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In this article we discuss an interesting but not so well known matrix determinant formula for 
Bernoulli polynomials by considering a square version of Pascal’s triangle and present an 
extension of this formula to a class of generalized Bernoulli polynomials. 

 
1. Introduction 

 
Pascal’s triangle is one of the most recognized number patterns in mathematics.   It is 

commonly arranged as the triangular array of numbers 

  (1.1) 

1
1 1

1 2 1
1 3 3 1

1 4 6 4
...

1

However, this arrangement is not the original form of Pascal’s triangle.  Pascal himself 
presented the following right-angle form of it in 1654 in his work Traité du triangle 
arithmétique, where he called it the arithmetical triangle ([2]):  
 

  (1.2) 

1 1 1 1 1
1 2 3 4
1 3 6
1 4
1
...

Even earlier in 1544 Stifel from Germany had constructed the following shifted but 
incomplete version of the arithmetical triangle (referred to as the figurate or binomial triangle 
by Pascal’s predecessors): 
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  (1.3) 

1
2
3 3
4 6
5 10 10
...

The full version of (1.3), 

  (1.4) 

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
...

was later used by Jacob Bernoulli in Ars conjectandi, published eight years after his death in 
1713, to establish formulas for sums of powers involving certain coefficients nB  that today 
bear his name, the Bernoulli numbers: 

 1
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These numbers, of which the first six are 

 
0 1

2 3

4 5

1, 1/ 2,
1/ 6, 0,

1/ 30, 0,

B B
B B
B B

= = −
= =
= − =

 (1.6) 

can be defined by the recursive formula 
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Euler later showed that Bernoulli numbers can also be defined by the series formula 

 
01 !

n

nt
n

t B
e n

∞

=

=
− ∑ t , (1.8) 

an approach that effectively created a whole theory based on generating functions. 
In this article we consider a square version of Pascal’s triangle and demonstrate how it 

arises in explicit formulas for Bernoulli numbers, Bernoulli polynomials, and their 
generalizations.  To this end, we transform (1.4) into an infinite matrix P that we refer to as 
Pascal’s square: 

 

 2



  (1.9) 

1 0 0 0 0 ...
1 1 0 0 0 ...
1 2 1 0 0 ...
1 3 3 1 0 ...
1 4 6 4 1 ...
...

P

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

⎟

It follows that the entries of  can be defined by the binomial formula ( )mnP p=

 
1
1mn

m
p

n
−⎛

= ⎜
⎞
⎟−⎝ ⎠

, (1.10) 

where for nonnegative integers m and n we have 

 ( 1)( 2)...( 1)
!

m m m m m n
n n

⎛ ⎞ ⋅ − − − +
=⎜ ⎟

⎝ ⎠
. 

The matrix P can in fact be found implicitly in Turnbull’s classic textbook on determinants 
[5] where it appears (except for the first two rows and main diagonal) in an explicit 
determinant formula for Bernoulli numbers1, obtained by equating series coefficients in (1.8) 
and solving the corresponding linear system of equations: 

 
1( 1)

1 2 0 0 ... 0
1 3 3 0 ... 0
1 4 6 4 ... 0
1 5 10 10 ... 0

( 1)! ... ... ... ... ... ...
1 1 1 1 1

...
0 1 2 3 1

n

n

n

B
n

n n n n n
n

−−
=

+

+ + + + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (1.11) 

where the dimension of the matrix is n n× .   More generally, the Bernoulli 
polynomials ( )nB x , defined by 

 
0

( )
1 !

xt n

nt
n

te tB x
e n

∞

=

=
− ∑  (1.12) 

and whose value at  equals0x = nB , can be similarly expressed by the formula (see [1]): 

                                                 
1 The origin of this formula for the Bernoulli numbers is unclear; the authors have not been able to trace it back 
farther than Turnbull.  

 3



 
( )

2

3

4

1

1 0 0 0 ... 0
1 2 0 0 ... 0
1 3 3 0 ... 0
1 4 6 4 ... 0
... ... ... ... ... ...

...
0 1 2 3 2

n

n n n n n
n

+

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1 1 0 0 0 0 ... 0
1/ 2
1/ 3
1/ 4( 1)
1/ 5

... ...

1/( 1)

( )
( 1)!

n

n

n

x
x
x
x

x n

B x
n
−

+

=
−

 (1.13) 

Observe that the matrix in formula (1.11) appears as a sub-matrix in formula (1.13). 
The explicit formulas (1.11) and (1.13) do not seem to be very well known.  We have 

been unable to find references that cite these formulas besides [5] and [1].  They certainly 
deserve more attention since they provide a beautiful connection with Pascal’s triangle and 
illustrate a useful application of calculus and linear algebra, which is the first goal of this 
article.  The second goal is to demonstrate how (1.13) can in fact be extended to a class of 
generalized Bernoulli polynomials first studied by F. Howard [4], who considered the 
following natural generalization of (1.12): 
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Here, N is any positive integer and  
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is the Maclaurin polynomial of having degree xe 1N − .   Howard was able to show that the 
polynomials ( , )nB N x defined by (1.14) and referred to as hypergeometric Bernoulli 
polynomials in [3], share many of the properties possessed by the classical Bernoulli 
numbers.  Our contribution is a determinant formula for ( , )nB N x that is analogous to (1.13): 

 
( )( 1) ( !) 1!2!3!...( 1)!( , )

1!2!3!...( 1)!1!2!3!... !

n n

n
N n N

ijB N x b
n N

− − −
=

−
 (1.16) 

where the matrix (  has entries )ijb

  (1.17) 

1

1

1

1
2

1

1
2

2

i

ij

x j

i j N
b

i

i
j N

j N

−

−

⎧
⎪ =⎪
⎪ − + +⎛ ⎞⎪= ≤⎨⎜ ⎟−⎝ ⎠⎪
⎪ −⎛ ⎞⎪ ≥ +⎜ ⎟− −⎪ ⎝ ⎠⎩

2j N≤ +

Observe that a portion of Pascal’s square appears in the matrix ( )ijb .  This becomes clear if 

we set .  Then , 1m i n j N= = − − mn ijp b=  for 1 ,i j j N 2+ ≥ ≥ + , where  is ( )mnP p=
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Pascal’s square defined by (1.10).  Thus it can be argued that Pascal’s square is a natural 
extension of Pascal’s triangle. 
 
Historical comment: It is possible that Bernoulli would have discovered formula (1.11) had 
he known about Leibniz’ theory in solving linear systems of equations via matrices and 
determinants, which essentially evolved into our modern theory of linear algebra.  
Unfortunately, Leibniz never published any of his works on this topic ([6]). 
 

2. Bernoulli Polynomials and Matrix Determinants 
 
Let f and g be functions described by power series 

 
0 0

( ) , ( )n
n

n n

n
nf t c t g t a

∞ ∞

= =

= = t∑ ∑ . (2.1)    

Consider their quotient: 

 
0

( )
( )

n
n

n

f t A t
g t

∞

=

=∑ . (2.2) 

  
A formula for  can be obtained by equating coefficients in nA (2.2), which yields the system 
of equations 

 

0 0 0

1 0 1 1 0

2 0 2 1 1 2 0

0 1 1

,
,

,
 ...  

... .n n n n

c a A
c a A a A
c a A a A a A

c a A a A a A− 0

=
= +
= + +

= + + +

 (2.3) 

From which, solving for  through a variation of Cramer’s rule, we obtain (see [5]) nA

 

0 0

1 1 0

2 2 1 0

0

1 1 2 3 0

1 2 1 1

0 0 ... 0
0 ... 0

... 01( 1)
... ... ... ... ... ...

...

...

n
n n

n n n n

n n n n n

c a
c a a
c a a a

A
a

c a a a a
c a a a a
− − − −

− − +

= − , (2.4) 

where the index  refers to the dimension of the matrix. 1n+
To apply this to the Bernoulli polynomials ( )nB x , we employ (1.12) and view it as the 

division of two series as follows: 

 0

0

0

!
1

( 1)!

n n
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x t
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∞
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=
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=

= =
−

+

∑
∑

∑
, (2.5) 

Since ( ) !n nB x n A= , we have from (2.4) the following determinant formula upon setting 
 and  : / !n

nc x n= 1/( 1)!na n= +
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2

( )
3

1

( ) 1

1 1 0 0 0 0 ... 0

1 0 0 0 ... 0

1 0 0 ... 0
( 1)

1 0 ... 0

... ... ... ...

... 1

( 1)

1
1! 2!

1 1
2! 3! 2!

( ) !
1 1 1

3! 4! 3! 2!
... ... ... ...
1 1 1 1 1

! ( 1)! ! ( 1)! ( 2)! ( 3)!

!

n
n

n

n

n
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x

x

B x n
x

x
n n n n n n
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+

−

−

=

+ − − −

=

 (2.6) 

where 

 1 1

0 if 1
/( 1)! 1

1/( 2)! 1 , 1

i
ij

i j
b x i j

i j i j j

−

+ <⎧
⎪= − =⎨
⎪ − + + ≥⎩ ≠

 (2.7) 

Next, we modify the entries of the matrix in 1( )ijb (2.6) by performing the following row and 
column operations: 
1. Beginning with the first row, we factor 1/( 1)!i −  from row i to obtain 
 

 

2
( )

3

( )

1

2

1 1 0 0 0 0 0

0 0 0 0

0 0 0
!( 1)

0 0

... ...

!( 1)

1 1
2!
2! 1 2!
3!( )
3! 3!1!2!3!...( 1)!( )! 1 3!
4! 2!
... ... ... ... ...

! ! !1 .
( 1)! ( 1)! ( 2)!

1!2!3!...( 1)!( )!

n

n

n

n

n

ij

x

n

n

x
B x

n n x

n n nx n
n n n

b
n n

+

−

−

=
−

+ − −

=
−

.. !

!

 (2.8) 

where 

  (2.9) 
1

2

0 1
1

( 1) / ! 2
( 1)!/( 2)! 1 , 1,2

i

ij

i j
x j

b
i i j

i i j i j j

−

+ <⎧
⎪ =⎪= ⎨ − =⎪
⎪ − − + + ≥ ≠⎩

2. Now, starting with the third column, we factor ( 3)j −  from column  j in .  This yields 2( )ijb
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2
( )

3

( )

1

3

1 1 0 0 0 0 0

0 0 0 0

0 0 0
( 1)

0 0

... 0

( 1)

1 1
2!
2! 1 2!

1!2!3!...( 2)! 3!( )
3! 3! 3!1!2!3!...( 1)! 1
4! 2! 2!
... ... ... ... ...

! ! ! !1 ...
( 1)! ( 1)! ( 2)!2! 2!( 2)!

1!2!3!...( 2)!
1!2!3!...( 1)!

n

n

n

n

n

ij

x

x
nB x

n x

n n n nx
n n n n

n b
n

+

−

−

−
=

−

+ − − −

−
=

−

(2.10) 

where 

 

1

3

1
1/ 2

1
2

3

i

ij

x j
b i j

i
j

j

−

⎧
⎪ =⎪⎪= =⎨
⎪ −⎛ ⎞⎪ >⎜ ⎟⎪ −⎝ ⎠⎩

 (2.11) 

Lastly, the matrix  in 3( )ijb (2.10) can be simplified and written in terms of binomials from 
which most of Pascal’s square appears (in red). 
 
Theorem 1: (Costabile, Dell’Accio, Gualtieri) 
 

 

( )

( )

2

3

4

1

1 0 0 0 ... 0
1 2 0 0 ... 0
1 3 3 0 ... 0
1 4 6 4 ... 0
... ... ... ... ... ...

...
1 3 20 2

n

n n n n n
n

+

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎠⎝ ⎠ ⎝

1 1 0 0 0 0 ... 0
1/ 2
1/ 3
1/ 4( 1)
1/ 5

... ...

1/( 1)

( 1)

( )
( 1)!

( 1)!

n

n

n

n

ij

x
x
x
x

x n

B x
n

b
n

−

+

−

−
=

=
−

 (2.12) 

where 
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1 1
1/ 2

1
2

3

i

ij

x j
b i j

i
j

j

−

⎧
⎪ =⎪⎪= =⎨
⎪ −⎛ ⎞⎪ >⎜ ⎟⎪ −⎝ ⎠⎩

 (2.13) 

Note: In order to obtain formula (1.11) for Bernoulli numbers, it suffices to set  in 0x = (2.12) 
and expand the determinant along the first column to obtain: 

 
1( 1)

1/ 2 1 0 0 ... 0
1/ 3 1 2 0 ... 0
1/ 4 1 3 3 ... 0
1/ 5 1 4 6 ... 0(0)

( 1)! ... ... ... ... ... ...

1 ...
0 1 2 21

n

n n

n

B B
n

n n n n
nn

−−
= =

+

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−+ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (2.14) 

Then perform the following row and column operations on the matrix appearing in (2.14): 
multiply row i by  and divide column j, beginning with the third column, by .  From 
this we obtain 

1i + 1j −
(1.11) with Pascal’s square embedded in it but with the main diagonal deleted.  

 
3. Hypergeometric Bernoulli Polynomials 

 
In 1977 Howard generalized Bernoulli polynomials by considering the following 

generating function: 

 
01

! ( , )
( ) !

N
xt

n

nt
nN

t e tN B N x
e T t n

∞

=−

=
− ∑  (3.1) 

where  is a positive integer and N

 
0

( )
!

nN

N
n

tT t
n=

=∑ . (3.2) 

We shall refer to ( , )nB N x  as hypergeometric Bernoulli polynomials of order N. Observe that 
for , equation 1N = (3.1) reduces to (1.12).  As before we express Howard’s generating 
function as the division of two series as follows: 

 
1

0

( )

!

n
xt n

n o
t

nN
nN

n

c t
e

e T t a t
t
N

∞

=
∞

−

=

=
−

∑

∑
, (3.3) 

where 
!

n

n
xc
n

=  and !
( )n

Na
n N

=
+ !

.  It follows from (2.4) that 

 ( ) 1( 1)( , ) ! n
n ijB N x n b−= , (3.4) 
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where the ( 1 matrix  has entries ) ( 1n n+ × + ) 1( )ijb

 
1

1

0 1

1 , 1
( 1)!

! 1 ,
( 1)!

i

ij

i j
xb i

i
N i j j

i j N

−

⎧
⎪ + >
⎪
⎪

= +⎨ −⎪
⎪

2

j j≥ =

+ ≥ ≥⎪
− + +⎩

 (3.5) 

Next, we perform the following row and column operations on the matrix  as before: 1( )ijb
1. Starting with the second column, we factor  from column j so that !N
 ( ) 2( 1)( , ) ! ( !)n n

n ijB N x n N b−=  (3.6) 
where 

 
1

2

0 1

1 , 1
( 1)!

1 1 , 2
( 1)!

i

ij

j i
xb i

i

i j j
i j N

−

⎧
⎪ + >
⎪
⎪

= +⎨ −⎪
⎪

j j≥ =

+ ≥ ≥⎪
− + +⎩

 (3.7) 

2. Beginning with the first row, we factor 1/( 1)!i −  from row i in so that 2( )ijb

 
( )

3( 1) ( !)( , ) !
1!2!3!... !

n n

n
N

ijB N x n b
n

−
=  (3.8) 

where 

 3 1

0 1
1 ,

( 1)! 1 ,
( 1)!

i
ij

i j
b x i j

i i j j
i j N

−

⎧
⎪ + >
⎪⎪= +⎨
⎪ −⎪

1

2

j≥ =

+ ≥ ≥
− + +⎪⎩

 (3.9) 

3. Now, for columns 2 to , we factor 1/2N + ( 2 )!N j+ −  from column j in .  For columns 
greater than , we factor  from column j.  This yields 

3( )ijb
2N + ( j N− − 2)!

 
( )

4( 1) ( !) 1!2!3!...( 1)!( , )
1!2!3!...( 1)!1!2!3!... !

n n

n
N n N

ijB N x b
n N

− − −
=

−
 (3.10) 

where 
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1
1

4

0 1
1 , 11

( 1)!( 2 )! 1 , 2 2
( 1)!

( 1)! 1 , 2
( 1)!( 2)!

i
i

ij

i j
x i jx j

i N jb i
i j N

i i j j N
i j N j N

−
−

+ >⎧
⎪ + ≥ =⎪⎧ =
⎪ − + −⎪= +⎨ ⎨ − + +⎪ ⎪

⎩ ⎪ −
+ ≥ ≥ +⎪

− + + − −⎩

j

j j N≥ ≤ ≤ +  (3.11) 

The resulting matrix is then simplified and expressed in terms of binomials, which leads to 
our main result. 
 
Theorem 2:  

 
( )( 1) ( !) 1!2!3!...( 1)!( , )

1!2!3!...( 1)!1!2!3!... !

n n

n
N n N

ijB N x b
n N

− − −
=

−
, (3.12) 

where 

  (3.13) 

1

1

1

1
2

1

1
2

2

i

ij

x j

i j N
b

i

i
j N

j N

−

−

⎧
⎪ =⎪
⎪ − + +⎛ ⎞⎪= ≤⎨⎜ ⎟−⎝ ⎠⎪
⎪ −⎛ ⎞⎪ ≥ +⎜ ⎟− −⎪ ⎝ ⎠⎩

2j N≤ +

 
Discussion of Special Cases: 
I.  0N =
Below is the explicit determinant formula for hypergeometric Bernoulli polynomials 
when , which reduces to the binomial polynomials: 0N =
 

 ( )

2

3

4

1

1 0 0 0 0 ... 0
1 1 0 0 0 ... 0
1 1 0 0 ... 0
1 3 1 0 ... 0
1 4 6 4 1 ... 0

... 0

1 ...

2
3

... ... ... ... ...

1 2 3 4 1
n

n n n n n
n

+

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1

( 1) ( 1)

...

(0, ) n n
n

n

x
x
x

x
x

x

B x − −= =  (3.14) 

Notice the entire version of Pascal’s square (in red) is embedded in the matrix above starting 
with the second column. 
 
II.  1N =
In this case it is easy to check that formula (3.12) reduces to (1.13).        
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III.  2N =
Below is the explicit determinant formula for Bernoulli Polynomials when : 2N =

 
( ) ( 1)

2

3

4

1

1 1 0 0 0 0 ... 0

0 0 0 ... 0

( 1) 2

..

1 0 0 ... 0

1 3 0 ... 0

1 4 6 ... 0

... ... ... 0

...
1 2 3

...
n n n

n
1

.

1 1
3 2
1 1
6 3
1 1

10 4(2, )
( 1)!( 2)! 1 1

15 5
... ...

1 1
2 1

2 1

n n

n

n

n

x

x

x

x

x

B x
n n

n n

−−
=

− −

+ +⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.15) 

+

−
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Notice a smaller portion of Pascal’s square appears in red in (3.15) beginning with the third 
row and fourth column.  
 
Concluding Remarks: The connection between hypergeometric Bernoulli polynomials and 
hypergeometric functions is seen through the relation 

 
1 1 1

!
( ) (1, 1, )

N
xt

xt

t
N

t e eN
e T t F N t−

=
− +

, (3.16) 

where the confluent hypergeometric function 1 1(1, 1, )F N t+  is defined by 

 1 1
0

( )( , , )
( ) !

n
n

n n

a tF a b t
b n

∞

=

=∑ . (3.17) 

Since hypergeometric Bernoulli polynomials are defined by (3.1), we can employ (3.16) to 
further generalize ( , )nB N x  by using the alternate definition 

 
0 1 1

( , )
! (1, 1, )

n xt

n
n

t eB N x
n F N t

∞

=

=
+∑ , (3.18) 

valid for all positive real values of N.  An interesting open problem is to extend formula 
(3.12) for ( , )nB N x  in this situation. 
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