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I. Introduction 
 

Every student of calculus learns that one typically solves a differential equation by 
integrating it.  However, as Euler showed in his 1758 paper (E236), Exposition de quelques 
paradoxes dans le calcul intégral (Explanation of certain paradoxes in integral calculus) [2], 
there are differential equations that can be solved by actually differentiating them again.  This 
initially seems paradoxical or as Euler describes it in the introduction of his paper:  
 

Here I intend to explain a paradox in integral calculus that will seem rather 
strange: this is that we sometimes encounter differential equations in which it 
would seem very difficult to find the integrals by the rules of integral calculus yet 
are still easily found, not by the method of integration, but rather in 
differentiating the proposed equation again; so in these cases, a repeated 
differentiation leads us to the sought integral.  This is undoubtedly a very 
surprising accident, that differentiation can lead us to the same goal, to which we 
are accustomed to find by integration, which is an entirely opposite operation. 

 
A discussion of Euler’s paradoxical method and the geometrical problems that are solved 

in his paper appears in our synopsis [3] (available on the Euler Archive) and also in Edward 
Sandifer’s column, How Euler Did it, Oct 2008 [5].  In this paper, we revisit Euler’s paradoxical 
method, discuss one of his geometrical problems (Problem I), and reformulate it using vectors in 
order to demonstrate that his method is a standard technique used by modern differential 
geometers today.  Moreover, we investigate an interesting generalization of Problem I involving 
pedal curves to pedal surfaces and more generally to pedal manifolds.  This leads to the notion of 
tangentially equidistant surfaces, which contains an interesting family of developable ruled 
surfaces. 
 
II. Integrating by Differentiating 
 

In his E236 paper [2], Euler presents four geometrical problems (I-IV) to demonstrate his 
paradoxical method of differentiation.  We shall discuss only the first problem: 
 

PROBLEM I 
 
Given point A, find the curve EM such that the perpendicular AV, derived from 
point A onto some tangent of the curve MV, is the same size everywhere (Figure 
1).  
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Figure 1 

 
In modern terms, Problem I asks for a curve EM where every one of its tangent lines has fixed 
distance from point A (origin). 

To solve this problem, Euler begins by introducing notation.  In Figure 1, let α  denote 
the curve EM and set x AP= , y PM= , dx Pp Mm= = , dy mπ= , and 2 2ds Mm dx dy= = + .  
It follows from the similarity of the three triangles APRV , PMSV , and MmπV  that  

 ,PS M PR m
PM Mm AP Mm

π π= = , 

which implies 

 ,PM M ydx AP m xdyPS PR
Mm ds Mm ds

π π⋅ ⋅= = = = . 

Thus, 

 ydx xdya AV PS PR
ds
−= = − = , 

or in differential form, 
 2 2ydx xdy a dx dy− = + . (1.1) 
 

To solve (1.1), Euler applies the “ordinary” method of integrating a differential equation.  
Towards this end, he squares (1.1) to obtain 
 2 2 2 2 2 2 2 22y dx xydxdy x dy a dx a dy− + = +  
and then solves for dy by extracting square roots: 

 
2 2 2

2 2

xydx adx x y a
dy

a x
− + + −

=
−

. 

This is equivalent to 
 2 2 2 2 2a dy x dy xydx adx x y a− + = + − . (1.2) 

Next, Euler applies the substitution 2 2y u a x= −  to (1.2), and by assuming 2 2x a≠  (otherwise 
0)y = , he obtains 

 2 2 2( ) 1a x du adx u− = − . (1.3) 
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Now, it is straightforward to check that 2 1u =  is a solution to (1.3) since 0du = .  Therefore, 
 2 2y a x= ± − , 
or upon squaring both sides, yields the circle of radius a centered at the origin as the solution 
(see Figure 2): 
 2 2 2x y a+ = . (1.4) 
 

 
Figure 2 

 
On the other hand, if 2 1u ≠ , then (1.3) can be separated as 

 2 22 1
du adx

a xu
=

−−
, 

 and upon integration Euler reveals a family of lines as the other solution to Problem I: 

 
2 2( 1) ( 1)
2 2
n ny x a
n n
− += + . (1.5) 

Here, n is a constant of integration.  Observe that the lines described by (1.5) are all tangent to 
the circle in (1.4) (see Figure 3) and reveals the circle as their envelope (see Figure 4). 
 

   
 

         Figure 3       Figure 4 
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Having now solved Problem I by the traditional method of integration, Euler then points 

out that this technique in many cases is quite inefficient and impractical.  For example, to 
separate variables in the third-order equation 
 3 33ydx xdy a dx dy− = + , (1.6) 
one would need to extract cube roots – not an easy task.  Moreover, this would certainly not be 
possible in the general case 

 
0

n
n k kn k

k
y dx xdy a c dx dy−

=

− = ∑ , (1.7) 

 where the constants kc  are arbitrary. 
 

Euler proceeds to solve (1.1) again, but this time using his novel method of 
differentiation.  Towards this end, he rewrites (1.1) in the form 
 21y px a p= + +  (1.8) 
where /p dy dx= .  Then differentiating (1.8) yields 

 
21

apdy xdp pdx dp
p

= + +
+

, 

which simplifies to 

 
2

0
(1 )
ap dpxdp

p
= +

+
. 

because dy pdx= .  Assuming 0dp ≠ , Euler concludes that 

 
2(1 )

apx
p

= −
+

 

and 

 
2

2 2

2 2
1 (1 )

(1 ) (1 )
ap ay px a p a p
p p

= + + = − + + =
+ +

. 

To eliminate the parameter p in the solution above for x and y, he sums their squares to 
obtain the same circle found in (1.4): 

 
2 2 2

2 2 2
21

a p ax y a
p
++ = =

+
. 

On the other hand, if 0dp = , then /p dy dx m= = , a constant.  This yields the linear solution  

 2(1 )y mx a m= + + , (1.9) 
which agrees with the solution previously found in (1.5) upon setting 2( 1) / (2 )m n n= − . 

To emphasize the usefulness of his new method, Euler then demonstrates how (1.6) can 
also be solved with ease by rewriting it in the form 
 33 (1 )y px a p− = +  (1.10) 
Differentiating (1.10) now yields 
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2

3 23 (1 )
ap dpdy p dx xdp
p

= + +
+

, 

which reduces it to 

 
2

3 23
0

(1 )
ap dpxdp
p

= +
+

. 

As before, by assuming 0dp ≠ , Euler is able to solve for x and y: 

 

2

3 23

3 23

,
(1 )

.
(1 )

apx
p
ay
p

−=
+

=
+

 (1.11) 

To eliminate p here, Euler sums the cube powers of x and y to obtain 

 
3 6 3 3 3

3 3 3
3 2 3 3

(1 ) (1 ) 2
(1 ) 1 1
a p a p ay x a

p p p
− −+ = = = − +

+ + +
, 

which allows him to solve for 

 
3 3 3

3 3

1
1 2

a x y
p a

+ +=
+

. 

Thus, 

 
23 3 3 3

33 23

( )
4(1 )

a a x yy
ap

+ += =
+

, (1.12) 

or equivalently, 
 3 3 3 3 3 24 ( )a y a x y= + + . (1.13) 
 

On the other hand, if we require 0dp = , then by the same argument /p dy dx m= = , a 
constant.  This produces the other solution: 
 3 31y mx a m= + + . (1.14) 

 
Of course Euler does not stop here but proceeds to demonstrate the solution for the 

general case given by (1.7).  We on the other hand shall not following him in this regard, but 
instead establish the even more general result: 
 
Theorem 1: If 
 ( )ydx xdy F p dx− = , (1.15) 
where /p dy dx=  and ( )F p  is a differentiable function of p with 0dp ≠ , then 

 
( )
( ) ( )

x F p
y F p pF p

′= −
′= −

 (1.16) 

Conversely, if )(pfx =  and )(pgy =  where dxdyp = ,  0≠dp , and f (p) and g(p) are 
differentiable functions of p, then (1.15) and (1.16) hold with  
 ( ) ( )F p f p dp= −∫  (1.17) 
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To prove this theorem, we rewrite (1.15) in the form 

 ( )y xp F p= +  (1.18) 
and differentiate it to get 
 ( )dy pdx xdp F p dp′= + + . (1.19) 
Then recognizing that dy pdx= , (1.19) simplifies to 

 0 ( )dp dpx F p
dx dx

′= + . (1.20) 

Assuming 0dp ≠ , we obtain the parametric solution 

 
( )
( ) ( )

x F p
y F p pF p

′= −
′= −

 

as desired.  On the other hand, if 0dp = , then /p dy dx m= = , a constant.  Thus, 
 ( )y mx F m= + . (1.21) 

Conversely, suppose )(pfx =  and )(pgy =  where dxdyp = ,  0≠dp , and f (p) and 
g(p) are differentiable functions.  It is then easy to see that dppfdx )(′=  and pdxdy = , 
therefore dppfpdy )(′= .  Using integration by parts, we further see that  

∫−= dppfppfy )()( . 

By making the substitution ∫−= dppfpF )()( , we have 

 
( ) '( ),
( ) '( ) ( ).

x f p F p
y g p pF p F p
= = −
= = − +

 (1.22) 

Hence )()()( pFppfpg =− , or equivalently, 
dxpFxdyydx )(=− . 

 
As an application of this Theorem, suppose we modify Problem I to require that the 

distance a be proportional to ds (infinitesimal arc length), i.e.   

 ydx xdy a kds
ds
− = = , 

where k is the proportionality constant.  The corresponding differential equation in this case 
takes the form 
 2 2( )ydx xdy k dx dy− = + , (1.23) 
or equivalently, 
 2(1 )ydx xdy k p dx− = +  (1.24) 
where /p dy dx= .  It follows from the Theorem with 2( ) (1 )F p k p= +  that 

 
2

'( ) 2 ,
'( ) ( ) (1 ).

x F p kp
y pF p F p k p
= − = −
= − + = −

 (1.25) 

The solution is thus a parabola: 

 
2

21
4
xy k
k

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
. (1.26) 
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III. Pedal Curves 
 

Problem I involves the notion of a pedal curve, first considered by Colin Maclaurin in his 
work Geometria Organica (1720) [1].  The pedal p of a curve c with respect to a point O (called 
the pedal point) is defined to be the locus of the foot of the perpendicular from O to the tangent 
of the curve.  Given the curve c it is easy to derive the formula for its pedal, as we shall see later. 
However, the inverse problem, i.e. finding c given its pedal p, is in general much more difficult.  
In this case, c is called the negative pedal of p. 

If we set c to be the curve !  in Problem I and the pedal point O to be origin, then V is the 
foot of the perpendicular to the tangent of c.  It follows that the locus generated by V is the pedal 
curve p corresponding to c.  Thus we see that Problem I is the inverse problem of determining 
those negative pedal curves c with constant pedal p, i.e. p has constant distance from the origin. 

Of course the modern approach to deriving the differential equation describing the pedal 
curve in Problem I is to formulate it in terms of vectors.  In particular, the value a AV=  can be 
viewed as the projection of the position vector     r = AM

! "!!!
= (x, y) onto the normal vector 

( , )dy dx= −n  for the tangent line (see Figure 5), i.e. 

 
   

r i n
n

= a  (1.27) 

 
It follows that 

 
2 2

xdy ydx a
dx dy

− + =
+

, 

which is equivalent to (1.1). 
 

 
Figure 5 

 
To solve (1.27), we first parametrize the solution curve r using the arc length parameter s so that 
r(s)  has unit speed, i.e., r '(s) = 1 .  Then it is well known that the unit normal vector 
N(s) = r ''(s) / r ''(s)  is perpendicular to r '(s)  and thus parallel to n.  It follows that (1.27) is 
equivalent to 
  r(s) iN(s) = ±a  (1.28) 
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Of course, the standard technique in differential geometry is to differentiate this equation so that 
it can be reformulated in terms of curvature: 
 
  r '(s) iN(s)+ r(s) iN '(s) = 0  (1.29) 
 
Now use the fact that r '! N  and N ' = !" r ' , where !  is the curvature of r (see [5]), to simplify 
(1.29) to 
 
  ! (r i r ') = 0  (1.30) 
 
It follows that either ! = 0 , in which case r is a line, or  r i r ' = 0 , in which case r is a circle.  
Thus, we recover the same two solutions as Euler did. 
 

Problem I can be generalized to three dimensions as follows: 
 

PROBLEM I-3D 
 

Determine a surface M whose tangent plane at every point P has constant 
distance k from the origin (Figure 6). 

 

 
Figure 6 

 
Let us call M a tangentially equidistant (TED) surface of distance k.  To derive the 

corresponding differential equation for TED surfaces, we again view the distance k as the 
projection of the position vector     r = OP

! "!!
= (x, y, z)  onto the normal vector 

   n = (!"z / "x,!"z / "y,1)  for the tangent plane at P: 

 
   

r i n
n

= k . 

It follows that S is modeled by the following nonlinear partial differentiation equation: 

 
22

1z z z zz x y k
x y x y

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞− − = + + ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
. (1.31) 

Using our intuition from Problem I, it is clear that (1.31) should have two types of 
solutions: the sphere 2 ( )S k  of radius k centered at the origin, i.e. 2 2 2 2x y z k+ + = , and every 
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one of its tangent planes.  However, there is a third family of solutions that is quite interesting 
and consists of developable ruled surfaces generated from spherical curves lying on 2 ( )S k . 

To derive these three families of solutions, denote by /p z x= ∂ ∂  and /q z y= ∂ ∂  so that 
(1.31) becomes 
 2 21z xp yq k p q− − = + + . (1.32) 
Then following Euler we differentiate (1.32) with respect to x yields 

 
2 21

z p q k p qp x y p q
x x x x xp q
∂ ∂ ∂ ∂ ∂⎛ ⎞− − − = +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠+ +

. (1.33) 

Since /p z x= ∂ ∂ , (1.33) simplifies to 

 
2 21

p q k p qx y p q
x x x xp q

∂ ∂ ∂ ∂⎛ ⎞+ =− +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠+ +
. (1.34) 

Similarly, differentiating (1.32) with respect to y yields 

 
2 21

p q k p qx y p q
y y y yp q

⎛ ⎞∂ ∂ ∂ ∂+ =− +⎜ ⎟∂ ∂ ∂ ∂+ + ⎝ ⎠
. (1.35) 

 
CASE I: Assume the partial derivatives for p and q to be non-zero: 
 / 0, / 0, / 0, / 0p x p y q x q y∂ ∂ ≠ ∂ ∂ ≠ ∂ ∂ ≠ ∂ ∂ ≠ . 
Then equating coefficients for these partial derivatives on the left and right hand sides of (1.34) 
and (1.35) yields the following solution: 

 

2 2

2 2

2 2

2 2

,
1

,
1

1 ,
1

kpx
p q
kqy
p q

kz xp yq k p q
p q

=−
+ +

=−
+ +

= + + + + =
+ +

 (1.36) 

which represents a sphere of radius k (Figure 7): 
 2 2 2 2x y z k+ + = . 
 

 
Figure 7 
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CASE II: Assume all four partial derivatives vanish identically: 
 / 0, / 0, / 0, / 0p x p y q x q y∂ ∂ = ∂ ∂ = ∂ ∂ = ∂ ∂ = . 
It follows that p and q are both constant, say p m=  and q n= .  Thus, we obtain a family of 
planes as our second solution set: 
 2 21z mx ny k m n= + + + + . (1.37) 
 
Ruled TED Surfaces 
 
In this section we present a third family of TED surfaces and demonstrate how they can be 
constructed as ruled surfaces generated from spherical curves.  A surface M is called a ruled 
surface if it has a coordinate patch    x : D ! !2 " M ! !3  of the form (see [2]) 
 ( , ) ( ) ( )u v u v uβ δ= +x . (1.38) 
Here, ( )uβ  and ( )uδ  are curves in   !3  and the surface S can be viewed as consisting of lines 
emanating from ( )uβ  (directrix) and moving in the direction ( )uδ  (ruling).  To obtain ruled 
TED surfaces, we restrictβ  to being a spherical curve lying on 2 ( )S k .  Since 2 ( )S k  is an 
equidistant surface, it follows that ( , )u vx  describes an TED surface M if every tangent plane of 
M is also a tangent plane of 2 ( )S k .  This holds if both parameter tangent vectors   

 
( , ) '( ) '( )
( , ) ( )
u

v

u v u v u
u v u

β δ
δ

= +
=

x
x

 

lie on the tangent plane 2
( ) ( )uT S kβ , or equivalently, if 2

( )( ) ( )uu T S kβδ ∈ and all three vectors 
'( )uβ , ( )uδ , and '( )uδ  are coplanar .  In that case the unit normal  

 u v

u v

x xU
x x
×=
×

 

for M does not depend on v since pT M  is constant in the v-direction and so the normal curvature 
of M is zero in the same direction.  Thus, M is a developable surface, i.e. a surface having zero 
Gaussian curvature.  We summarize this formally in the following theorem. 
 
Theorem 2: Let M be a ruled surface having a coordinate patch of the form  
 ( , ) ( ) ( )u v u v uβ δ= +x , 
where β  is a spherical curve on 2 ( )S k  and 2

( )( ) ( )uu T S kβδ ∈ .  If '( )uβ , ( )uδ , and ( )uδ  are 
coplanar, then 2

( , ) ( ) ( )u v uT M T S kβ=x  and thus M is a developable ruled TED surface of distance k. 
 
To construct such surfaces based on our theorem, define 
 ( ) ( ) '( )u u uδ β β= × . 
We claim that this choice of δ  yields a developable TED surface M defined by (1.38).  To prove 
this, first observe that 2

( )( ) ( )v uu T S kβδ= ∈x  since ( )uδ  is perpendicular to ( )uβ  and thus 

perpendicular to the unit normal ( ) / ( )U u uβ β=  for 2 ( )S k .  To prove that '( )uβ , ( )uδ , and 
'( )uδ  are coplanar, we will show that their scalar triple product vanishes.  Towards this end 
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recall that ( )uβ  is perpendicular to '( )uβ  since β  has constant distance k from the origin and 
so , ',β β δ  are mutually orthogonal.  It follows that 

2'( ) ( ) '( ) ( )u u u uβ δ β β× = . 
Thus,  
   ! 'i (" '#! ) = (" '# " '+ " # " '') i ( "

2
" ) = (" # " '') i ( "

2
" ) = 0 . 

This proves that the vectors '( )uβ , ( )uδ , and '( )uδ  are coplanar.  Thus, by our theorem M is a 
developable ruled TED surface of distance k. 
 
Let us now finish our discussion by considering a couple of examples of developable ruled TED 
surfaces generated from our construction. 
 
Example 1: Assume β  is a parallel (latitude) of 2 ( )S k  of the form 
 0 0 0( ) (cos cos ,sin cos ,sin )u u v u v vβ = , 
where 0v  is its latitude.   Then the corresponding developable ruled TED surface M is a cone 
circumscribing the sphere (Figure 8), unless β  is an equator ( 0 0v = ), in which case M is a 
cylinder (Figure 9). 

   
       Figure 8     Figure 9 
 
Example 2: Assume β  is the spherical figure-8 curve (see Figure 10) given by 
 2( ) (sin cos ,sin ,cos )u u u u uβ =  

 
Figure 10 

 
Then the corresponding developable ruled TED surface M is shown in Figures 11 and 12 (side 
views) circumscribing the sphere. 
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Figure 11      Figure 12 

 
Observe that other TED surfaces can be constructed by taking any region SΔ  of the 

sphere 2 ( )S k and attaching to it the developable ruled TED surface corresponding to the 
boundary of SΔ  (assumed to be a simple closed spherical curve).  One such example is the silo 
surface obtained as the union of the upper hemisphere and the cylinder generated as a ruled 
surface from the circular boundary (equator) of the hemisphere (see Figure 13). 

 
Figure 13 

 
We conclude by asking whether the converse holds true, i.e. whether every TED surface must 
either be the sphere of radius k, a developable ruled surface, or unions of developable ruled TED 
surfaces with regions of the sphere.  Our intuition says that it should be true but we have not 
been able to prove this.  Of course, counterexamples are most welcome! 
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