DECAY OF KDV SOLITONS

HIEU D. NGUYEN

ABSTRACT. In this paper we develop a linear eigenvalue decomposition for N-soliton solutions of the
Korteweg-de Vries equation and use it to obtain a new mathematical explanation of two-soliton interac-
tion in terms of particle decay. We discover that the two soliton ‘particles’ or pulses which appear in each
solution exchange identities upon collision and emit a dual ’ghost’ particle pair in order to conserve mass
and momentum.

1. INTRODUCTION

It is well known that the Korteweg-de Vries (KdV) equation,
U — 6UU, + Uppr = 07

is a model for many wave related phenomena and admits a special family of localized solutions called N-
solitons corresponding to reflectionless potentials (cf. [M]). Here, N denotes the number of solitons, i.e.
the number of pulses or potential wells, that appear in each solution. One-solitons or solitary waves were
first observed by J. Scott Russell along the Union Canal at Edinburg in 1834 (cf. [M]). Then in 1895, D.J.
Korteweg and G. de Vries [KV] published their (KdV) equation as a model for these waves. However, it
would require another seventy years before two-soliton interaction was observed by N.J. Zabusky and M.D.
Kruskal [ZK] through numerical calculation; they reported that “solitons ‘pass through’ one another without
losing their identity”. The exact interaction of two-solitons was then determined numerically by Zabusky
[Z] and soon thereafter P.D. Lax [La] gave a mathematical proof.

The idea that perhaps solitons actually bounce off each other upon collision dates back to Bowtell and
Stuart ([BS]). The exchange of mass that occurs between the two colliding soliton particles then allows them
to exchange their identities. More recent work advocating this viewpoint can be found in [Le] and [MC].
In order to mathematically investigate this behavior, it is desirable to isolate each particle in any given
N-soliton solution. This can be achieved say by decomposing the solution into a linear sum even though
the KdV equation itself is nonlinear so that the superposition principle fails to hold. To this end, various
such decompositions can be found in the literature (cf. [GGKM], [HM], [S], [MC]). We shall discuss some
of these decompositions in relationship to ours at the end of this paper.

In this paper, we develop a linear eigenvalue decomposition of N-soliton solutions for the Korteweg-de
Vries equation and use it to obtain a new mathematical explanation of two-soliton interaction in terms
of particle decay. This decomposition is obtained through a diagonalization procedure that is applied to
the corresponding soliton matrix and has the effect of isolating the decay of each soliton ‘particle’. For
two-solitons, the interaction described by Theorem 3.3 suggests a decay phenomenon that occurs frequently
in elementary particle physics: the two soliton particles split upon collision, resulting in an exchange of
identities and the emission of a dual ‘ghost’ particle pair (cf. Figure 1). Theorem 3.4 then shows that
each decay process conserves mass and momentum and supports our particle decay interpretation of soliton
interaction. Interesting properties of our dual ghost particles are then described in Theorem 3.6. In fact,
we like to view each ghost particle as a nonlinear ‘difference’ between two given soliton particles. Lastly, an
explicit example is given in 3.11 to illustrate our results (cf. Figures 2-4).
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2. SOLITON PARTICLES

Let N be a positive integer and assume that the initial scattering data for u(z,0), obtained through the
time-independent Schrodinger equation

(1) Yz — [/\ - u(x,O)]z/) =0,

has only a discrete energy spectrum. This means that A takes on a discrete set of N negative energy
eigenvalues {\; < Ay < ... < Ay < 0} with corresponding eigenfunctions {1, s, ...,¥n }. It is standard that
we normalize these eigenfunctions and compute their normalized factors ¢,, commonly referred to as ‘phase
shifts’:

T—r—00

o
(2) / Yidr =1, ¢, = lim e"%y,.
—0o0

The initial scattering data is then used to produce the N-soliton solution of the KdV equation through
the determinant formula

2

0
(3) u(z,t) = _2@ log det(I + A).

Here, the N x N soliton matriz A has entries defined by

Cmc B
(4) A = (amn); Amn = ﬁe(km—i_k")x 4(k§"+ki)ta

where the spectral parameter k, > 0 is defined via the relation A\, = —kZ. This solution was obtained
independently in the early 1970’s by C.S. Gardner, J.M. Greene, M.D. Kruskal and R.M. Miura [GGKM],
M. Wadati and M. Toda [WT] both groups by means of the inverse scattering method, and by R. Hirota [H]
through his direct method.

We now turn to developing our working definition of a soliton particle. It is well known that A is symmetric
and positive definite (cf. [KM],[GGKM],[WT]). This allows us to diagonalize it so that

pr(z,t) 0 ... 0
(5) B'AB=D = 0
0 :uN(xat)

Here, {1 > ... > pn} is the (ordered) set of real positive eigenvalues of A and B is the orthogonal matrix
consisting of an orthonormal basis of eigenvectors of A. It follows that we can write u(z,t) in terms of {u,,}
which we shall refer to as decay eigenvalues:

2
(6) w(z, ) = —2% log det(I + A)
2
(7) _ —2% log det[B~1(I + A)B]
82
(8) = —2@ log det(I + D)
o2 N
(9) = —Q@IOgH[l"'Mn(fﬂat)]
n=1
N
62
(10) = Z —2ﬁ log[1 + pn(,t)].

n=1
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Definition 2.1. Define
(11) $n(vn) = —2k2sech?®(k,v,), n=1,..,N,

to be the n-th soliton particle of u where v,, = & — 4k>t is the n-th moving frame. Then we shall refer to

2

(12) up(,t) = —2% log[1 + pn(z,t)]

as the decay function of s,, and to the sum u = Zgzl uy, as derived in (10) as the decay decomposition of u.
The results of the next section will justify our use of terminology.

3. DEcAY oF TwWO-SOLITONS

In this section we assume N = 2 and investigate the asymptotic behavior of the decay functions u; and
uo as a means of understanding soliton interaction. We begin by writing the matrix A explicitly in terms of
the two moving frames vy and vs:

ie2k1l/1 cica ek1l/1+k21/2
(13) A= ) .
c1ca okivitkava L2 o2kav2
k1+ko 2ko

Denoting by p = Tr(A) and g = det(A), it follows that the two eigenvalues of A are given by
1 -

(14) 11 =5(p+ \/pz—4q),
1 -

(15) o2 =g (p— Vp? - 4q) :

Definition 3.1. We define

iGleug cics e(k1+k2)l/g
16 A = 2k1 k1+k
g %
cico e(k1+lc2)1/g C_zeZk;)Vg
k1+ko 2ko

to be the ghost matriz of A where vy = & — 4k}t and k, = (k§ + kika + k3)'/2. In addition, if ; and 7,
denote the eigenvalues of A, corresponding to p; and s, respectively, then we shall refer to

a7) 0(g) = 25 logln ()]

as the ghost particle and
2

_ 0
(18) 9(vy) = 25 loglha(vy)]
9
as the anti-ghost particle corresponding to the pair {uy,us}.

Note that v, represents the moving frame of both g and g and that 4k§ represents their velocity and
exceeds that of the two soliton particles. The following lemma assures us that the correspondence mentioned
above between the two sets of eigenvalues is well defined.

Lemma 3.2. Denote by k? = k2ky + kyk2. Then
7.2
A=A,

.2
Moreover, p, = e vy, forn=1,2.
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k

Proof. Tt suffices to prove that every coefficient of A has e® *t as a common factor when rewritten in terms

of v4. This quickly follows from the relation

ehn(z—4k2t) ekn(ug+4k§t—4kit)
= eknvgta(kikathik3)t
ekt ghnvy
The fact that p,, = 68’52'57” also follows from this relation and can be easily checked by the reader. O

We are now ready to present our theorem describing particle decay of two-solitons. This will justify our
use of the terms ‘particle’ and ‘decay’ in referring to s,, and u,,, respectively.

Theorem 3.3. The following asymptotic relations hold for uy and uy:
()
up ~ s1(v1 + 61), ast— —oo
ur ~ s2(va + 02) + g(vg), ast— oo

in the sense that

lim wu; =s1(v1 +61), lim wy =s2(1+d2), lim wu = g(v,).
vy fixed vy fixed vg fixed
t——o0 t—o0 t—o0

Here, the relative phase shifts §; and 6, are defined by

62k151 — i 62k262 — é
2k1 ’ 2k2
(i)
s ~ s2(va + 02 + A), ast — —oo

UzNSl(Vl +61+A)+§(Vg)7 ast — o0
Here, A is defined by

hans _ (k1= ky)?
(k1 + k2)2 '

Following the physics literature we shall summarize the decay described by u; and us as follows:

Uy : §1 > S2+yg,
Uy @ S9 — 81+ G-

The corresponding space-time plots are drawn in Figure 1. Notice that they describe the exchange of
identities between s; and so and the fact that the emitted ghost particles (represented by the dashed lines)
have velocities greater than both soliton particles.

Proof of Theorem 3.3. (i) Our approach is to analyze u; from the perspective of the three moving frames
corresponding to the velocities vy, v, and v, and to treat each as a separate case:

CASE I: Assume v is fixed. We rewrite the trace and determinant of A as

p = Ti(4) .
;T11€2k1V12+ 20_2521921/2
— 2k (;Tll + 207226%21/2721@11/1)
— 2k (% + %62(k27k1)yl+8k2(Icffkf,)t)
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(a) Diagram of u (b) Diagram of us (c) Diagram of u
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S

F1GURE 1. Space-time plots of two-soliton decay

and
g = det(A)
2
k1—ko cicd e2(k1V1+k2V2)
k1+ko 4k ko
2
_ €2k1u1 k1—ko Cfcg e?kgl/1+8(k§—k§)t
- ki+ko 4k ko
so that
C2
lim p= e lim ¢=
vy fixed 2k, vy fixed
t——o0 t——o0

This forces

lim (1+pm) = lim [1+%(p+\/p2—4q)}

vy fixed vy fixed
t——o0 t——o0
2
J— C1 2k1V1
= 1+ 2%, €
and implies
62
lim w3y = lim {—2—2 log(1 + ,ul)}
vy fixed vy fixed ox
t——o0 t——o0

2
S

_ 9> 2k111
= 25 log(l+ ge )
—8kyc2eZk1m
> 2
(1+2°k—11e2’f1'f1)
= s1(v1 +01)

2k101 —

2
where ¢; is defined by e zCTll Note that we have implicitly used the fact % = %.

CASE II: Assume that v is fixed. We proceed in the same manner as CASE I but factor e2#2”2 instead of
e?f11 from p and ¢. It is then a straightforward exercise to show that
lim u; = 82(1/2 + (52)

vo fixed
t—oo

2
where this time d5 is defined by 2292 = 2CT22
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CASE III: Assume v, is fixed. Applying Lemma 3.2, we obtain for ¢ - —ooc:

. . 0?
ugllfIil;cled uy = ygllfIil;cled {_2@ log(1 + ul)}
t——o0 t——o0 )
0]
= lim { 2—— log(1 + e ty )}
vy fixed Ox?
t——o0
= 0.
On the other hand for ¢t — oo:
0? ;
lim wy = lim {-2-—=log(1+ e4k2tfy1)
vg fixed vy fixed ox?
t—o0 t 6
= lim log e*¥t + log(e= " + 1)
vy fixed 5 o2
t—o0 5
— : —4k?t
= ughg}m {— Eye) log(e + ’yl)}
t—o0
= —2% log 71
= g

This completes the proof of part (i).

(ii) We apply a similar analysis to us by again considering three separate cases:

CASE I: Assume v» is fixed. We rewrite p and ¢ as

p =
q=¢€
The relations

. q
lim =
vy fixed P
t——0o0

eBki(k3—k3

)t (% 2kivso + - i 2k2u2—8k1(kr§’—kf)t)
2k,

Skl(k —k? )t (kl k2)2 6162 62(k1+k2) 2

(k1+k2)? 4k ks

(k1 — kz) Cz 2kovs . q
S T v im L -9
(k1 + k2)? 2k ’ ;2_)1}126‘1 P>

now tell us how u, behaves in the limit once we rationalize it:

1 A/ _
lim pp = lim —(p—\/p )p-l- P
i T ]2 P~
2q
= lim 1
2 1+ /1= 34
(k1—k2)? Cz e2kzvz
(k1+k2)2 2ko
Hence,
2
lim us = lim log(1 + u2)
vo fixed vo fixed 5 ox2
t——o0 t——o0 ) (k i )2 5
— C
_ 1 1 1 2 2 2kovo
tu_n{ 927 Og[ eyt )2 20

where A is defined by e?#28 =

82(1/2 =+ (52 =+ A)

(k1—ks)?
(k1+ko)2"



DECAY OF KDV SOLITONS 7

CASE II: Assume that v, is fixed. As the line of argument here is the same as that for CASE I with v,
fixed, we leave it for the reader to verify that

hm U2 = 81(1/1 -|—(51 + A)
u%_f;;;d

CASE III: Assume that v, is fixed. The proof of

lim us =g

utg_i)‘i;;d
is exactly the same as that for CASE IIT in (i) and will be left for the reader. This completes the proof of
our theorem. O

The following result provides evidence to support our theory of soliton decay.

Theorem 3.4. (i) Conservation of mass:
o0
/ up(z,t)de = —4k,, n=1,2.
— 0o
(ii) Conservation of momentum:

d oo
E/ zup(z,t)de = —16k3, n=1,2.

—0o0
Proof. (i) For u;, we have
ISz tyde = [ [—2%10g(1 + Hl)] dx

o0
(o)

(-2 log(1 + )]

wy 1% ~

= -2 |:H-;uj| o

= —4k;.
A similar argument applied to us (after first rationalizing po) shows that [ wus(z,t)dw = —4k,.
(ii) Integration by parts yields

L L L
o aun(z,t)de = [“20Zlog(1+pmn)]_  — [7 [-22 log(1 + pn)] da
= —an B 910g(1 4 pun(L))

(L+4n (L) ‘
~ —4k,L+ 4k, (L — 4k2t + 6,,)

as L — oo. It follows that

d oo
7 /700 zup(z,t)de = —16k3, n=1,2.
For n = 1,2, we define the center of mass of u,, to be
7 wu,(z, t)de
19 =
(19) za(t) ffooo un(z,t)dx

It follows immediately from Theorem 3.4 that

Corollary 3.5. The center of mass x,(t) as defined by (19) moves with constant velocity 4k2, i.e.

dxy, 2
— =4k =1,2.
dt n? n Y
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Let us now investigate our ghost particles a little more closely. We begin with the following theorem
which justifies our use of the terms ‘ghost’ and ‘anti-ghost’ for g and g as they do not appear in u due to

cancellation.

Theorem 3.6. The ghost particles g and § enjoy the following properties:
(i) g +Og =0.

(i3) / g(vg)dvy = 4(k1 — k2).

— 00

(iii) g = —32k1 ko (%) < 0, where py = Tr(Ay), g4 = det(A) and r, :pg —4q,.
9

(i) g(vy) = O(sech?[(k1 — ka)(vy + 6,)]) as v, — Loo, where &, is defined by e*(F1—k2)9 =

(k1 — k2)? (k1 + ko) . . . :
(v) |g(vy)| < with equality holding precisely when vy = —d,.
Vkiks

Proof. (i) If one recalls that

Y1772 = det (Ag)

(k1—k2)® cic3 e2(k1tkz)vg
(k1+k2)2 4k ko ?

then it directly follows

_ 2
g+g = —293—@ log(7172)

(ii) We have

[\]

ffooog(vg)dyg = ffooo [— aa—%logwl] dvy

(20) _ [_ ,Y_;]oo .

Substituting the relations
! !
im L =92k,  lim 2L =2k
Vg—)foo ’yl Vg—)OO ’yl

into (20) then yields the desired result:

/OO g(vg)dvy = 4(ks — k1).

— 00

2
Clng
C2kJ1

We note that this result also follows directly from Theorem 3.4 due to conservation of mass of u;.

(iii) First write y; in the form

2D m= % (pg +/T9)
where
& 2
(22) pg = Tr(4y) = ﬁe%l% + ﬁe%z"g,
(23) gy = det(4,) = (k1 = k2)* cics 2ktka)vy

(k1 + k2)? 4k ko
(24) rg = pj —4q,.
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Then we can express -y, in terms of an appropriate hyperbolic cosine function by introducing the identity
v g
_ Al (ky+tky)w
25 = e tk2)vs cosh[(ky — ko) (vy + 6
(25) by Ter ke (ka1 2) (Vg o)l

where &, is defined by the relation e(F1=#2)% = g—zf It follows that
2

€162 11TK2)V (k/'l - k/'2)2
(26) n= me(k ha)vs (COSh (k1 — k2)(vy + 6g)] + \/C05h2 (k1 — k2)(vg + 0g)] — U+ Fa)?
k1 —k2) ac
O = v ()
where z = Eﬁifizg cosh [(k1 — k2)(vg + d,)]. Therefore,
2
(28) 9= 25 73logm
g
82 (klkz) C1Co
2 =22 [iog (20 k) 4 1og(z + VT
(29 7 [Og<(k1+k2)vk1kze *loglz +viz* —1)
2
(30) = —2% cosh ! z
g
z
(31) = _8k1k2m
(32 . el cosh (k1 — ko) (vy + 8)]
= —3k1k2 ; 373
[athads cosh® ((ky — ka) (v + 6,)] — 1]
Pgq
(33) = —32/61/62%,
Tg

as desired. Moreover, g is negative because the quantities pgy, g, and r, are all positive.
(iv) It is now easy to deduce from (32) that

9(vy) = O(sech2[(k1 — k2)(vy + 0,)])
as vy — £oo.

(v) Using (31), we find that g(v,) has derivative

dg 222 +1 dz

Since 22 — 1> 0, it follows that ;iTg is zero precisely when
g

dz (k1 + k2)2 .
35 — = -——""gsinh[(k; — k )
( ) dl/g (k] _ k/'Q) si [( 1 2)(1/9 + 9)]
is zero, or equivalently, when v, = —d,. We can therefore conclude that ¢ has an absolute minimum of
(k1 — k2)? (k1 + ko)
VEki1ko

at this critical point because of (iv). This completes the proof of Theorem 3.6.

g(_‘sg) = -
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Remark 3.7. We remark that property (iv) of Theorem 3.6 shows that in some sense g can be viewed as
a nonlinear difference between the soliton particles s; and sy as defined by (11). Moreover, g(v,) — 0 as
ks — k1 and g(vy) = —4k16(vy) as ko — 0, where §(v,) is the Dirac delta function.

Next, we show that each decay function itself can be decomposed as a sum of a ‘soliton’ term and a ‘ghost’
term:

82
(36) up(w,t) = _2w log(1 + 1)
1 "no__ 1\2
(1+ pn)?
i pnps = ()] (b )
(38) :_2(1+Zn)2_2[ 2 v
1 e > ( fin )2
(39) (L fin)? (W OBl )\ T+
(40) =u, +ud.
Definition 3.8. We shall call
H/I
41 A ) S A L
(41) Unp (1 + pn)?

the soliton component of u,, and

2
(42) =2 (2L o Hn
" Ox? ")\ +

the ghost component of u,,. Morevover, we shall refer to the decomposition given by (40) as the splitting
decomposition of u,,.

For two-solitons, it follows that

Corollary 3.9.

z,t 2

(43) ud(z,t) = (=1)""tg(z - 4k§t) (%) , n=12

Remark 3.10. The decomposition described in (40) reveals mathematically the time-asymmetry of soliton
decay in that ghost particles are born at ¢ = co and is essentially due to the identity matrix appearing in
the N-soliton formula. In particular, the behavior of p, /(1 + ps) = 0 as t = —oo and pn, /(1 + pp) = 1 as
t — oo in (43) indicates that the ghost component ug, represents creation of the ghost particle g(x — 4kt)
at t = oo. This implies that there is actually interaction between solitons even before ‘collision’ occurs;
however, this interaction is insignificant until then. Lastly, it is straightforward to verify that each soliton
component u?, asymptotically describes an exchange of identities between the two soliton particles.

We end our paper with a concrete example to illustrate our results.

Example 3.11. Let ky = ¢; = 2 and k2 = ¢2 = 1 be the given scattering data. Our soliton matrix A then
takes the form

€4z—64t 26300—361&
_ 3

(44) A= Ze’o‘x—36t le2w—8t
3 2
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and has eigenvalues

(45) M= % (3€2$_8t + 6ete04 | 208t /g | 982 —56t 4 3664””—11%) ;
(46) fy = % (36%—81& 4 Gete—04t _ 2e—8t, [o o8 2a—56t 1 3664z—112t) ]

The decay functions u; and us can now of course be computed through the formula
52
Up = _2w10g(1+/‘n)7 n= ]-72

but we shall avoid doing this here due to their complicated expressions.
The ghost matrix

64119 2631/9
1) A= (s 1o

has eigenvalues

1
(48) v = — 3¢9 4 Getvs 4 2V \/9 + 28¢2¥s + 36et¥s ) |
12
1
49 vy = = (3?0 + 6e¥s — e29\/9 4 28¢5 + 36610 ) .
12
Therefore,
_ Pg4y
(50) 9= —32ki1ko <3—/2>
Ty
384¢e2¥9 (1 + 2e%vs
(51) - ot )3/2
(9 + 28e%¥s + 36e*vs)
48 cosh(v, + log v/2)
(52) =— - 7
[9 cosh? (v, + log v/2) — 1]
and the ghost moving frame is given by vy = x — 28t. Of course, we also have g = —g.

Figures 2-4 illustrate the motions of —u(z,t), —u;i(z,t) and —us(z,t), respectively, over time through
a sequence of six frames corresponding to ¢t = —0.4,—0.2,...,0.6. The soliton particles s; and s, have
amplitudes of 8 and 2, respectively, and velocities of 16 and 4, respectively. The ghost particle g has an
amplitude of 3/v/2 & 2.12 and a velocity of 28. Splitting occurs in the fourth frame at ¢+ = 0.2 for both u;
and us as seen in Figures 3 and 4, respectively.

Concluding Remarks. Our work raises interesting questions some of which deserve comment:

Q1. What happens during collisions of more than two solitons? Are more ghost particles generated? Can
ghost particles from different pairs interact?

Al. Tt is found that each collision between any two soliton particles produces a ghost particle pair with
the same properties as those described by Theorem 3.6. On the other hand, each collision between two ghost
particles where each comes from a different pair will result in their fusion. Because of duality, there is an
accompanying fission process which is interpreted as the same fusion process but reversed in time. Moreover,
the final states of all ghost particles created is independent of their order of collision (modulo phase shifts).
A mathematical theory formulating the creation and interaction of ghost particles will be described in a
forthcoming paper.

Q2. Do the decay functions {u,} satisfy any partial differential equations?
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(a) t = 0.4 (b) t = 0.2 (©)t=0
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6 6 6
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FIGURE 2. Plots of —u(z,1)
8 8 8
6 6 6
4 4
2 2
10 10 20 -10 10 20 -10 10 20
-2 2 2
(a) t= 0.4 (b) t = 0.2 () t=0
8 8 8
6 6 6
4 4 4
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) 2 2
(d) t = 0.2 (e) t = 0.4 () t = 0.6

FIGURE 3. Plots of —uy(z,t): s1 — s2 + g.
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(a) t=—04 (b) t =—0.2 () t=0

10 \/ 10 20 10 V 20 B 10 \/zo
-2 -2 -2

(d)t =02 () t=0.4 (f) t=106

FIGURE 4. Plots of —uy(z,t): s2 — s1 + g.

A2. This is not presently known as we have been unsuccessful at finding such equations. On the other
hand, it is known that the eigenvalues {u,} of the soliton matrix A which defines {u,,} satisfy ordinary
differential equations of the form
(53) Dpn_ (ET-X,)? n=1,..,N.

dx
Here, X,, is the eigenvector of A corresponding to u, and ET = (cief*1 coek2v2 .. cne?1¥1)T. These
differential equations can be easily derived from the symmetry and positive definiteness of A. However, their
usefulness is unclear as they do not make direct use of the KdV equation.

Q3. How is the linear eigenvalue decomposition described in this paper related to others in the literature,
e.g. Hodnett-Moloney [HM] and Miller-Christiansen [MC]?

A3. Hodnett-Moloney’s work in [HM] involves using the Hirota formalism to decompose each N-soliton
solution into a linear sum of squares of hyperbolic secant functions having time-dependent amplitudes and
phase shifts (a Lie-theoretic generalization of this decomposition is given by Fuchssteiner in [F]). For two-
solitons, this decomposition takes the form

(54) u = uy + uy,

where

(55) uy = 2a3 H(0)sech?[0; + G (62)],
(56) up = 2a2H (0;)sech?[fy + G (6,)].

Here, a; and 6; are the spectral parameters and moving frames, respectively. Exact formulas for H(v;) and
G(v2) can then be derived by requiring u; and us to conserve mass for all times as in Theorem 3.4. In
essence, this approach views the secant function as the building block for a soliton particle whereas our
approach views the eigenvalues of the soliton matrix A as the building block. As a result, the decomposition
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of Hodnett-Moloney seems to asymptotically describe only an exchange of soliton identities and not soliton
decay as revealed by our decomposition.
As for Miller-Christiansen [MC], they considered soliton solutions of the coupled system

uy, 0 | ug al a2uk _ _
(57) W—F% 72’1@4’@ —0, k—].,...,N.

This system can be viewed as a multicomponent generalization of the KdV equation and is derived by
requiring symmetry and conservation of mass principles. For N = 2, numerical solutions for u; and us were
obtained which indicated an exchange of mass between two given soliton particles after collision. However,
there is no prediction of ghost particles which again is in contrast to our decomposition. In short, we believe
our model of soliton interaction to be one that is most consistent with the laws of classical mechanics.
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