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Abstract

We generalize the construction of Doppler-tolerant Golay complementary waveforms by Pezeshki-Calderbank-

Moran-Howard to complementary code sets having more than two codes. This is accomplished by exploiting number-

theoretic results involving the sum-of-digits function, equal sums of like powers, and a generalization to more than

two symbols of the classical two-symbol Prouhet-Thue-Morse sequence.
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I. INTRODUCTION

A set of K unimodular codes of length N is complementary if corresponding sidelobes of the autocorrelations

of the separate codes sum to zero. These sets find uses in waveform design for enhanced detection in radar systems

[1] and in communication systems [2][3]. When the code is binary, the set is called a Golay complementary pair,

after Marcel Golay who discovered these sets while solving a problem in infrared spectrometry [4]. Complementary

Code Matrices (CCMs) provide a useful matrix formulation for the study of complementary code sets [5]. Given

a set of K codes of length N , the corresponding N ×K complementary code matrix (CCM) has the kth code as

its kth column, k = 1, . . . ,K.

Complementary code sets have yet to be widely used for radar waveform designs due to certain design challenges.

These include sensitivity to Doppler shift due to non-zero relative velocity of a target relative to the radar platform

[1][6]. Complementary code sets may be used in a number of ways in waveform design. Two of these ways are the

time-separation approach, where time-separated pulses or subpulses are phase coded using different codes in the set

[7][8], and frequency-separation, where the different codes are used for phase encoding of separate components of

a signal and are transmitted concurrently using pulses with different center frequencies [9][10]. The time-separation

approach is especially sensitive to Doppler shift.

With time-separated pulses encoded using the codes from a complementary set, pulse returns may be match filtered

separately and then added to give zero autocorrelation sidelobes, in theory, a desirable result for radar detection.
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However, target relative velocity yields a phase shift pulse to pulse, and therefore a phase shift of sidelobes, thus

preventing zero sidelobe sums in general.

The development in this paper builds on work by Pezeshki, Howard, Moran, Calderbank, Chi and Searle

[4][7][8][9][10]. In particular, in [7], Chi, Calderbank and Pezeshki consider pulse trains in which the pulses

are phase coded with binary codes in a Golay complementary pair. They show that for any given M , M th-order

nulls can be created about the zero-Doppler axis of the ambiguity function by mapping the codes to pulses in an

order specified by the well-known (two-symbol) Prouhet-Thue-Morse sequence. We show that the result may be

generalized to (N,K) complementary code sets for K ≥ 2 by using a generalized Prouhet-Thue-Morse sequence

using m ≥ 2 symbols. The approach also makes use of results related to the Tarry-Escott problem [11][15][16], and

related number-theoretic entities such as the digit-sum function [12] and equal sums of like powers [17]. Finally, it

is shown that the transmission period and the total number of pulses transmitted may be reduced by using multiple

antennas to transmit separate pulse trains staggered in time.

II. NOTATIONS AND TERMINOLOGY

Definition 2.1. A p-phase matrix Q is one whose entries are p-th roots of unity, i.e. roots of zp = 1.

Definition 2.2. Given a unimodular code x of length N , the autocorrelation function (ACF) of x is defined as the

sequence of length 2N − 1

ACFx = x ∗ x

where ∗ represents aperiodic convolution and x means reversal of x. The elements ACFx(k) for k = 1 −

N, . . . ,−1, 0, 1, . . . , N − 1 may be written explicitly as sums of pairwise products of the elements of x:

ACFx(k) =

N−k∑
i=1

x[i]x[i+ k], (1)

for k = 0, 1, . . . , N − 1, where x[i] denotes the i-th component of x and x[i] represents complex conjugation. if

k = 1−N, . . . ,−1, then

ACFx(−k) = ACFx(k).

• |ACFx(N − 1)| = |x[1]x[N ]| = 1.

• When k = 0, ACFx(k) represents the peak of the autocorrelation, which equals

x[1]x[1] + . . .+ x[N ]x[N ] = ||x||2 = N.

Definition 2.3. [5] A p-phase N ×K matrix Q consisting of columns (x0, x1, . . . , xK−1) is said to be a comple-

mentary code matrix if

ACFx0
(n) + ACFx1

(n) + . . .+ACFxK−1
(n) = NKδn

for n = −(N − 1), . . . ,−1, 0, 1, . . . , (N − 1) where δn is the Kronecker delta function.
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Lemma 2.4. Let Q = (x0, x1, . . . , xK−1) be a p-phase N ×K CCM. Then

K−1∑
i=0

Xi(z)X̃i(z) = |X0(z)|2 + . . .+ |XK−1(z)|2

= NK

III. DOPPLER SHIFT IN RADAR

Let T = (x0, x1, . . . , xL−1) be a modulated pulse train whose ambiguity function is given by

g(k, θ) =

L−1∑
n=0

ejnθACFxn
(k), (2)

where k represents range or time delay and θ represents Doppler-shift-induced phase advance. We define the

z-transform of a code x of length N by

X(z) = x[0] + x[1]z−1 + ...+ x[N − 1]z−N+1

Following Pezeshki-Calderbank-Moran-Howard [4], the z-transform of g(k, θ) becomes

G(z, θ) =

L−1∑
n=0

ejnθ|Xn(z)|2. (3)

where

|Xn(z)|2 = ACFxn
(0) +

N−1∑
k=1

ACFxn
(k)zk +

N−1∑
k=1

ACFxn
(k)z−k.

Next, consider the Taylor expansions of g(k, θ) and G(z, θ) about θ = 0:

g(k, θ) =

∞∑
m=0

cm(k)
(jθ)m

m!
(4)

G(z, θ) =

∞∑
m=0

Cm(z)
(jθ)m

m!
. (5)

Here, the Taylor coefficients cn(k) and Cn(k) are given by

cm(k) =

L−1∑
n=0

nmACFxn
(k) (6)

Cm(z) =

L−1∑
n=0

nm|Xn(z)|2. (7)

The following theorem demonstrates an equivalence in terms of the “vanishing” of the Taylor coefficients cm(k)

and Cm(z).

Theorem 3.1. Let m be a non-negative integer. Then cm(k) = 0 for all non-zero k if and only if Cm(z) is constant
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and independent of z.

Proof. Assume cm(k) = 0 for all non-zero k. It follows from (2) that

Cm(z) =

L−1∑
n=0

nm|Xn(z)|2

=

L−1∑
n=0

nm(ACFxn
(0) +

N−1∑
k=1

ACFxn
(k)zk +

N−1∑
k=1

ACFxn
(k)z−k)

=

L−1∑
n=0

nmACFxn(0) +

L−1∑
n=0

nm
N−1∑
k=1

ACFxn(k)z
k +

L−1∑
n=0

nm
N−1∑
k=1

ACFxn(k)z
−k

=

L−1∑
n=0

nmACFxn
(0) +

N−1∑
k=1

L−1∑
n=0

nmACFxn
(k)zk +

N−1∑
k=1

L−1∑
n=0

nmACFxn
(k)z−k

=
L−1∑
n=0

nmACFxn
(0).

This proves that Cm(z) is constant and independent of z. Conversely, assume Cm(z) is constant and independent

of z. Then from the previous calculation we have

Cm(z) =

L−1∑
n=0

nmACFxn(0) +

N−1∑
k=1

cm(k)zk +

N−1∑
k=1

cm(k)z−k.

It follows that cm(k) = 0 for all non-zero k since Cm(z) is independent of z.

IV. GENERALIZED PROUHET-THUE-MORSE SEQUENCES

Denote by S(L) = {0, 1, . . . , L− 1} to be the set consisting of the first L non-negative integers.

Definition 4.1. Let n = n1n2 . . . nk be the base-p representation of a non-negative integer n, where ni ∈

{0, 1, . . . , p − 1} for i = 1, . . . , k. We define vp(n) ∈ Zp to be the least positive residue of the sum of the

digits ni modulo p, that is,

vp(n) ≡

(
k∑
i=1

ni

)
mod p.

Note that vp(n) = n if 0 ≤ n < p.

Definition 4.2 ([11]). Let p be a positive integer. We define the mod-p Prouhet-Thue-Morse (PTM) sequence

P = {a0, a1, . . .} to be such that

an = vp(n).

Example 4.3: Examples of P for p = 2, 3, 4 are given below. Observe that for p = 2, P reduces to the classical

Prouhet-Thue-Morse sequence [13].

p = 2:

P = {0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, . . .}
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p = 3:

P = {0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 0, 1, 2, . . .}

p = 4:

P = {0, 1, 2, 3, 1, 2, 3, 0, 2, 3, 0, 1, 3, 0, 1, 2, 1, 2, 3, 0, . . .}

Definition 4.4. Let p and M be positive integers and set L = pM+1. We define {S0, S1, . . . , Sp−1} to be a

Prouhet-Thue-Morse (PTM) p-block partition of S(L) = {0, 1, . . . , L− 1} as follows: if vp(n) = i, then

n ∈ Si.

Example 4.5: Examples of PTM block partitions are given below.

p = 2, M = 3, L = 16:

S0 = {0, 3, 5, 6, 9, 10, 12, 15}

S1 = {1, 2, 4, 7, 8, 11, 13, 14}

p = 3,M = 2, L = 27:

S0 = {0, 5, 7, 11, 13, 15, 19, 21, 26}

S1 = {1, 3, 8, 9, 14, 16, 20, 22, 24}

S2 = {2, 4, 6, 10, 12, 17, 18, 23, 25}

p = 4,M = 2, L = 64:

S0 = {0, 7, 10, 13, 19, 22, 25, 28, 34, 37, 40, 47, 49, 52, 59, 62}

S1 = {1, 4, 11, 14, 16, 23, 26, 29, 35, 38, 41, 44, 50, 53, 56, 63}

S2 = {2, 5, 8, 15, 17, 20, 27, 30, 32, 39, 42, 45, 51, 54, 57, 60}

S3 = {3, 6, 9, 12, 18, 21, 24, 31, 33, 36, 43, 46, 48, 55, 58, 61}

Theorem 4.6 ([11][15],[16]). Let p and M be positive integers and set L = pM+1. Define {S0, S1, . . . , Sp−1} to

be a PTM p-block partition of S(L) = {0, 1, . . . , L− 1}. Then∑
n∈S0

nm =
∑
n∈S1

nm = . . . =
∑

n∈Sp−1

nm

for m = 1, . . . ,M .

It will be convenient to define Pm := Pm(p,M) =
∑
n∈S0

nm to be the mth Prouhet sum corresponding to p and

M .
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Let (A0, A1, . . .) be a sequence of elements satisfying the aperiodic property

An = Avp(n).

We shall define an orthogonal set of sequences wi(n) whose values are given by the Rademacher functions [14].

These sequences will be used to define a transformation of the elements (A0, A1, . . . , Ap−1) whose invertibility

provides a useful decomposition for isolating sidelobes in the total autocorrelation of a train of coded pulses.

Definition 4.7. Let

i = d
(i)
p−12

p−1 + d
(i)
p−22

p−2 + . . .+ d
(i)
1 21 + d

(i)
0 20

be the binary expansion of i, where i is a non-negative integer with 0 ≤ i ≤ 2p−1. Define w0(n), w1(n), . . . , w2p−1(n)

to be binary ±1-sequences

wi(n) = (−1)d
(i)

p−1−vp(n)

for n = 0, 1, . . ..

Theorem 4.8 ([14]). Define

Bi =

p−1∑
n=0

wi(n)An

for i = 0, 1, . . . , 2p − 1. Then

An =
(
1/2p−1

) 2p−1−1∑
i=0

wi(n)Bi

for n = 0, 1, . . ..

Because of Theorem 4.8, we shall call w0(n), w1(n), . . . , w2p−1−1(n) the PTM weights of An with respect to

(B0, B1, . . . , B2p−1−1).

Example 4.9: Examples illustrating Theorem 4.8 are given below.

(1) p = 2:

B0 = A0 +A1, A0 = 1
2 (B0 +B1)

B1 = A0 −A1, A1 = 1
2 (B0 −B1)

(2) p = 3:

B0 = A0 +A1 +A2, A0 = 1
4 (B0 +B1 +B2 +B3)

B1 = A0 +A1 −A2, A1 = 1
4 (B0 +B1 −B2 −B3)

B2 = A0 −A1 +A2, A2 = 1
4 (B0 −B1 +B2 −B3)

B3 = A0 −A1 −A2
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Theorem 4.10 ([14]). Suppose L = pM+1 where M is a non-negative integer. Write

An = (1/2p−1)w0(n)B0 + (1/2p−1)Sp(n) (8)

where

Sp(n) =

2p−1−1∑
i=1

wi(n)Bi.

Then
L−1∑
n=0

nmSp(n) = NmB0 (9)

for m = 1, . . . ,M where

Nm = 2p−1Pm −
L−1∑
n=0

nm.

V. DOPPLER-TOLERANT CCM WAVEFORMS

In this section we generalize the results in [7] and [10] by constructing Doppler-tolerant CCM waveforms.

Definition 5.1. We define a mod-p Prouhet-Thue-Morse (PTM) pulse train T = (x0, x1, . . . , xL−1) to be a sequence

satisfying

xn = xvp(n).

Let An(k) represent sidelobe k for the autocorrelation ACFxn of code xn. It follows that An(k) = Avp(n)(k).

At times, the sidelobe index k will be suppressed, when the property being discussed applies regardless of the

particular sidelobe.

We now use the results from the previous section to isolate the sidelobe term given by (9) in the ambiguity

function g(k, θ). Suppose L = pM+1 where M is a non-negative integer. It follows from (2) and (8) that

gp(θ) := g(k, θ)

=

L−1∑
n=0

Avp(n)e
jnθ

=

L−1∑
n=0

((1/2p−1)w0(n)B0 + (1/2p−1)Sp(n))e
jnθ

= (1/2p−1)B0

L−1∑
n=0

ejnθ + (1/2p−1)

L−1∑
n=0

Sp(n)e
jnθ.

The argument uses the fact that w0(n) = 1.
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Example 5.2. Let p = 2. Then g2(θ) reduces to equation (11) in [7]:

g2(θ) = (1/2)B0

L−1∑
n=0

ejnθ + (1/2)

L−1∑
n=0

S2(n)e
jnθ

= (1/2)(A0 +A1)

L−1∑
n=0

ejnθ + (1/2)(A0 −A1)

L−1∑
n=0

w1(n)e
jnθ,

where w1(n) = pn is the classical Prouhet-Thue-Morse sequence defined by the recurrence p0 = 1, p(2n) = p(n),

and p(2n+ 1) = −p(n).

Define

hp(θ) = (1/2p−1)

L−1∑
n=0

Sp(n)e
jnθ

so that

gp(θ) = (1/2)B0

L−1∑
n=0

ejnθ + hp(θ).

If Q = (x0, x1, . . . , xK−1) is a unimodular N × K CCM, then hp(θ) represents the sidelobes of gp(θ) since

B0 = A0 + A1 + . . . + AK−1 vanishes for all non-zero k, being the sum of the autocorrelation functions of

x0, x1, . . . , xK−1. Expanding hp(θ) in a Taylor series about θ = 0:

hp(θ) = (1/2p−1)

∞∑
m=0

sm ((jθ)m/m!)

where

sm =

L−1∑
n=0

nmSp(n).

The following result generalizes Theorem 2 in [7].

Theorem 5.3. Let Q be a unimodular N ×K CCM consisting of columns (x0, x1, . . . , xK−1) and M a positive

integer. Set L = KM+1 and extend Q to a pulse train T = (x0, x1, . . . , xK−1, xK , . . . , xL−1) where

xn = xvK(n)

for all n = 0, 1, . . . , L− 1. Then the Taylor coefficients sm of hK(θ) vanish up to order M , namely

sm = 0

for m = 1, . . . ,M .
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Proof. Set p = k. It follows from (9) that

sm = NmB0

= Nm(A0 +A1 + . . .+AK−1)

= Nm(ACFx0
(k) + ACFx1

(k) + . . .+ACFxK−1
(k)

= 0

for all non-zero k.

Next, we move to the z-domain and prove an equivalent version of Theorem 5.3 by generalizing Theorem 2 in

[8], which constructs Doppler-tolerant pulse trains in the z-domain.

Theorem 5.4. Let Q be a unimodular N ×K CCM consisting of columns (x0, x1, . . . , xK−1) and M a positive

integer. Set L = KM+1 and extend Q to a pulse train T = (x0, x1, . . . , xK−1, xK , . . . , xL−1) where

xn = xvK(n)

for all n = 0, 1, . . . , L− 1. Then the Taylor coefficients Cm(z) are independent of z up to order M , namely

Cm(z) = NKPm

for m = 1, . . . ,M where Pm is the mth Prouhet sum corresponding to K and M .

As in [4], we call T a mod-K Prouhet-Thue-Morse (PTM) pulse train of length L.

Proof. Let {S0, S1, . . . , SK−1} be a PTM K-block partition of S = {0, 1, . . . , L − 1}. It follows from Theorem

4.6 and Lemma 2.4 that

Cm(z) =

L−1∑
n=0

nm|Xn(z)|2

=
∑
n∈S0

nm|XvK(n)(z)|2 +
∑
n∈S1

nm|XvK(n)(z)|2

+ . . .+
∑

n∈SK−1

nm|XvK(n)(z)|2

= |X0(z)|2
∑
n∈S0

nm + |X1(z)|2
∑
n∈S1

nm

+ . . .+ |XK−1(z)|2
∑

n∈SK−1

nm

= (|X0(z)|2 + |X1(z)|2 + . . .+ |XK−1(z)|2)Pm

= NKPm

for m = 1, 2, . . . ,M .

Example 5.5: Examples of PTM pulse trains are given below.
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1. Let K = 2, M = 3, and (x0, x1) be a binary N × 2 CCM (Golay pair). Then the following is a mod-2 PTM

pulse train of length L = 24 = 16:

T = (x0, x1, x1, x0, x1, x0, x0, x1, x1, x0, x0, x1, x0, x1, x1, x0)

2. Let K = 3, M = 2, and (x0, x1, x2) be a tri-phase N × 3 CCM. Then the following is a mod-3 PTM pulse

train of length L = 33 = 27:

T = (x0, x1, x2, x1, x2, x0, x2, x0, x1, x1, x2, x0, x2, x0,

x1, x0, x1, x2, x2, x0, x1, x0, x1, x2, x1, x2, x0)

3. Let K = 4, M = 2, and (x0, x1, x2, x3) be a unimodular N × 4 CCM. Then the following is a mod-4 PTM

pulse train of length L = 43 = 64:

T = (x0, x1, x2, x3, x1, x2, x3, x0, x2, x3, x0, x1,

x3, x0, x1, x2, x1, x2, x3, x0, x2, x3, x0, x1,

x3, x0, x1, x2, x0, x1, x2, x3, x2, x3, x0, x1,

x3, x0, x1, x2, x0, x1, x2, x3, x1, x2, x3, x0,

x3, x0, x1, x2, x0, x1, x2, x3, x1, x2, x3, x0,

x2, x3, x0, x1)

VI. ESP STAGGERED PULSE TRAINS

In this section we introduce pulse trains, called ESP staggered pulse trains, that provide the same Doppler

tolerance as PTM pulse trains but are generally shorter in length, by using multiple antennas to transmit separate

pulse trains staggered in time. We begin with definitions of delayed pulse trains and partitions of arbitrary sets of

non-negative integers (not necessarily consecutive as with PTM partitions) having equal sums of powers.

Definition 6.1. We define a delayed pulse train

T (d) = (x0, x1, ..., xL−1)

of length L as one having a delay of d pulses in the sense that its ambiguity function has the form

gT (k, θ, d) =

L−1∑
n=0

ACFxne
i(n+d)θ

Definition 6.2. Let S be a set of non-negative integers and P = {S0, S1, . . . , Sp−1} be a p-block partition of S.

9-20-2014 DRAFT



11

We say that P has equal sums of (like) powers (ESP) of degree M if∑
n∈S0

nm =
∑
n∈S1

nm = . . . =
∑

n∈Sp−1

nm

for m = 1, . . . ,M . In that case, we define

Pm := Pm(C) =
∑
n∈S0

nm.

The following examples demonstrates our concept of using MIMO (multiple-input multiple-output) radar to

transmit ESP pulse trains whose overall transmission period is shorter than PTM pulse trains.

Example 6.3: (Second-order nulls) Let S = {0, 1, 2, 4, 5, 6} and consider the 2-block partition P = (S0, S1) of S,

where S0 = (0, 4, 5) and S1 = (1, 2, 6). Then P has ESP of degree 2 since

0 + 4 + 5 = 1 + 2 + 6

02 + 42 + 52 = 12 + 22 + 62

Observe that this partition consists of only six values (skipping the value 3) and is smaller in size than the 2-block

PTM partition of {0, 1, ..., 7}. Then given a Golay pair of codes (x0, x1), we can of course construct a single pulse

train based on the partition above by inserting a gap or fill pulse for the value at position 3:

T = (x0, x1, x1, , x0, x0, x1)

This approach however is impractical in terms of transmission. On the other hand, we can modify the partition P

so that it includes the value 3 in both sets:

S0 = (0, 3, 4, 5)

S1 = (1, 2, 3, 6)

Note that P is no longer a collection of mutually disjoint sets but continues to have ESP of degree 2. Suppose we

then transmit two separate pulse trains of length 4, T0 and T1 (each from a separate antenna), but staggered in the

sense that we delay the transmission of T1 by 3 pulses as follows:

T0 = (x0, x1, x1, x0)

T1(3) = (x1, x0, x0, x1)

Here, T0 transmits pulses corresponding to the first two values of S0 (positions 0 and 3) and the first two values

of S1 (positions 1 and 2). Similarly for T1(3), but corresponding to the last two values of S0 and S1. If we sum
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the composite ACFs of both pulse trains, then we obtain

g(k, θ) = gT0
(k, θ) + gT1

(k, θ, 3)

= ACFx0
(k) + ACFx1

(k)eiθ +ACFx1
(k)e2iθ

+ (ACFx0
(k) + ACFx1

(k))e3iθ +ACFx0
(k)e4iθ

+ACFx0
(k)e5iθ +ACFx1

(k)e6iθ

To show that g(k, θ) has Doppler nulls of order 2 at θ = 0, we compute its Doppler (Taylor) coefficients:

cm(k) = g(m)(k, 0)

= (0m + 3m + 4m + 5m)ACFx0(k)

+ (1m + 2m + 3m + 6m)ACFx1(k)

= Pm(ACFx0(k) + ACFx1(k))

= 2NPmδk

for m = 0, 1, 2. This demonstrates that we can achieve the same Doppler tolerance as with a single PTM pulse train

of length 8 by using instead two staggered (but overlapping) pulse trains of length 4 to reduce the total transmission

time from 8 pulses down to 7 pulses. Note however that the total number of pulses transmitted is the same, namely

8, in both cases.

Example 6.4: (Third-order nulls) Consider the following 2-block partition P = (S0, S1), where

S0 = (0, 4, 7, 11)

S1 = (1, 2, 9, 10)

which has ESP of degree 3, namely

0m + 4m + 7m + 11m = 1m + 2m + 9m + 10m

for m = 0, 1, 2, 3. As in the previous example, we modify this partition so that both sets S0 and S1 contain each

of the values 3, 5, 6, and 8:

S0 = (0, 3, 4, 5, 6, 7, 8, 11)

S1 = (1, 2, 3, 5, 6, 8, 9, 10)
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We now transmit four pulse trains T0, T1(3), T2(5), T3(8) on separate antennas having delays 0, 3, 5, 8, respectively:

T0 = (x0, x1, x1, x0)

T1(3) = (x1, x0, x0, x1)

T2(5) = (x1, x0, x0, x1)

T3(8) = (x0, x1, x1, x0)

Then it can be shown that the Doppler coefficients of the composite ambiguity function g(k, θ) has Doppler nulls

of order 3:

cm(k) = (0m + 3m + 4m + 5m + 6m + 7m + 8m

+ 11m)ACFx0
(k) + (1m + 2m + 3m + 5m

+ 6m + 8m + 9m + 10m)ACFx1
(k)

= Pm(ACFx0
(k) + ACFx1

(k))

= 2NPmδk

for m = 0, 1, 2, 3. Thus, we have reduced the total transmission time from 16 pulses (for a single PTM pulse

train of length 16 having the same Doppler tolerance) down to 12 by using instead four pulse trains transmitted

separately. Again, note that the total number of pulses transmitted is the same (16) in both cases.

Example 6.5: (Fifth-order nulls) Consider the following 2-block partition P = (S0, S1) which has ESP of degree

5:

S0 = (0, 5, 6, 16, 17, 22)

S1 = (1, 2, 10, 12, 20, 21)

We again modify this partition to include the values {3, 4, 7, 8, 9, 11, 13, 14, 15, 18, 19} without changing its degree:

S0 = (0, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 18, 19, 22)

S1 = (1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21)

We then transmit seven pulse trains T0, T1(3), T2(7), T3(8), T4(10), and T5(13), and T6(18) having delays 0, 3,
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7, 8, 10, 13, and 18, respectively:

T0 = (x0, x1, x1, x1, x1)

T1(3) = (x0, x0, x0, x0, x1)

T2(7) = (x0, x0, x0)

T3(8) = (x1, x1, x1, x1, x1)

T4(10) = (x0, x1, x1, x1, x1)

T5(13) = (x0, x0, x0, x0, x0, x0, x0)

T6(18) = (x1, x1, x1, x1, x0)

Again it can be shown that the Doppler coefficients of the composite ambiguity function g(k, θ) has Doppler nulls

of order 5. Thus, we have reduced the total transmission time from 64 pulses (for a single PTM pulse train of

length 64 having the same Doppler tolerance) down to 23 by using instead seven pulse trains transmitted by separate

antennas. Unlike Examples 6.3 and 6.4, the total number of pulses transmitted for all seven staggered pulse trains

is only 40 in comparison to 64 for a single PTM pulse train. We observe that the three pulse trains T2(7), T3(8),

and T5(13) are constant in value.

VII. CONCLUSIONS

Pezeshki, Calderbank, Howard, and Moran have shown that Doppler tolerance can be achieved in match-filtered

trains of time-separated pulses encoded with Golay complementary pairs. The key is to map the two codes to the

pulses in the train using the well-known Thue-Morse sequence. Depending on the number of pulses that can be

supported for a particular application, the Doppler tolerance can be achieved to any desired order. This paper has

shown that the same is possible with complementary code sets containing more than two codes. Generalization

is achieved by exploiting several number-theoretic concepts, including equal sums of like powers, the digit sum

function, and the generalization to m ≥ 2 symbols of the classical two-symbol Thue-Morse sequence. In addition,

it is shown that certain ESP pulse trains having shorter lengths than PTM pulse trains can be used to obtain the

same Doppler tolerance by employing multiple antennas to transmit these pulse trains staggered in time.
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