α =
m

2n−k+1
− 2k−1j1 − 2k−2j2 − . . .− 2jk−1.

Then

bm = −
1

m

∑

J

n
∏

k=1

Cjk(α(k)) (4)

where Cjk (α(k)) is the binomial coefficient

Cjk (α(k)) =
α(α− 1)(α− 2) · · · (α− (jk − 1))

jk!
. (5)
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Using formula (4) to compute bm is impractical as it requires determining the set of tuples J , which is
computationally hard. However, since it is known that each bm is rational and has denominator equal to a
power of 2, it is then useful to find a formula for its 2-adic valuation. Towards this end, Levin [8] gave such
a formula when m is odd, and Shimauchi [11] established an upper bound valid for all m with equality if
and only if m is odd.

Definition 2. Let n be a non-negative integer. We define
(a) ν(n) to be the 2-adic valuation of n.
(b) s(n) (called the sum-of-digits function) to be the sum of the binary digits of n.

Theorem 3 (Levin [8], Shimauchi [11]). Let m be a non-negative integer. Then

− ν(bm) ≤ 2(m+ 1)− s(2(m+ 1)) (6)

Moreover, equality holds precisely when m is odd.

In this paper we prove Zagier’s conjecture (see [1]) regarding a formula for the 2-adic valuation of bm
when m ≡ 2 mod 4.

Theorem 4 (Zagier’s Conjecture [1]). Suppose m ≡ 2 mod 4. Then

− ν(bm) =
⌊2

3
(m+ 1)

⌋

− s

(

⌊2

3
(m+ 1)

⌋

)

+ ǫ(m), (7)

where

ǫ(m) =

{

0, if m ≡ 22 mod 24;

1, otherwise.
(8)

Our proof relies on determining those tuples jmax ∈ J that maximize V (j) := −ν (
∏n

k=1 Cjk(α(k))), i.e.,
V (j) < V (jmax) for all j ∈ J . In particular, we show for m ≡ 2 mod 4 that this largest 2-adic valuation
V (jmax) is achieved by exactly one tuple jmax or else by exactly three tuples jmax, j

′

max, j
′′

max in the special
case where m ≡ 22 mod 24. To prove that V (j) < V (jmax) for all j ∈ J , we derive lemmas to compare the
values of V (j) for different types of tuples. For example, if m = 38, then it holds that

V ((2, 1, 0, 2)) < V ((0, 5, 1, 1)) < V ((0, 0, 13, 0)),

where jmax = (0, 0, 13, 0). We refer to the chain of tuples

(2, 1, 0, 2) → (0, 5, 1, 1) → jmax

as a set of tuple transformations.
As a result of our comparison lemmas (derived in Sections 2 and 3), we have the result

− ν(bm) = 1 + V (jmax). (9)

This follows from the fact that the 2-adic valuation of the sum of any number of fractions (whose denominators
are powers of 2 and whose numerators are odd) is equal to the largest 2-adic valuation of all the fractions,
assuming that there are an odd number of fractions with the same largest 2-adic valuation. It remains to
calculate V (jmax) in each case, which then establishes Zagier’s conjecture.

2. Tuple Transformations

We begin with preliminary definitions.

Definition 5. Given j ∈ J , define

βj(k) := β(k) := β = 2n−k+1α(k) = m− 2nj1 − 2n−1j2 − · · · − 2n−k+2jk−1

and

B(k) = β(β − 2n−k+1)(β − 2 · 2n−k+1) · · · (β − (jk − 1) · 2n−k+1).

Lemma 6. We have

ν(B(k)) = jk

for 1 ≤ k ≤ n− ν(m).
2



Proof. First, we establish that ν(β(k)) = ν(m) for 1 ≤ k ≤ n− ν(m). This follows from

ν(β) = ν(m− 2nj1 − 2n−1j2 − · · · − 2n−k+2jk−1)

= ν(m− (2nj1 − 2n−1j2 − · · · − 2n−k+2jk−1))

= ν(m),

which holds since ν(2nj1 − 2n−1j2 − · · · − 2n−k+2jk−1) ≥ n− k + 2 > ν(m). Then by definition we have

B(k) = β(β − dn−k+1)(β − 2dn−k+1) · · · (β − (jk − 1)dn−k+1)

Taking the 2-adic valuation of both sides and expanding the right-hand side gives

ν(B(k)) = ν(β(β − 2n−k+1)(β − 2 · 2n−k+1) · · · (β − (jk − 1)2n−k+1))

= ν(β) + ν(β − 2n−k+1) + ν(β − 2 · 2n−k+1) + · · ·+ ν(β − (jk − 1)2n−k+1)

Since n− k + 1 > ν(m), ν(β − p · 2n−k+1) = 1 for all integers p. Thus

ν(β) + ν(β − 2n−k+1) + ν(β − 2(2n−k+1)) + · · ·+ ν(β − (jk − 1)2n−k+1) = 1 + 1 + · · ·+ 1

where there are jk 1’s. Thus, ν(B(k)) = jk as desired. �

Lemma 7. We have
− ν(Cjk (α(k)) = (n− k + 1)jk − s(jk) (10)

for 1 ≤ k ≤ n− ν(m)

Proof. It is clear from Definition 5 that

Cjk(α(k)) =
α(α − 1)(α− 2) · · · (α− (jk − 1))

jk!

=
β(β − 2n−k+1)(β − 2 · 2n−k+1) · · · (β − (jk − 1)2n−k+1)

2jk(n−k+1)jk!

=
B(k)

2jk(n−k+1)jk!

and thus

−ν(Cjk (α(k)) = −ν

(

B(k)

2jk(n−k+1)jk!

)

= −(ν(B(k)− ν(2jk(n−k+1)jk!))

= (n− k + 1)jk + jk − s(jk)− ν(B(k))

= (n− k + 1)jk − s(jk)

since we have from Lemma 7 that ν(B(k)) = jk for 1 ≤ k ≤ n− ν(m). �

We now consider the case where k > n−ν(m). Define c(x, y) to be the number of carries performed when
summing two non-negative integers x and y in binary. It is a well known result that

c(x, y) = s(x) + s(y)− s(x+ y).

Lemma 8. Let j ∈ J . Then for k > n− ν(m), we have

− ν(Cjk (α(k))) =











−c(jk,−α(k)− 1), α(k) < 0;

−∞, 0 ≤ α(k) ≤ jk;

c(jk, α(k)− jk), α(k) > jk.

(11)

Proof. First, we demonstrate that α(k) is an intger when k > n− ν(m). By definition, we have

α(k) =
m

2n−k+1
− 2k−1j1 − 2k−2j2 − . . .− 2jk−1.

Since ν(m) ≥ n− k + 1, it follows that m is divisible by 2n−k+1. Thus, m
2n−k+1 is an integer, and since the

remaining terms are all integers, α(k) must be an integer as well.
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If α(k) < 0, we have

−ν(Cjk (α(k))) = −ν

(

α(α− 1) . . . (α− jk + 1)

jk!

)

= jk − s(jk)− ν((α− jk + 1) . . . (α− 1)α)

= jk − s(jk)− (ν((−α− j − k + 1)!)− ν(−α− 1))

= −s(jk)− s(−α− 1) + s(−α− 1 + jk)

= −c(jk,−α− 1).

On the other hand, if 0 ≤ α(k), then Cjk (α(k)) = 0, and therefore ν(Cjk ) = ∞. Lastly, if α(k) > jk, then
we have

−ν(Cjk(α)) = −ν

(

α!

(α− jk)!jk!

)

= α− s(α)− (α − jk) + s(α− jk)− jk + s(jk)

= s(jk) + s(α− jk)− s(α)

= c(jk, α(k) − jk)

as desired. �

Definition 9. For convenience, define

γ(m, k) := γ(k) =











−c(jk,−α(k)− 1), α(k) < 0;

∞, 0 ≤ α(k) ≤ jk;

c(jk, α(k)− jk), α(k) > jk,

(12)

and for any tuple j ∈ J , define

v(m, j) =

n−ν(m)
∑

k=1

[(n− k + 1)jk − s(jk)] (13)

and

V (m, j) := V (j) = −ν

(

n
∏

k=1

Cjk(α(k))

)

. (14)

In the case where m ≡ 2 mod 4 so that ν(m) = 1, we shall simply write

v(j) := v(m, j) =

n−1
∑

k=1

[(n− k + 1)jk − s(jk)]. (15)

The next lemma follows immediately from Definition 9 and Lemmas 7 and 8.

Lemma 10. We have

V (j) = v(m, j) +

n
∑

k=n−ν(m)+1

γ(k)

and in particular if m ≡ 2 mod 4, then

V (j) = v(j) + γ(n). (16)

We now consider tuple transformations that allow us to compare v(m, j) for different types of tuples.

Lemma 11. Suppose ν(m) ≥ 1. Let j be a J-tuple and i < n − ν(m) be such that ji 6= 0. Define the tuple
j′ = (j′1, . . . , j

′

n) by

j′k =



















jk, k 6= i, i+ 1, n

ji − r, k = i

ji+1 + p, k = i+ 1

jn + q, k = n

4



where r is the largest power of 2 less than ji, and p and q satisfy

(2n−i − 1)p+ q = (2n−i+1 − 1)r (17)

with q < 2n−i − 1. Then

v(m, j) < v(m, j′).

Proof. It is clear that p and q exist by Euclid’s Division Theorem. Then since jk = j′k for all k 6= i, i+ 1, n,
the corresponding terms will cancel when we compute the difference v(j′)− v(j). If i < n− 2, then

v(m, j′)− v(m, j) = (n− i)p− (n− i + 1)r + s(ji)− s(ji − r) + s(ji+1)− s(ji+1 + p)

≥ (n− i)p− (n− i + 1)r + 1− s(p)

>
n− i− 1

2
p−

n− i + 1

2
− ⌈log2(p)⌉

≥ 0

since r < (p+ 1)/2 and p ≥ 2. The remaining case, i = n− 2, can be easily proven by similar means. �

Observe that we can apply Lemma 11 repeatedly to transform any tuple j ∈ J containing a non-zero
element ji, 1 ≤ i ≤ n− ν(m), to a tuple j′ ∈ J with j′i = 0. Thus, any tuple j ∈ J can be transformed to a
tuple j′, where all elements j′i = 0 except for i ≥ n− ν(m), with v(j) < v(j′). We will make use of this fact
later on.

Lemma 12. Let j be a J-tuple where jn > 2, and j′ be the tuple such that

j′k =



















jk, 1 ≤ k ≤ n− ν(m)− 1;

jn−ν(m) + p, k = n− ν(m);

0, n− ν(m) < k < n;
∑n

k=n−ν(m)+1(2
n−k+1 − 1)jk − (2ν(m)+1 − 1)p, k = n,

where p is chosen to be as largest as possible so that j′n < 2ν(m)+1 − 1. Then

v(m, j) < v(m, j′).

Proof. We have that

v(m, j′)− v(m, j) = (n− ν(m) + 1)(jn−ν(m) + p)− s(jn−ν(m) + p)

− (n− ν(m) + 1)jn−ν(m) + s(jn−ν(m))

= (n− ν(m) + 1)p+ s(jn−ν(m))− s(jn−ν(m) + p)

= (n− ν(m) + 1)p+ c(jn−ν(m), p)− s(p)

≥ (n− ν(m) + 1)p− s(p)

> 0.

�

In particular, when m ≡ 2 mod 4, Lemma 12 allows us to transform a tuple j ∈ J , whose elements are
all zero except for jn−1 and jn > 2, to a tuple j′ ∈ J , whose elements are also all zero but with j′n ≤ 2, so
that v(j) < v(j′).

3. Zagier’s Conjecture

In this section we prove Zagier’s conjecture for the case wherem ≡ 2 mod 4, which we assume throughout
this section. In order to do this, we first derive additional lemmas that allow us to compare V (j) for the
tuple transformations described in the previous section.

Lemma 13. If m+ 1 ≡ 0 mod 3, then V (j) < V (j′) for all j 6= j′, where j′ = (0, 0, . . . , m+1
3 , 0).
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Proof. By Lemmas 11 and 12, we can transform j to a tuple j′ so that j′i = 0 for all i < n−1 since ν(m) = 1.
Moreover, j′n−1 = (m+ 1)/3 and j′n = 0 since m+ 1 ≡ 0 mod 3. It follows that

V (j) =
n−1
∑

k=1

[(n− k + 1)jk − s(jk)]− c(jn,−α(n)− 1)

≤
n−1
∑

k=1

[(n− k + 1)jk − s(jk)]] = v(j)

< v(j′) = V (j′)

since c(j′n,−α
′(n)− 1) = 0 due to Lemma 10. �

Lemma 14. If m+ 1 ≡ 1 mod 3, then V (j) < V (j′) for all j 6= j′, where j′ = (0, 0, . . . , m3 , 1).

Proof. We have V (j) < V (j′) by the same reasoning as in the previous lemma. �

Lemma 15. If m + 1 ≡ 2 mod 3 and m ≡ 2 mod 8, then V (j) < V (j′) for all j 6= j′, where j′ =
(0, 0, . . . , m−1

3 , 2).

Proof. Again, such a tuple j′ exists because of Lemmas 11 and 12. We first determine the binary represen-
tation of −α(n)− 1. Since

−α(n)− 1 = −
jn − (1 + j1 + · · ·+ jn−1)

2
− 1

= −
1− m−1

3

2
− 1

=
m−1
3 − 1

2
− 1

=
m−1
3 − 3

2

=
m− 10

6

and m ≡ 2 mod 8 by assumption, it follows that −α(n)−1 has binary representation bn · · · b3100. It follows
that c(2,−α(n)− 1) = 0 and thus V (j′) = v(j′) by Lemma 10. Moreover, we have

V (j′) =

n−1
∑

k=1

[(n− k + 1)jk − s(jk)]− c(jn,−α(n)− 1)

=
2(m− 1)

3
− s

(

m− 1

3

)

− c(2,−α(n)− 1)

=
2(m− 1)

3
− s

(

2(m− 1)

3

)

.

It remains to be shown that V (j) < V (j′) for all j 6= j′. This follows from

V (j) =

n−1
∑

k=1

[(n− k + 1)jk − s(jk)]− c(jn,−α(n)− 1)

≤

n−1
∑

k=1

[(n− k + 1)jk − s(jk)]] = v(j)

< v(j′) = V (j′).

This proves the lemma. �
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In order to handle the case m + 1 ≡ 2 mod 3 and m ≡ 6 mod 8 (or equivalently m ≡ 22 mod 24), we
will need the following lemma. First, we define the following three special tuples, which exist for this case:

j′ = (0, 0, . . . ,
m− 1

3
, 2)

j′′ = (0, 0, . . . ,
m− 1

3
− 1, 5)

j′′′ = (0, 0, . . . , 1,
m− 1

3
− 2, 1).

Lemma 16. Suppose m+ 1 ≡ 2 mod 3 and m ≡ 6 mod 8. Then for all j /∈ {j′, j′′, j′′′}, we have

V (j) < V (j′′′).

Proof. Since αj′′′(n) is odd and j′′′n = 1, we have c(j′′′n ,−α(n)− 1) = 0 and thus V (j) = v(j). Moreover, we
have

V (j′′′) =

n−1
∑

k=1

[(n− k + 1)j′′′k − s(j′′′k )]− c(j′′′n ,−α(n)− 1)

= 3 · 1− s(1) +
2(m− 7)

3
− s

(

m− 7

3

)

=
2(m− 1)

3
− 2− s

(

m− 1

3
− 2

)

=
2(m− 1)

3
− s

(

m− 1

3

)

− 1.

Thus, it suffices to show that v(j) < v(j′′′) since this will imply V (j) ≤ v(j) < v(j′) = V (j′). Note that for
any tuple j containing an element ji 6= 0 such that 1 ≤ i ≤ n− 3, we have v(j) < v(g) for some tuple g with
gi = 0 for all 1 ≤ i ≤ n − 3 and gn−2 = 2k for some k. To construct such a tuple g, we simply apply the
tuple transformation in Lemma 11 repeatedly.

We now consider 3 cases. First, if g = j′′′, then the theorem holds trivially. If gn−2 > 1, we proceed in
two steps. Let 7(gn−2 − 1) = 3p+ q where q < 3, and let g′ be such that

g′i = 0 for 1 ≤ i ≤ n− 3

g′n−2 = 1

g′n−1 = gn−1 + p

g′n = gn + q.

Then we have

v(g′)− v(g) = 2 + 2(gn−1 + p)− s(gn+1 + p)− 3gn−2 + 1− 2gn−1 + s(gn−1)

≥ 2p− 3gn−2 − ⌈log2(p)⌉+ 3

≥
11p

7
− ⌈log2(p)⌉+

12

7
> 0.

Then applying Lemma 12 to g′ completes the proof for this case. If gn−2 = 0, then we proceed as follows.
Let m−1

3 = gn−1 + p. Note that because g /∈ {j′, j′′, j′′′}, we have p ≥ 2. Thus,

v(j′′′)− v(g) = 2(gn−1 + p)− s(gn−1 + p)− 1− 2gn−1 + s(gn−1)

≥ 2p− 1− s(p)

> 0.

This completes the proof. �

Lemma 17. If m + 1 ≡ 2 mod 3 and m ≡ 46 mod 48, then V (j) < V (j′′′) for all j 6= j′, where j′′′ =
(0, 0, . . . , 1, m−7

3 , 1).
7



Proof. In light of Lemma 16, it suffices to prove that V (j′) < V (j′′′) and V (j′′) < V (j′′′). We first consider
j′. We have

αj′′ (n) = m/2− 2n−1j1 − 2n−2j2 − · · · − 2jn−1

= m/2− 2(m− 1)/3 = (4−m)/6,

which implies −α(n)− 1 = (m− 10)/6 has binary expansion bn . . . b3110. Thus, c(j
′

n,−α(n)− 1) > 0 since
j′n = 2. It follows that

V (j′) =

n−1
∑

k=1

[(n− k + 1)j′k − s(j′k)]− c(j′n,−α(n)− 1)

<

n−1
∑

k=1

[(n− k + 1)j′k − s(j′k)]

=
2(m− 1)

3
− s

(

m− 1

3

)

=
2(m− 1)

3
− 2− s

(

m− 1

3
− 2

)

=
2(m− 1)

3
− s

(

m− 1

3

)

− 1

= V (j′′′).

As for j′′, we have c(j′′n ,−α(n)− 1) > 0 since j′′n = 5 and

αj′′ (n) = m/2− 2n−1j1 − 2n−2j2 − · · · − 2jn−1

= m/2− 2(m− 4)/3 = (16−m)/6,

which implies −α(n)− 1 = (m− 22)/6 has binary expansion bn . . . b3100. It follows that

V (j′) =
n−1
∑

k=1

[(n− k + 1)j′k − s(j′k)]− c(j′n,−α(n)− 1)

<
n−1
∑

k=1

[(n− k + 1)j′k − s(j′k)]

=
2(m− 4)

3
− s

(

m− 4

3

)

=
2(m− 1)

3
− 2− s

(

m− 1

3
− 1

)

=
2(m− 1)

3
− s

(

m− 1

3

)

− 1

= V (j′′′).

This completes the proof.
�

Lemma 18. If m+ 1 ≡ 2 mod 3 and m ≡ 22 mod 48, then

V (j) < V (j′)

for all j /∈ {j′, j′′, j′′′}. Moreover,

V (j′) = V (j′′) = V (j′′′) =
2(m− 1)

3
− s

(

2(m− 1)

3

)

− 1.

8



Proof. Again, in light of Lemma 16, it suffices to prove that V (j′) = V (j′′) = V (j′′′). Write m = 48q + 22
for q ∈ N and so that the elements of j′, j′′, and j′′′ take the form

j′i =



















0, 1 ≤ i ≤ n− 3

1, i = n− 2

16q + 5 i = n− 1

1 i = n,

(18)

j′′i =



















0, 1 ≤ i ≤ n− 3

0, i = n− 2

16q + 7 i = n− 1

2 i = n,

(19)

and

j′′′i =



















0, 1 ≤ i ≤ n− 3

0, i = n− 2

16q + 6 i = n− 1

5 i = n,

(20)

It is straightforward to show that

αj(n) = −(8q + 3) < 0

αj′(n) = −(8q + 3) < 0

αj′′ (n) = −(8q + 1) < 0.

Then

V (j′) = 3j′n−2 − s(j′n−2) + 2j′n−1 − s(j′n−1)− c(jn,−αj′(n)− 1)

= 3(1)− s(1) + 2(16q + 5)− s(16q + 5)− c(1, 8q + 2)

= 32q + 12− s(q)− s(5)

= 32q + 10− s(q).

Similarly,

V (j′′) = 3j′′n−2 − s(j′′n−2) + 2j′′n−1 − s(j′′n−1)− c(j′′n,−αj′′(n)− 1)

= 3(0)− s(0) + 2(16q + 7)− s(16q + 7)− c(2, 8q + 2)

= 32q + 14− s(q)− s(7)− c(2, 8q + 2)

= 32q + 10− s(q)

and

V (j′′′) = 3j′′′n−2 − s(j′′′n−2) + 2j′′′n−1 − s(j′′′n−1)− c(j′′′n ,−αj′′′(n)− 1)

= 3(0)− s(0) + 2(16q + 6)− s(16q + 6)− c(5, 8q)

= 32q + 12− s(q)− s(6)− c(5, 8q)

= 32q + 10− s(q).

Thus, V (j′) = V (j′′) = V (j′′′). �

The following theorem summarizes the form of the maximum tuple jmax for the case m ≡ 2 mod 4.

Theorem 19. Suppose m ≡ 2 mod 4. The maximum tuple jmax occurs in the following form:

(1) If m+ 1 ≡ 0 mod 3, then jmax = (0, ..., 0, p, 0) where p = (m+ 1)/3.
(2) if m+ 1 ≡ 1 mod 3, then jmax = (0, ..., 0, p, 1) where p = m/3.
(3) If m+ 1 ≡ 2 mod 3 and

(a) If m ≡ 2 mod 8, then jmax = (0, ..., 0, p, 2) where p = (m− 1)/3.
(b) If m ≡ 46 mod 48, then jmax = (0, ..., 1, p− 2, 1) where p = (m− 1)/3.
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(c) If m ≡ 22 mod 48, then
jmax = (0, ..., 1, (m− 7)/3, 1), (0, ..., 0, (m− 1)/3, 2), (0, . . . , 0, (m− 4)/3, 5).

We now have all the necessary ingredients to prove Zagier’s conjecture.

Proof of Theorem 4 (Zagier’s Conjecture): We divide the proof into the following cases:

(1) m+ 1 ≡ 0 mod 3.
(2) m+ 1 ≡ 1 mod 3.
(3) m+ 1 ≡ 2 mod 3 and

(a) m ≡ 2 mod 8.
(b) m ≡ 46 mod 48.
(c) m ≡ 22 mod 48.

Case (1): Write m + 1 = 3p for some positive integer p. Since m ≡ 2 mod 4, it follows that 3p − 1 ≡ 2
mod 4 and so p ≡ 1 mod 4. Now, recall that jmax = (jn−1, jn) = (p, 0), we have α(n) = −(1 + p)/2. Then
using the relation

c(jn,−α(n)− 1) = s(jn) + s(−α(n)− 1)− s(jn − α(n)− 1),

we have

−ν(b2,m) = ν(m) +

n−1
∑

k=1

[(n− k + 1)jk − s(jk)]− s(jn)− s(−α(n)− 1) + s(jn − α(n)− 1)

= 1 + 2jn−1 − s(jn−1)

= 1 + 2p− s(p)

= 1 + 2p− s(2p)

= 1 + ⌊2p⌋ − s(⌊2p⌋)

= ǫ(m) +

⌊

2

3
(m+ 1)

⌋

− s

(⌊

2

3
(m+ 1)

⌋)

.

Case (2): Write m + 1 = 3p + 1 for some positive integer p. Since m ≡ 2 mod 4, it follows that 3p ≡ 2
mod 4 and so p ≡ 2 mod 4. Since in this case jmax = (jn−1, jn) = (p, 1), we have α(n) = −p/2. It follows
that

−ν(b2,m) = ν(m) +

n−1
∑

k=n−1

[(n− k + 1)jk − s(jk)]− s(jn)− s(−α(n)− 1) + s(jn − α(n)− 1)

= 1 + 2jn−1 − s(jn−1)− s(jn)− s(p/2− 1) + s(jn + p/2− 1)

= 1 + 2p− s(p)− 1− s((p− 2)/2) + s(p/2)

= 2p− s(p− 2)

= 1 + 2p− s(p)

= 1 + 2p− s(2p)

= 1 + ⌊2p+ 2/3⌋ − s(⌊2p+ 2/3⌋)

= ǫ(m) +

⌊

2

3
(m+ 1)

⌋

− s

(⌊

2

3
(m+ 1)

⌋)

.

Case (3)-(a): Write m+1 = 3p+2 for some positive integer p. Since m ≡ 2 mod 8, it follows that 3p+1 ≡ 2
mod 8 and so p ≡ 3 mod 8. Thus, p has binary representation br . . . b3011. Since jmax = (jn−1, jn) = (p, 2),
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we have α(n) = (1− p)/2. It follows that

−ν(b2,m) = ν(m) +

n−1
∑

k=n−1

[(n− k + 1)jk − s(jk)]− s(jn)− s(−α(n)− 1) + s(jn − α(n)− 1)

= 1 + 2jn−1 − s(jn−1)− s(jn)− s((p− 1)/2− 1) + s(jn + (p− 1)/2− 1)

= 1 + 2p− s(p)− s(2)− s((p− 3)/2) + s((p+ 1)/2)

= 2p− s(p)− s(p− 3) + s(p+ 1)

= 2p− s(p) + s(4)

= 1 + (2p+ 1)− s(2p+ 1)

= 1 + ⌊2p+ 4/3⌋ − s(⌊2p+ 4/3⌋)

= ǫ(m) +

⌊

2

3
(m+ 1)

⌋

− s

(⌊

2

3
(m+ 1)

⌋)

.

Case (3)-(b): Write m + 1 = 3p + 2 for some positive integer p. Since m ≡ 46 mod 48, it follows that
3p + 1 ≡ 46 mod 48 and so p ≡ 15 mod 48. Thus, p has binary representation br . . . b51111. Since
jmax = (jn−1, jn) = (1, p− 2, 1), we have α(n) = (1 − p)/2. It follows that

−ν(b2,m) = ν(m) +

n−1
∑

k=n−1

[(n− k + 1)jk − s(jk)]− s(jn)− s(−α(n)− 1) + s(jn − α(n) − 1)

= 1 + 3jn−2 − s(jn−2) + 2jn−1 − s(jn−1)− s(jn)− s((p− 1)/2− 1) + s(jn + (p− 1)/2− 1)

= 1 + 3 · 1− s(1) + 2(p− 2)− s(p− 2)− s(1)− s((p− 3)/2) + s((p− 1)/2)

= 2p− 2− s(p− 2)− s(p− 3) + s(p− 1)

= 2p− 2− (s(p)− s(2))− (s(p)− s(3)) + (s(p)− s(1))

= 2p− s(p)

= 2p+ 1− s(2p+ 1)

= 0 + ⌊2p+ 4/3⌋ − s(⌊2p+ 4/3⌋)

= ǫ(m) +

⌊

2

3
(m+ 1)

⌋

− s

(⌊

2

3
(m+ 1)

⌋)

.

Here, ǫ(m) = 0 since m = 2m0, where m0 ≡ −1 mod 12.

Case (3)-(c): Write m + 1 = 3p + 2 for some positive integer p. Since m ≡ 22 mod 48, it follows that
3p+ 1 ≡ 22 mod 48 and so p ≡ 7 mod 48. In this case jmax = (jn−2, jn−1, jn) = (1, p− 2, 1) and thus the
same argument applies as in Case (3)-(b). This completes the proof of Zagier’s conjecture.

�
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