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Abstract

This paper describes an experimental mathematics project aimed at mining the
Online Encyclopedia of Integer Sequences for new mathematical identities. We discuss
methods used to store, compare and match integer sequences and describe an imple-
mentation using MySQL and Mathematica. A summary of our results is presented,
along with a sample of ten new conjectures that were found, some which we believe to
be new and interesting and some which illustrate how false matches can arise.

1 Introduction

Integer sequences such as the Fibonacci sequence Fn = {0, 1, 1, 2, 3, 5, 8, ...} are fundamental
objects that arise in practically all areas of mathematics and science. A study of their prop-
erties, as expressed through mathematical identities, is important towards making fruitful
connections between these different areas. In the past, mathematical identities were discov-
ered empirically and derived from patterns that were inferred through hand computations,
e.g. Catalan discovered in 1680 that the squares of the Fibonacci numbers satisfy the identity

F 2
n = Fn−1Fn+1 − (−1)n (1)

With the power of modern computers and the Internet, it is now relatively easily to generate
transformations of sequences and identify them using the Online Encyclopedia of Integer
Sequences (OEIS) ([7]), a searchable database containing information on over 200,000 integer
sequences. Originally created by Neil J. A. Sloane in the 1970’s as a handbook, the OEIS is
now widely used by mathematicians and scientists around the world to help them identify
integer sequences; not only does it give a list of initial terms of the sequence, but it also
describes any known properties and connections to other sequences. For example, feeding
the list of entries ‘0,1,1,2,3,5,8’ into the OEIS search engine yields the Fibonacci sequence as
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a match, labeled by record number A000045, and 88 other sequences having the same terms.
One learns from this record in OEIS that the Fibonacci sequence is defined by its well-known
recurrence Fn = Fn−1 +Fn−2 and satisfies many other identities besides (1), another example
being the classic identity

n∑
k=0

Fk = Fn+2 − 1 (2)

However, instead of typing sequences by hand one at a time into OEIS to find matches,
we propose a data mining approach where we automate this process using high-performance
computers. The idea of data mining the OEIS has been proposed as early as 1994 by Liu ([5])
and more recently by Colton [3]. Of course, there have been efforts at developing algorithms
to recognize integers sequences, e.g. Bergeron and Plouffe’s gfun Maple package (see [2]) for
computing the generating function of a given series given the first few terms, or to recognize
certain families of integer sequences, e.g. see [1]. The package gfun is now a part of the
OEIS’s superseeker email server (see [8]), which incorporates a host of software packages to
identity a given sequence, including applying over 120 transformations to determine if they
matches sequences in the OEIS. Users can submit sequences to superseeker by sending an
email message to superseeker@oeis.org. However, superseeker has its disadvantages besides
requiring users to submit requests one at a time: it is not able to match two different
transformations (of possibly different sequences) unless one of them is already stored in the
OEIS. Moreover, it does not use a similarity measure to report the quality of its matches, i.e.
how well two sequences matches. In comparison, what we propose in this paper goes beyond
the standard approach of investigating a particular type of sequence or a small subset of
them and instead seeks to mine the OEIS as a whole using basic data mining techniques to
obtain interesting matches between integer sequences.

This paper describes Project Eureka, an experimental mathematics research project
aimed at mining the OEIS for new mathematical identities. Our approach is to store inte-
ger sequences and their transformations in a database and apply an appropriate similarity
measure to match sequences numerically. For example, such a database would contain not
only the Fibonacci sequence Fn as specified by list A000045S1T1={0, 1, 1, 2, 3, ..., 39088169},
but also many of its transformations, including its partial sums

∑n
k=0 Fk (denoted by T2),

specified by list A000045S1T2={0, 1, 2, 4, 7, ..., 102334154}. We then perform a computer-
automated search of this database where we compare and match entries using a similarity
measure defined later in this paper. As a result, we find that the two lists A000045S1T1
and A000045S1T2 indeed match (more precisely, their first-order differences match); this
translates to identity (2). Our goal is to discover new identities using this approach.

In addition to discussing our methods for storing, comparing, and matching sequences
and outlining an implementation using MySQL and Mathematica, we present a summary of
our results and describe ten experimental conjectures derived from our work, some of which
we believe to be new and interesting and some which illustrate how false matches can arise.
A searchable database containing all of our experimental matches can be accessed on our
Eureka website ([4]).
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2 Matching Integer Sequences

2.1 Similarity Measure

The problem of matching finite integer sequences using an effective similarity measure be-
comes a mathematically interesting one if we take into account how entries are stored in
OEIS, the nature of initial terms in these entries, and the types of identities that we are
searching for:

1. Sequences stored in OEIS vary in length from 4 to 100 terms, e.g. the list for record
A028444 (Busy Beaver sequence) contains only 5 terms, {0, 1, 4, 6, 13}, whereas the list
for record A000045 (Fibonacci sequence) contains 39 terms, {0, 1, 1, 2, 3, ..., 39088169}.

2. Many sequences have the same initial terms 0 and 1.
3. Sequences may be shifts, translations or scalar multiples (or all three) of one another

as illustrated by identity (2).

For example, let us consider two sequences an and bn whose initial terms are given by
the lists

an = {1, 1, 2, 3, 5, 8, 13, 21,34, 55}
bn = {1, 1, 2, 3, 5, 8, 13, 21,47, 55} (3)

Would these two sequences be considered a match even though their lists disagree only at
the 9th position (highlighted in bold) and yet match everywhere else? How about the two
lists

an = {1, 1, 2, 3, 5, 8, 13, 21, 34,55}
cn = {55, 89, 144, 233, 377, 610} (4)

where there is a match of only one term between the two lists, namely 55 (highlighted in
bold), with the tail of cn (last term) matching the head of dn (first term)? Which is the
better match, (3) or (4)? By this we mean the likelihood that two sequences are the same
(modulo a shift in their indices). Or how about a third case where the two lists are

an = {1, 1,2,3,5,8,13,21,34,55}
dn = {2,3,5,8,13,21,34,55, 89, 144, 233} (5)

Which is the best match, (3), (4) or (5)? Assuming that the sequences an, bn, cn, and dn
are increasing and that lists given for them are correct and free of errors, we argue that (5)
is the best match since there is a high probability that an+2 = dn (identically as sequences)
whereas the probability of an+9 = cn is much less and the probability of an = bn is zero.

Motivated by the above examples, we therefore employ a simple similarity measure based
on a ‘head-bites-tail’ contiguous overlap of sequences. We begin with preliminary definitions
to help us mathematically describe this notion.

Definition 1. Let {an}N−1
n=0 and {bm}M−1

m=0 be two finite sequences (i.e. lists) of length N and
M , respectively.

(a) A run of an of length L is a finite subsequence {an0 , an0+1, ..., an0+L−1} consisting of
L consecutive elements of an starting at an0 .
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(b) An overlap between an and bm is a run of length L that appears in both sequences, i.e.
there exists non-negative integers n0,m0 and a positive integer L such that an0+k =
bm0+k for k = 0, 1, ..., L− 1 .

(c) A head-bites-tail (HBT) overlap of length L between an and bn is an overlap that
begins at the head of one sequence and ends at the tail of either sequence, i.e. either
a(N − L + k + 1) = b(k) for k = 0, 1, ..., L − 1 or a(k) = b(M − L + k + 1) for
k = 0, 1, ..., L− 1.

(d) The maximum HBT overlap between an and bn, denoted by Lmax, is the length of
their longest HBT overlap. We set Lmax = 0 if no HBT overlap exists.

For example, Lmax = 0 for the two lists in (3) whereas Lmax = 8 for the two lists in (5).
We provide pseudcode for computing maximum HBT overlap in Appendix B.

The notion of maximum HBT overlap now allows us to define a similarity measure based
on ‘distance’ between two sequences, which we discuss next.

Definition 2. Let {an}N−1
n=0 and {bm}M−1

m=0 be two finite sequence of length N and M , respec-
tively, with maximum HBT overlap Lmax.

(a) The HBT distance between an and bm is defined to be

d := d(an, bm) = N +M − 2Lmax

(b) The relative HBT distance between an and bm is defined to be

dr := dr(an, bm) =
N +M − 2L

N +M
= 1− 2Lmax

N +M

Some comments are in order regarding definition (2):
1. Our definition of HBT distance essentially counts the number of terms in an and bn

that do not overlap. It follows that if an and bn are exactly the same sequence, then
d = dr = 0. If no HBT overlap exists, as in (3), then dr = 1 since Lmax = 0. As for
(4), we have Lmax = 1, d = 14, and thus dr = 7/8. Of course, (5) yields the smallest
distance since Lmax = 8 which implies d = 5 and dr = 5/21 .

2. Unfortunately, our definition of HBT distance does not define a true distance function
in that it fails the triangle inequality. As a counterexample, define an = {1, 2, 3},
bn = {0, 2, 3}, and cn = {2}. Then d(an, bn) = 6, d(an, cn) = 2, and d(bn, cn) = 2. The
triangle inequality d(an, bn) ≤ d(an, cn) + d(cn, bn) thus fails in this case.

Definition 3. Two finite sequences an and bm are said to:
(a) match if 0 ≤ dr < 1 and write an ≈ bn to indicate this; if dr = 0, then it is said to be

a perfect match.
(b) not match if dr = 1.

Thus, we conclude from the definition above that the two sequences an and bn in (3)
do not match since dr = 1 whereas (4) and (5) yield matches (dr = 7/8 and dr = 5/21,
respectively).
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2.2 Linear Matches

To expand our search for interesting identities, we allow for matches between sequences
that have a linear relationship, i.e. translations and/or scalar multiples of each other. For
example, the two lists

an = {1, 1, 2, 3, 5, 8, 13, 21, 34, 55}
bn = {13, 22, 37, 61, 100, 163, 265, 430, 697, 1129} (6)

satisfy the identity

bn = 3an+4 − 2 (7)

More generally, two sequences {an} and {bn} are said to be linear if there exists constants
s, t, and C such that

san + tbn = C (8)

To catch this relationship between an and bn, it suffices to compute their first differences
and normalize these differences by their greatest common divisor (GCD). The following
theorem justifies our approach:

Theorem 4. Let an and bn be two non-trivial finite sequences whose first differences are
given by ∆an = an+1 − an and ∆bn = bn+1 − bn. Moreover, let A = GCD{∆an} and
B = GCD{∆bn}. Then

∆an
A

=
∆bn
B

(9)

if and only if an and bn are linear and satisfy (8) with s = B, t = −A, and C = Ba0 −Ab0.

Proof. Assume that (9) holds, which is equivalent to

Ban+1 − Abn+1 = Ban − Abn (10)

To prove that an and bn are linear and satisfy (8) with s = B, t = −A, and C = Ba0−Ab0,
we use mathematical induction. The base case (n = 1) is true because of (10):

sa1 + tb1 = Ba1 − Ab1 = Ba0 − Ab0 = C

As for the inductive step, assume san + tbn = C. Then again, because of (10), we have

san+1 + tbn+1 = Ban+1 − Abn+1 = Ban − Abn = san + tbn = C

as desired.
Conversely, assume an and bn are linear, i.e. there exists values s, t, and C such that

(8) holds. Since (8) also holds when n is replaced by n + 1, we subtract these two cases to
obtain

s∆an = −t∆bn (11)

which implies
s ·GCD{∆an} = −t ·GCD{∆bn} (12)

Now divide (11) by (12) to obtain (9). This completes the proof.
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The above lemma justifies our next definition of a linear match between two finite se-
quences.

Definition 5. Two finite sequences an and bm are said to be a linear match if ∆an
A

and ∆bn
B

match. We denote this by an ∼ bn.

For example, the two lists an and bn given in (6) form a linear match since

∆an = {0, 1, 1, 2, 3, 5, 8, 13, 21}
∆bn = {9, 15, 24, 39, 63, 102, 165, 267, 432} (13)

It follows that A = 1, B = 3, and therefore ∆an
A

and ∆an
B

match. This linear match corre-
sponds to the identity

bn = 3an+4 − 2 (14)

3 Mining the OEIS

In this section we describe an implementation using MySQL and Mathematica to automate
our search for linear matches.

3.1 MySQL

We considered only the first 170,000 integer sequences stored in the OEIS (even though it
now contains over 200,000 sequences) since there are gaps that remain to be filled beyond
this range. Seventeen different transformations were applied to each sequence (including
the identity transformation so as to include the original sequence itself); see Table 5 in the
Appendix for a complete list of transformations. This resulted in a collection of almost 3
million sequences, which we store in a MySQL database as a single table, called Sequence
Transformations. Each term in the list for each sequence is stored as a separate string
and allowed to be up to 100 digits long; larger terms were truncated from the sequence.
Initially, we stored each term in a separate row in our table. However, it was found that
search times were significantly reduced if the terms were stored in rows containing three
consecutive terms (called EntryOne, EntryTwo, and EntryThree) as illustrated for the list
A000045={0, 1, 1, 2, 3, ..., 39088169} in Table 1. This window format tripled the amount of
memory that was needed to store all of our lists to over 7 gigabytes, but it was well worth
the expense since memory is relatively cheap compared to the additional computing power
that would have been needed to achieve the same performance, something we discuss further
later in this paper.

To catch linear matches, a second table called Sequence Transformations Differences
GCD was created to store first differences of each sequence in Sequence Transformations
divided by its GCD. This second table is where we apply our matching algorithm using
Mathematica, which we discuss next.
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ID Label Position EntryOne EntryTwo EntryThree
1 A000045S1T1 0 0 1 1
2 A000045S1T1 1 1 1 2
3 A000045S1T1 2 1 2 3
4 A000045S1T1 3 2 3 5
... ... ... ... ... ...
38 A000045S1T1 37 24157817 39088169 Null
39 A000045S1T1 38 39088169 Null Null

Table 1: Sequence Transformations MySQL Table Format - Entry A000045S1T1

3.2 Mathematica

The following three steps describe an implementation of our matching algorithm using Math-
ematica software version 8.0 ([6]) . We used Mathematica’s Databaselink package to com-
municate with MySQL. One of the nice features of Mathematica is its ability to store and
calculate arbitrarily long integers.

Step 1. Each list in table Sequence Transformations Differences GCD (STDG) is com-
pared against all other entries in this table for potential matches using the MySQL ’select’
command. Given such a list, called the reference, we extract from it a window of three
terms (or entries) greater than or equal to 10,000. For example, suppose the reference list
is given by record A000045S1T1 (Fibonacci sequence). We then extract the three terms
{10946, 17711, 28657} and use them to fetch other lists, called candidates, in STDG contain-
ing the same window of three terms. We find that this MySQL query outputs 146 candidates,
each representing a potential linear match with the reference since they all contain the same
window of three terms {10946, 17711, 28657}. Here is a partial list of the first 15 candidates
and the last 10 candidates in lexicographic order:

A000045S1T1
A000045S1T2
A000071S1T1
A000126S1T4
A001588S1T1

A001595S1T1
A001611S1T1
A001891S1T4
A001911S1T1
A001911S1T4

A006327S1T1
A006355S1T2
A006355S1T4
A007435S1T17
A007436S1T16

...

A157727S1T1
A157728S1T1
A157729S1T1
A161468S1T2
A166876S1T1

A167616S1T1
A167816S1T2
A168193S1T1
A168193S1T4
A169622S1T1

Our rationale for using large terms to find candidates as opposed to small terms, e.g. {0, 1, 1},
is because the number of candidates in this case would be extremely large and many of them
would not lead to true identities, thus making our algorithm quite inefficient.

Step 2. Before doing a full list comparison between the reference with each of the candidates
found in Step 1, we trim all of them to remove initial terms that are trivial, i.e. equal
to -1,0, or 1, in order to catch matches where the reference and candidate represent the
same sequence yet initialized differently. For example, the reference A000045S1T1 would be
trimmed to {2, 3, 5, ..., 39088169} where the initial terms 0,1,1 have been deleted.

Step 3. Maximum HBT overlap and relative distance are then computed between the
reference and each candidate (pseudocode for computing maximum HBT overlap is given
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Window Size Run Time
(Number of Terms) (Days)

1 38.96
2 3.5
3 2.67

Table 2: Search Run Times Based on Window Size

Computer Configuration Run Time
(Model Year) (Processor, RAM) (Days)

Apple iMac (mid-2011) 2.7 GHz Intel Core i5 quad-core, 4 GB RAM 2.67
Apple Mac Pro (mid-2010) 3.2 GHz Intel Xeon quad-core, 32 GB RAM 0.62

Table 3: Search Run Times Based on Computer Model

in Appendix B). Observe that a candidate would be considered a match with the reference
if dr < 1 according to Definition 3. However, to avoid catching weak, trivial, and even
false matches which do not correspond to a true identity, we consider only strong matches
where Lmax ≥ 4 and dr ≤ 1/2. This is the criteria we use to indicate a match and store
all such matches in a MySQL table called Linear Matches. For example, we find that
A000045S1T1 (reference) and A000045S1T2 (candidate) indeed form a linear match with
Lmax = 34 and dr = 0.02857. On the other hand, A000045S1T1 does not match with
A137574S1T1 = {2, 3, 5, 8, 13, 21, 89, 233, 1597, 17711, ..., 53316291173}, defined as Fibonacci
numbers and their distinct prime divisors having the same number of decimal digits. In this
case we find Lmax = 0 and thus dr = 1.

3.3 Search Run Times

Table 2 gives a summary of the search run times for various window sizes based on a search
of the entire STDG table for linear matches, which at the time, contained eleven transfor-
mations of the first 170,000 sequences in OEIS. Observe that using a window size of 3 terms
dramatically reduced our run time by almost a factor of 15 in comparison to a window size
of 1 term. Moreover, two trials were performed, both using a window size of 3 terms, but
each on a different Apple computer: iMac and Mac Pro. A comparison of their run times
is given in Table 3. The superior performance of the Mac Pro was due to it having 8 times
more RAM than the iMac.

3.4 Summary of Results

Using the implementation described above, we found approximately 650,000 linear matches
thus far between sequences in OEIS and their transformations. These matches we stored
in a MySQL table called Linear Matches. An example of such a match (A000045S1T1 ∼
A000045S1T2) illustrating Linear Matches is given in Table 4. Actually, each match appears
twice in Linear Matches (with the order of the two labels reversed) because of our search
algorithm; each sequence serves as a reference in one match and then as a candidate in the
other.
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ID Label1 Label2 Overlap Distance Scaling Translation Shift
2087 A000045S1T1 A000045S1T2 34 0.02857 1 1 -2

Table 4: Record of match A000045S1T1 ∼ A000032S1T1 in Linear Matches table

However, based on an examination of a small sample of these matches, it appears that
almost all of them correspond to identities that are already known or trivial due to variations
of the same sequence being stored in the OEIS. For example, the match A000045S1T3 ≈
A000045S1T8 corresponds to the following well-known identity for the Fibonacci numbers:

n∑
k=0

F 2
n = FnFn+1 (15)

Another example is the linear match A000045S1T1 ∼ A000071S1T1, which corresponds to
the trivial identity

an = bn + 1 (16)

where an = Fn is the Fibonacci sequence (A000045) and bn = Fn− 1 (A000071). Here, both
sequences are essentially the same, differing only by 1. One of our goals in the future is
to improve our matching algorithm so that it ignores such trivial matches. Fortunately, we
were still able find some matches that appear to be new and interesting. Thus, we conclude
our paper by presenting ten such matches in the next section.

4 Ten Experimental Conjectures

In this section we present a sample of ten experimental conjectures, corresponding to linear
matches, that were found through our search. Some of these conjectures we believe are
new and sufficiently interesting that they deserve further study, suitable as student research
projects. Other conjectures serve to illustrate how false matches can arise and be salvaged.
All linear matches described below, except those found through false matches, can be found
on the Eureka website [4] using its search engine.

CONJECTURE 1: (A002212S1T15 ∼ A032908S1T1, Lmax = 10, dr = 0.43)

det[(ai+j)
n
i,j=0] = bn+1 − 1 (17)

where
an = A002212 - Number of restricted hexagonal polyominoes with n cells.
bn = A032908 - One of 4 3rd-order recurring sequences for which the first derived se-

quence and the Galois transformed sequence coincide.

CONJECTURE 2: (A004441S1T12 ∼ A065619S1T7, Lmax = 21, dr = 0.45)

n∑
k=0

(
n

k

)
En−kak =

n∑
k=0

(
n

k

)
bk (18)
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where En are the zig-zag numbers with generating function secx+ tanx and
an = A004441 - Numbers that are not the sum of 4 distinct nonzero squares.
bn = A065619 - E.g.f. x(tan(x) + sec(x)).

CONJECTURE 3: (A008410S1T17 ∼ A022523S1T2, Lmax = 16, dr = 0.16)

∑
d|n

µ(n/d)ad = 480
n−1∑
k=0

bk (19)

where
an = A008410 - a(0) = 1, a(n) = 480σ7(n).
bn = A022523 - Nexus numbers (n+ 1)7 − n7.

CONJECTURE 4: (A026375S1T5 ∼ A144180S1T10, Lmax = 17, dr = 0.11)

n∑
k=0

akan−k =
5

4

n∑
k=0

s(n, k)bk −
1

4
(20)

where
an =A026375 - a(n) =

∑n
k=0

(
n
k

)(
2k
k

)
.

bn = A144180 - Number of ways of placing n labeled balls into n unlabeled (but 5-colored)
boxes.

CONJECTURE 5: (A037164S1T17 ∼ A022527S1T2, Lmax = 11, dr = 0.19)

∑
d|n

µ(n/d)ad =
n−1∑
k=0

bk (21)

where
an = A037164 - Numerators of coefficients of Eisenstein series E12(q) (or E6(q) or E24(q)).
bn = A022527 - Nexus numbers (n+ 1)11 − n11.

CONJECTURE 6: (A151821S1T3 ∼ A018903S1T9, Lmax = 16, dr = 0.34694)

n−1∑
k=0

a2
k =

bnbn+2 − b2
n+1 − 13

3
(22)

where
an =A151821 - Powers of 2, omitting 2 itself.
bn =A018903 - Define the sequence S(a0, a1) by an+2 is the least integer such that

an+2/an+1 > an+1/an for n >= 0. This is S(1, 5).

We note that this conjecture originated from a false match between A018903 and the follow-
ing sequence:
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an = A046055 - Orders of finite Abelian groups having the incrementally largest numbers
of nonisomorphic forms (A046054).

CONJECTURE 7: (A098411S1T15 ∼ A002416S1T1)

det[(ai+j)
n
i,j=0] =

1

2
bn+1 = 2(n+1)2−1 (23)

where
an = A098411 - Expansion of 1/(

√
1− 4x ·

√
1− 12x).

bn = A002416 - 2n2
.

This conjecture was found as a result of a false match (A098411S1T15 ∼ A139685S1T8,
Lmax = 8, dr = 0.16)

det[(ai+j)
n
i,j=0] =

1

2
cncn+1 (24)

where
cn = A139685 - Number of n x n symmetric binary matrices with no row sum greater

than 9.

We note that the OEIS entry for A098411 mentions the following conjecture (due to R.
J. Mathar):

nan + 8(1− 2n)an−1 + 48(n− 1)an−2 = 0 (25)

CONJECTURE 8: (A122162S1T17 ∼ A008384S1T2, Lmax = 26, dr = 0.05)

∑
d|n

µ(n/d)ad =
n−1∑
k=0

bk (26)

where
an = A122162 - Coefficient of q-series for constant term of Tate curve.
bn = A008384 - Crystal ball sequence for A4 lattice.

CONJECTURE 9: (A170762S1T7 ∼ A152262S1T9)

n∑
k=0

(
n

k

)
ak =

43

252
(bnbn+2 − b2

n+1)− 1

42
(27)

where
an =A170762 - G.f.: (1+x)/(1-42*x).
bn = A152262 - a(n) = 14 ∗ a(n− 1)− 43 ∗ a(n− 2), n > 1; a(0) = 1, a(1) = 7.

This conjecture was again found from a false match between A152262S1T9 and A169344S1T7
(Lmax = 13, dr = 0.07), where
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an =A169344 - Number of reduced words of length n in Coxeter group on 43 generators
Si with relations (Si)

2 = (SiSj)
30 = I.

The reason for the false match is that the terms of A169344 and A170762 agree up to
the first 29 terms (and then disagree starting at the 30th term). Since the OEIS stores only
the first 15 terms of the A169344, the two sequences appear the same.

CONJECTURE 10:

an =
∞∑
k=0

a(k)b(n− 25k) (28)

where
an = A000009 - Expansion of

∏∞
m=1(1+xm); number of partitions of n into distinct parts;

number of partitions of n into odd parts.
bn =A034320 - McKay-Thompson series of class 50a for the Monster group with a(0) = 1.

This conjecture arose from a false match between the two transformations A000009S1T3
and A058703S1T3 (Lmax = 22, dr = 0.41), namely

n∑
k=0

a2
n =

n∑
k=0

c2
n (false)

where an and cn denote sequences corresponding to the entries

A000009 = {1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, ..., 89, 104, 122, 142, 165, 192, ..., 5718}
A058703 = {1, 0, 1, 2, 2, 3, 4, 5, 6, 8, 10, ..., 89, 104, 122}

respectively, and

cn = A058703 - McKay-Thompson series of class 50a for Monster.

This initially led us to believe that the two sequences an and cn were perhaps identical
since all terms of A058703 except for the second term overlap with those of A000009. How-
ever, this is not true as the two sequences differ after the term 122. To find additional terms
of A058703, we looked at those given for A034320, namely

A034320 = {1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, ..., 89, 104, 122, 141, 164, 191, ..., 6082}

which is essentially the same sequence as A058703 but whose second term now matches with
that of A000009, i.e. bn = cn except for n = 0. An analysis of the differences an−bn between
the terms of A000009 and A034320 then led us to conjecture the convolution formula (28).

5 Acknowledgements

The authors thank Drs. Anthony Breitzman and Gabriela Hristescu at Rowan University
for their helpful suggestions and feedback about our work. We also thank Fritz Mineus, an

12

http://oeis.org/A169344
http://oeis.org/A000009
http://oeis.org/A034320
http://oeis.org/A000009
http://oeis.org/A058703
http://oeis.org/A058703
http://oeis.org/A034320
http://oeis.org/A058703
http://oeis.org/A000009
http://oeis.org/A000009
http://oeis.org/A034320


undergraduate student at Rowan, for his help in developing the Eureka website [4]. This work
was supported in part by a Non-Salary Financial Support Grant from Rowan University.

6 Appendix

6.1 A. List of Transformations

Symbol (Txx) Transformation Name Formula
T1 Identity an
T2 Partial Sums

∑n
k=0 ak

T3 Partial Sums of Squares
∑n

k=0 a
2
k

T4 Inverse Binomial Transform
∑n

k=0(−1)k
(
n
k

)
ak

T5 Self-Convolution
∑n

k=0 akan−k
T6 Linear Weighted Partial Sums

∑n
k=0 kak

T7 Binomial
∑n

k=0

(
n
k

)
ak

T8 Product of Two Consecutive Elements anan+1

T9 Cassini anan+2 − a2
n+1

T10 First Stirling
∑n

k=0 s(n, k)ak
T11 Second Stirling

∑n
k=0 S(n, k)ak

T12 Boustrophedon
∑n

k=0

(
n
k

)
En−kak

T13 First Differences an+1 − an
T14 Catalan

∑n
k=0

k
n

(
2n−k−1
n−k

)
ak

T15 Hankel det(ai+j)
n
i,j=0

T16 Sum of Divisors
∑

d|n ad
T17 Moebius

∑
d|n µ(n/d)ad

Table 5: List of Transformations of an

6.2 B. Pseudocode for Computing Maximum HBT Overlap Lmax

HTB[{a(n)},{b(n)}]:
1. Input sequences {a(n)},{b(n)};
2. M = Length[{a(n)}];

N = Length[{b(n)}];
3. {p(k)} = positions of a(M) in {b(n)} (decreasing order);
{q(k)} = positions of b(N) in {a(n)} (decreasing order);

4. P = Length({p(k)});
Q = Length({q(k)});

5. i = 0; k = 1; m = 0;
6. While i = 0 and k ≤ P ;
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7. m = min(M, p(k));
8. If {a(M−m), a(M−m+1), ..., a(M)} = {b(p(k)−m), b(p(k)−m+1), ..., b(p(k))},

then i = 1;
9. k++;
10. i = 0; k = 1; n = 0;
11. While i = 0 and k ≤ Q;
12. n = min(N, q(k));
13. If {b(N − n), b(N − n+ 1, ..., b(N)} = {a(q(k)− n), a(q(k)− n+ 1), ..., a(q(k))},

then i = 1;
14. k++;
15. Lmax = max(m,n);

References

[1] J.-P. Allouche and J. Shallit, The ring of k-regular sequences, II, Theor. Comput. Sci.
307 (2003), 3-29.

[2] F. Bergeron and S. Plouffe, Computing the Generating Function of a Series Given Its
First Few Terms, Experiment. Math. 1 (1992), No. 4, 307-312.

[3] S. Colton, Mathematics - A New Domain for Dataming?, Proceedings of the IJCAI-
01 Workshop on Knowledge Discovery from Distributed, Dynamic, Heterogenous, Au-
tonomous Sources, Seattle, US, 2001.

[4] Eureka, http://elvis.rowan.edu/datamining/eureka.

[5] P. Liu, Efficient Recognition of Integer Sequences, Master’s Thesis (1994), Univ. Water-
loo, Canada.

[6] Mathematica (Version 8.0), Wolfram Research, http://wolfram.com.

[7] The Online Encyclopedia of Integer Sequences (OEIS), http://oeis.org.

[8] Superseeker, The Online Encyclopedia of Integer Sequences (OEIS),
http://oeis.org/demos.html.

2010 Mathematics Subject Classification: Primary 11Y55, 68R99.
Keywords: experimental math, matching integer sequences, Online Encyclopedia of Integer
Sequences.

14


	Introduction
	Matching Integer Sequences
	Similarity Measure
	Linear Matches

	Mining the OEIS
	MySQL
	Mathematica
	Search Run Times
	Summary of Results

	Ten Experimental Conjectures
	Acknowledgements
	Appendix
	A. List of Transformations
	B. Pseudocode for Computing Maximum HBT Overlap Lmax


