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Abstract—New tools are developed for testing Complementary

Code Matrix (CCM) existence, first for binary CCMs and then

for more general p-phase classes, by formulating a CCM in terms

of its row-correlation function. It is shown that a result of Lam

and Leung on vanishing sums of roots of unity is useful in this

approach for developing p-phase CCM existence tests in terms

of the prime factorization of p. In addition, other existence tests

and properties are found by using the row-correlation function to

derive new dot product and congruence relations between rows

of a CCM.
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I. INTRODUCTION

Complementary Code Matrices (CCMs) provide a useful

matrix formulation for the study of complementary code sets,

which find uses in waveform design for enhanced detection

in radar systems [1] and in communication systems [2][3].

While complementary code sets have yet to be widely used

for radar waveform designs due to certain design challenges

[1][14], some recent work has shown a number of concepts

for overcome key practical concerns [13][14][15][16][17].

A set of K binary or polyphase codes of length N is com-

plementary if corresponding sidelobes of the autocorrelations

of the separate codes sum to zero; the associated CCM is the

N ×K matrix whose kth column is the kth code in the set

for k = 1, . . . ,K. Classes of CCMs are often specified by the

set from which matrix elements may be drawn. Many classes

of interest are special cases of unimodular CCMs whose

elements are drawn from the unit circle. A special case of the

unimodular CCMs are the p-phase CCMs, whose elements are

drawn from the set of complex values {e2πi/p, e4πi/p, . . . , 1},

that is, the pth-roots of unity for a given positive integer p.

Corresponding to p = 2 are the binary CCMs, whose elements

are restricted to {−1, 1}. Hadamard matrices are a subclass of

CCMs [4], arising in a number of important applications [5];

each class of CCMs (binary, unimodular, p-phase) includes the

corresponding subclass of the Hadamard matrices.

A growing body of literature is focused on properties of

CCMs [4][6][7][8][9]. Among the many questions to be asked

about CCMs is whether, for a given pair (N,K), any N ×K

CCMs of the dimension exist. The answer to this question
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determines the existence or non-existence of complementary

sets of K codes of length N .

This paper develops several new tools for testing CCM

existence, first for binary CCMs and then for more general

p-phase classes, by introducing the notion of a row-correlation

function, an analogue of the auto-correlation function, but

applied to the rows of CCM as opposed to its columns. It

is shown that results by Lam and Leung [11] are particularly

useful in this approach for developing existence tests in terms

of the prime factorization of p. In addition, other CCM

existence tests and properties are found by using the row-

correlation function to obtain new dot product and congruence

formulas, in line with recent results by one of the authors and

J. Russo [10] where this row-based approach was employed

to develop efficient exhaustive searches for low-order CCMs

[10].

II. COMPLEMENTARY CODE SETS

Define a p-phase code z of length N as a sequence of

elements zi where zpi = 1 for i = 1, . . . , N . It will be useful

to think of z as a column vector of length N :

z = [z1, . . . , zN ]T .

The autocorrelation of a code z is defined as the sequence

of length 2N − 1

ACFz = z ∗ rev(z)

where ∗ represents aperiodic convolution, z means complex

conjugation of vector z, and rev(z) indicates reversal. The

elements ACFz(k) may be written explicitly as sums of

pairwise products of the elements of z:

ACFz(k) =

N−k∑
i=1

zizi+k

for k = 0, ..., N − 1. For k = −(N − 1), ...,−1, we define

ACFz(k) = ACFz(−k).

Definition. A set of K length N codes {z1, . . . , zK} is a

complementary code set if

K∑
j=1

ACFzj (k) = 0

for k = −(N − 1), ...,−1 and 1, ..., N − 1.

Note that ACFzj (0) = N for j = 1, . . . ,K, by the

definition of the autocorrelation. Hence

K∑
j=1

ACFzj (0) = KN (1)

for any set of K length-N codes.

Definition. An N × K matrix Q is a complementary code

matrix, or CCM, if its columns form a complementary code

set.

III. DIAGONAL REGULARITY AND ROW-CORRELATION

FUNCTIONS

In this section we present two other equivalent formulations

of a complementary code matrix: one in terms of its row

Gramian and the other in terms of its rows. The latter allows

us to express definition (1) in terms of a function that we shall

refer to as the row-correlation function.

Definition. Given an N × K matrix Q, the matrix product

QQ∗ is called its row Gramian, where Q∗ is the conjugate

transpose of Q.

Definition. An N ×N matrix is called diagonally regular if

the elements of each of its diagonals, with the exception of

the main diagonal, sum to 0.

In [4], one of the authors and W. Haloupek characterized

CCMs in terms of its rows. We use this idea to introduce

the row-correlation function, which will be useful for deriving

new properties of CCMs as we demonstrate later in the paper.

Definition. Let Q be an N × K matrix consisting of rows

{r1, r2, . . . , rN}. The row-correlation function (RCF) of Q
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is defined to be

RCFQ(k) =

N−k∑
j=1

rj · rj+k (2)

for k = 0, 1, ..., N − 1. For k = −(N − 1), ...,−1, we define

RCFQ(k) = RCFQ(−k). In (2), the notation ri ·rj represents

the dot, or scalar, product, of rows ri and rj .

Definition. A p-phase matrix Q is one whose columns are

p-phase codes. A p-phase matrix with p = 2 is called a binary

matrix.

The next theorem, due to Coxson and Haloupek [4], com-

pletely characterizes CCMs in terms of the row-correlation

function.

Theorem 3.1 (Coxson-Haloupek [4]). An N × K p-phase

matrix Q consisting of rows denoted by {r1, r2, . . . , rN} and

columns denoted by {z1, z2, ..., zK} is a complementary code

matrix (CCM) if and only if its row Gramian is diagonally

regular, that is,

RCFQ(k) =

K∑
j=1

ACFzj (k) = NKδk (3)

for k = −(N −1), ..., 0, . . . , N −1 where δk is the Kronecker

delta function.

IV. SEVERAL RESULTS FOR UNIMODULAR CCMS

In this section we demonstrate how existence tests for

unimodular CCMs can be obtained from the row-correlation

function. These tests generalize those established by Coxson,

Haloupek, and Russo in [18] where the notion of imbalance

was introduced to measure the difference in the number of

1’s and -1’s along a column of a CCM. We reformulate the

imbalance of all columns as the vector sum of all rows, which

we denote by R.

Lemma 4.1. Let Q be an N × K CCM consisting of rows

{r1, r2, . . . , rN}. Define

R = r1 + r2 + . . .+ rN .

Then

|R|2 = NK.

Proof. We have

|R|2 = (r1 + . . .+ rN ) · (r1 + . . .+ rN )

=

N∑
j=1

rj · rj +
N−1∑
k=1

N−k∑
j=1

rj · rj+k +

N−1∑
k=1

N−k∑
j=1

rj+k · rj

=

N∑
j=1

K +

N−1∑
k=1

RCFQ(k) +

N−1∑
k=1

RCFQ(−k)

= NK

because of (3).

Note if the components of R are given by (λ1, ..., λK),

then Lemma 4.1 shows that NK can be written as a sum of

K non-negative squares:

λ21 + ...+ λ2K = NK

For binary CCMs, this result was first proven by Feng, Shiue,

and Xiang in [18] (Lemma 2.2) by a different method. It is

also equivalent to Corollary 3.2 in [8] where λk represents

the imbalance of the k-th column of Q. The next theorem

generalizes Theorem 5.1 in [18] where an existence test was

established via the imbalance of the even and odd numbered

rows.

Theorem 4.2. Let Q be an N ×K CCM consisting of rows

{r1, r2, . . . , rN}. Define Ro = r1 + r3 + . . .+ r2b(N−1)/2c+1

and Re = r2 + r4 + . . .+ r2bN/2c. Then

|Ro|2 + |Re|2 = NK.

Moreover, if Im(Ro · Re) = 0, which holds if Q is binary,
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then

Ro ·Re = 0.

Proof. We have

|Ro|2 =

b(N+1)/2c∑
j=1

r2j−1

b(N+1)/2c∑
j=1

r2j−1


=

b(N+1)/2c∑
j=1

r2j−1 · r2j−1 +

b(N−1)/2c∑
k=1

b(N+1)/2c−k∑
j=1

r2j−1 · r2j−1+2k +

b(N−1)/2c∑
k=1

b(N+1)/2c−k∑
j=1

r2j−1+2k · r2j−1

and

|Re|2 =

bN/2c∑
j=1

r2j

bN/2c∑
j=1

r2j


=

bN/2c∑
j=1

r2j · r2j +

b(N−2)/2c∑
k=1

bN/2c−k∑
j=1

r2j · r2j+2k +

b(N−2)/2c∑
k=1

bN/2c−k∑
j=1

r2j+2k · r2j

It follows that

|Ro|2 + |Re|2 =

N∑
j=1

rj · rj +
b(N−1)/2c∑

k=1

N−2k∑
j=1

rj · rj+2k +

b(N−1)/2c∑
k=1

N−2k∑
j=1

rj+2k · rj

=

N∑
j=1

K +

b(N−1)/2c∑
k=1

RCFQ(2k) +

b(N−1)/2c∑
k=1

RCFQ(−2k)

= NK

Define R = Ro +Re. Then from Lemma 4.1, we have

NK = |R|2

= (Ro +Re) · (Ro +Re)

= |Ro|2 + |Re|2 +Ro ·Re +Re ·Ro.

= NK + 2Re(Ro ·Re)

It follows that Re(Ro · Re) = 0. Since Im(Ro · Re) = 0 by

assumption, we conclude that Ro ·Re = 0.

Observe that Lemma 4.1 and Theorem 4.2 imply the fol-

lowing Pythagorean relationship for a CCM:

|Ro|2 + |Re|2 = |R|2

We now turn to developing divisibility tests for the existence

of CCMs.

Lemma 4.3. Let p be a prime integer and Q a p-phase N×K

CCM. Then p divides K.

Proof. We transform Q = (qj,k) into dephased form where its

entries in the first row consists of all 1s. Since RCFQ(N−1) =

r1 · rN = 0 for a CCM, it follows that the entries in the last

row must sum to zero, that is,

K∑
k=1

qN,k = 0.

Recall that the values qN,1, . . . , qN,K are roots of zp = 1.

But there is only one way for these K values to sum to zero

when p is prime, namely as the sum of all p distinct roots or a

positive integer multiple of it (recall that
∑p−1
n=0 e

2πin/p = 0)

[11]. Hence, K is divisible by p.

Lemma 4.3 can be extended to all positive integers p if we

can determine when a sum of roots of unity vanishes. Towards

this end, let A = {α1, . . . , αn} be an n-element set consisting

of p-th roots of unity. We say that A represents a vanishing

sum of roots of unity of weight n if

α1 + . . .+ αn = 0.

The following theorem of Lam and Leung [11] completely

characterizes vanishing sums of roots of unity.

Theorem 4.4 (Lam-Leung). Let p be a positive integer with
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prime factorization p = pn1
1 pn2

2 . . . pns
s where p1, . . . , ps are

primes. Then there exists a vanishing sum of p-th roots of

unity of weight n if and only if n is a non-negative integer

linear combination of p1 + . . . , ps, that is,

n = c1p1 + c2p2 + . . .+ csps

for some set of nonnegative integers c1, c2, . . . , cs.

Moreover, Lam and Leung note that if 6|p, then the weight

n takes on every positive integer greater than 1. As a corollary,

we obtain a necessary condition for the existence of p-phase

CCMs.

Corollary 4.5. Let Q be a p-phase N ×K CCM where p has

prime factorization p = pn1
1 pn2

2 . . . pns
s . Then K is a non-trivial

non-negative integer linear combination of p1, p2, . . . , ps, that

is,

K = c1p1 + c2p2 + . . .+ csps

for some set of nonnegative integers c1, c2, . . . , cs.

Note that if 6|p, then Corollary 4.5 allows for the possibility

of a p-phase CCM to exist having an arbitrary number of

columns K greater than 1.

V. QUAD-PHASE GOLAY PAIRS

In this section we present results on quad-phase Golay pairs

and CCMs by investigating congruences satisfied by their row

sums.

Theorem 5.1. Let Q be a quad-phase N ×K CCM. Then K

must be even.

Proof. We assume Q = {r1, . . . , rN} is de-phased so that the

first row r1 consists of all 1s. Again, it follows that

RCFQ(N − 1) = r1 · rN = 0⇒ qN,1 + . . .+ qN,K = 0. (4)

The second equation in (4) expands as

(xN,1 + . . .+ xN,K) + i(yN,1 + . . .+ yN,K) = 0,

yielding

(xN,1 + . . .+ xN,K) = (yN,1 + . . .+ yN,K) = 0mod 2. (5)

Suppose on the contrary that K is odd. Assume xN,k = 1 for

an odd number of k values. Then

xN,1 + . . .+ xN,K = 1mod 2,

which contradicts (5). On the other hand, if xN,k = 1 for an

even number of k values, then xN,k = 0 for an even number

of such k values, since K is odd. It follows that yN,k = 1

for an odd number of k values since all entries of Q satisfy

|xj,k|+ |yj,k| = 1. But then

yN,1 + . . .+ yN,K = 1mod 2

again contradicting (3). This proves that K must be even.

Lemma 5.2 (Golay). Let Q = (A,B) be an Golay pair, that

is, a binary N × 2 CCM, whose two columns have entries

A = {a1, a2, . . . , aN} and B = {b1, b2, . . . , bN}. Then

an + bn + aN−n+1 + bN−n+1 = 2mod 4.

The proof of Lemma 5.2 relies on the following fact.

Lemma 5.3. Let a and b be two values such that |a| = |b| = 1.

Then

ab = a+ b− 1 mod 4.

We now generalize Lemma 5.2 to binary N ×K CCMs.

Theorem 5.4. Let Q = (Q1, Q2, . . . , QK) be a binary N×K

CCM whose kth column Qk has entries {q1,k, . . . , qN,k} for

k = 1, . . . ,K. Then

qN−n+1,1 + . . .+ qN−n+1,K + qn,1 + . . .+ qn,K = K mod 4

for n = 1, . . . , N .

Proof. Since Q is a CCM, it follows that RCFQ(n) = 0, or
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equivalently,

N−n∑
j=1

(qj,1qj+n,1 + . . .+ qj,Kqj+n,K) = 0. (6)

As all the entries of Q satisfy |qj,k| = 1, it follows from

Lemma 5.3 that

N−n∑
j=1

[(qj,1 + qj+n,1 − 1) + . . .+ (qj,K + qj+n,K − 1)]

= 0mod 4

which implies

N−n∑
j=1

[(qj,1 + qj+n,1) + . . .+ (qj,K + qj+n,K)]

−
N−n∑
j=1

K = 0mod 4

which implies

N−n∑
j=1

(qj,1 + . . .+ qj,K) +

N∑
j=n+1

(qj,1 + . . .+ qj,K)

= (N − n)K mod 4. (7)

Subtracting case n of (5) from case n− 1 yields

qN−n+1,1 + . . .+ qN−n+1,K + qn,1 + . . .+ qn,K = K mod 4

for n = 2, . . . , N − 1. But this result holds for n = 1 and

n = N as well since

q1,1qN,1 + . . .+ q1,KqN,K = 0

which follows by setting n = N − 1 in (5).

Corollary 5.5 Let Q = (Q1, Q2) be a binary N × 2 CCM

consisting of rows r1, r2, ..., rN and whose kth column Qk has

entries {q1,k, . . . , qN,k} for k = 1, 2. Then rn · rN+1−n = 0

for n = 1, . . . , N .

Proof. Given any row index 1 ≤ n ≤ N ,

qN−n+1,1 + . . .+ qN−n+1,K + qn,1 + . . .+ qn,K = 2mod 4,

by Theorem 5.4. Since the sum involves four ±1 matrix

elements in rows rn and rN−n+1, it must be either +2 or −2.

But then the four summed elements are either three 1s and one

−1s or three −1s and one 1. For either case, rn ·rN+1−n = 0.

We now generalize Theorem 5.4, extending the result for

binary CCMs to quad-phase CCMs. First, we prove the

following fact.

Lemma 5.6. Let q1 = x1 + iy1 and q2 = x2 + iy2 be such

that |x1|+ |y1| = 1 and |x2|+ |y2| = 1. Then

Re(q1q2) = x1x2 + y1y2 = x1 + y2 = (y1 + x2) mod 2

and

Im(q1q2) = −x1y2+y1y2 = x1+y2−1 = (y1+x2−1) mod 2.

We now present our result for quad-phase CCMs.

Theorem 5.7. Let Q = (Q1, Q2, . . . , QK) be a quad-

phase N × K CCM whose kth column Qk has entries

{q1,k, . . . , qN,k} for k = 1, . . . ,K. Then

xN−n+1,1 + . . .+ xN−n+1,K + yn,1 + . . . yn,K = 0mod 2

for n = 1, . . . , N .

Proof. Write qj,k = xj,k + iyj,k. Then

RCFQ(n) =

N−n∑
j=1

(qj,1qj+n,1 + . . .+ qj,Kqj+k,K) = 0

implies

Re

N−n∑
j=1

(qj,1qj+n,1 + . . .+ qj,Kqj+k,K)

 = 0

which implies

N−n∑
j=1

[(xj,1xj+n,1 + yj,1yj+n,1) + . . .

+(xj,Kxj+n,K + yj,Kyj+n,K)] = 0 (8)
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which implies

N−n∑
j=1

[(xj,1 + yj+n,1) + . . .+ (xj,K + yj+n,K)] = 0mod 2

which implies

N−n∑
j=1

(xj,1 + . . .+ xj,K) +

N∑
j=n+1

(yj,1 + . . .+ yj,K) = 0mod 2.

Subtracting case n of (7) from case n− 1 yields

xN−n+1,1 + . . .+ xN−n+1,K + yn,K + . . .+ yn,K = 0mod 2

for n = 2, . . . , N − 1. But this result holds for n = 1 and

n = N as well, since

(x1,1xN,1 + y1,1yN,1) + . . .+ (x1,KxN,K + y1,KyN,K) = 0

which follows by setting n = N − 1 in (7).

Corollary 5.8 Let Q be a quad-phase N × 2 CCM (complex

Golay pair) consisting of rows r1, . . . , rN . Then rn·rN−n+1 =

0, ±2, or ±2i for n = 1, . . . , N .

Proof. Let rn = (qn,1, qn,2) denote the entries in row n and

consider the four entries qn,1, qn,2, qN−n+1,1, qN−n+1,2 where

each is a fourth root of unity. We claim that the number of

entries that are real, i.e. ±1, and the number of entries that

are imaginary, i.e. ±i, must both have even parity. To prove

this, assume on the contrary so that the four entries are say

1, 1, 1, i (three real and one imaginary). Then rn · rN−n+1 =

1−i, which contradicts Lemma 5.6. All other odd cases can be

eliminated in the same manner. It follows that rn·rN−n+1 = 0,

±2, or ±2i, which can be verified case by case, e.g. when the

four entries are 1, 1, i, i (two real and two imaginary).

VI. CONCLUSIONS

A new approach to characterizing complementary code

matrices (CCMs) in terms of the row-correlation function was

presented. Existence tests were derived for p-phase CCMs in

terms of the factorization of p via a theorem of Lam and Leung

on vanishing sums of roots of unity. Other tests were derived

by considering dot product and congruence relations obtained

from the row-correlation function.
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