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Rearing Its Ugly Head:
The Cosmological Constant and

Newton’s Greatest Blunder
Hieu D. Nguyen

A clever man commits no minor blunders.

—Johann Wolfgang Von Goethe (1749–1832)

1. INTRODUCTION. It is folklore that Albert Einstein’s greatest blunder occurred
in 1917 when he introduced the cosmological constant term into his theory of general
relativity [5]. At the time Einstein believed the universe to be static, and yet his orig-
inal field equations, which describe how the gravitational influence of matter bends
space-time, predicted an expanding (or contracting) one. To resolve this apparent con-
tradiction and counteract the effects of gravity, Einstein introduced into his equations
an all-encompassing force term scaled by a constant � (originally λ) that has be-
come known as the cosmological constant [19]. Then along came Edwin Hubble’s
observation of galactic red shifts in 1929, which evidenced an expanding universe and
made Einstein’s cosmological constant term unnecessary. Einstein thus realized he had
missed a great opportunity to predict the expansion of the universe from his original
theory, had he only believed in it. As recounted by the cosmologist George Gamow in
his 1970 autobiography [4]:

. . . Thus, Einstein’s original gravity equation was correct, and changing it was
a mistake. Much later, when I was discussing cosmological problems with Ein-
stein, he remarked that the introduction of the cosmological constant term was
the biggest blunder he ever made in his life. But this “blunder,” rejected by Ein-
stein, is still sometimes used by cosmologists even today, and the cosmological
constant denoted by the Greek letter � rears its ugly head again and again and
again.

For decades Gamow’s quote fueled controversy surrounding whether Einstein really
made such a remark. As Harvey and Schucking point out in [6], Gamow “had a well-
established reputation as a jokester and given to hyperbole.” Yet even if Gamow’s
recollection about Einstein may have been exaggerated, he was quite prescient in his
other remark about the cosmological constant—it continues to play an ever increasing
role in general relativity (and yes even in quantum mechanics), rearing its ‘ugly’ head
in many leading theories to account for the increasing expansion of the universe and the
existence of dark energy and vacuum energy. Indeed, a good account of these theories
for the lay reader is given by David Goldfield in his book [5], who amusingly refers to
the cosmological constant as one of many fudge factors used in physics.

In this article we travel back in time to the birth of celestial mechanics, some 230
years before Einstein’s biggest blunder, to argue that his was not the first instance in
which the cosmological constant reared its ugly head. Much less well known in the
scientific community is the story of Isaac Newton, who made a similar blunder in the
Principia (Mathematical Principles of Natural Philosophy) [10] by introducing an ex-
traneous force into his lunar theory to explain the advance of the moon’s apsis, or line
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of extreme position, as it orbits the earth (see [22]). Newton took this effect to be due
to the radial attraction of the sun as a third body in the first known mathematical attack
on the three-body problem but modeled it incorrectly using Jeremy Horrock’s theory
of revolving orbits [21]. His biggest blunder, however, was to treat the solar attraction
as a harmonic force term, which we demonstrate later in this article is equivalent to
Einstein’s cosmological constant term from the perspective of Newtonian mechanics.
As a result, Newton failed to achieve the correct answer for the moon’s precession,
obtaining only half the observed value, or as Newton himself comments at the end
of Section IX of the Principia (third edition), “The apse of the moon is about twice
as swift.” A more accurate calculation would only be given in 1756 (after Newton’s
death) by A. C. Clairaut, who generalized Newton’s work by assuming a lunar orbit
with incommensurable periodic terms [3].

Even though Newton failed to mathematically explain apsidal precession of the
moon, his method for calculating it clearly demonstrated his mastery of the new cal-
culus. As we reveal in this article, the key result behind Newton’s method is his re-
markable Revolving Orbit Theorem in the Principia (Proposition 44, Theorem 14). In
it he demonstrates how two central force laws must differ by an inverse-cube radial
term if their orbits are such that one is a revolving orbit of the other. This fact allowed
him to study the motion of nearly circular orbits by approximating them as revolving
elliptical orbits, a case where he was able to calculate precession precisely using his
Theorem.

Sadly, as Chandrasekhar points out in [2], Newton’s beautiful Revolving Orbit The-
orem does not seem to be well known by the mathematical community. The reason
may be that anyone who attempts to read the Principia will find the task daunting, as
Newton provides geometrical proofs of his Theorem using language that now seems
to us rather verbose. Fortunately, an accessible modern treatment of Newton’s work
can be found in [2], where an elementary calculus proof of his Theorem that requires
using only the Chain Rule is given. In this article, we present this modern proof and
demonstrate Newton’s calculation of precession of the lunar apsis based on his theory
of infinite series. Our treatment is quite accessible to undergraduate students and ideal
as an application topic in a sophomore-level differential equations course. We then
demonstrate how Newton’s method can also be used to calculate (correctly this time)
the perihelion precession of Mercury based on general relativity, one of its hallmark
tests, as shown in [13]. We also argue that Newton’s extraneous force term, which rep-
resents a linear expansive force, is in fact equivalent to Einstein’s cosmological con-
stant term taken as a weak-field approximation in general relativity. Lastly, we present
a second-order generalization of Newton’s method where we employ revolving gen-
eral relativistic (as oppose to elliptical) orbits to approximate nearly circular orbits and
calculate precession of their apsides.

2. PLANETARY MOTION. The Principia is unarguably one of the greatest achieve-
ments in mathematical physics. In it Newton derives Kepler’s laws of planetary motion
assuming an inverse-square law for gravity, a conjecture that Robert Hooke presented
to him by letter in 1679 ([16, p. 297]). To explain, let us assume that the gravitational
attraction between two masses, denoted by M and m and separated by a distance r ,
obeys an inverse-square central force law (modern convention calls for an attractive
force to have negative value but we will instead follow Newton’s convention and
assume it to be positive):

F(r) = G Mm

r 2
. (2.1)
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Here, G = 6.67 × 10−11 m3/kg/s2 is the universal gravitational constant. Newton was
then able to prove using geometric arguments that the orbit of m about M (the latter
assumed to be fixed) must indeed follow the shape of an ellipse (or more generally a
conic section) as Kepler had proclaimed in his first law (see Figure 1) [12].

M

mr

θ

Figure 1. Elliptical orbit

Of course, the modern approach to the two-body problem is to equate Newton’s
second law of motion, i.e., F = ma, with his gravity law given by (2.1) to derive the
corresponding equation of motion. This is expressed in polar coordinates r and θ as

G M

r 2
= d2r

dt2
− rω2, (2.2)

where the right-hand side represents the normal (radial) acceleration a, and ω = dθ/dt
is the angular velocity of m. Then using the fact that h = r 2dθ/dt represents the con-
served angular momentum of m, we can rewrite (2.2) as

G M

r 2
= d2r

dt2
− h2

r 3
. (2.3)

We note that h also represents geometrically (twice) the constant rate of area swept out
by the radial line segment between M and m (Kepler’s second law) since

d A

dt
= d

dt

[
1

2

∫ θ

α

r(θ)2dθ

]
= 1

2
r 2 dθ

dt
= 1

2
h. (2.4)

Now, equation (2.3) can in fact be linearized if we use inverted polar coordinates,
u = 1/r and θ :

d2u

dθ2
+ u = G M

h2
. (2.5)

The solution to (2.5) is given by

u(θ) = G M

h2
+ B cos(θ − θ0), (2.6)

where B and θ0 are constants depending on initial conditions. The corresponding so-
lution for r describes a conic section as claimed:

r(θ) = R

1 + e cos(θ − θ0)
. (2.7)
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Here, e = Bh2/(G M) describes the eccentricity of the orbit and R = h2/(G M) the
focal parameter. If e is strictly between 0 and 1, then the orbit is elliptical and R gives
the length of its semi-latus rectum. Moreover, R = a(1 − e2), where a is the length of
the semi-major axis of the ellipse.

3. NEWTON’S REVOLVING ORBIT THEOREM. The notion that gravity is de-
scribed by an inverse-square power law was a controversial one during Newton’s time.
Newton therefore devoted much effort in the Principia convincing the reader how the
motion of bodies governed by this force law must be elliptical (and vice-versa). More-
over, he emphasized the point that any central force law that deviates from this inverse-
square law would cause the line of apsis, i.e., the line of extreme position between M
and m, to rotate about M by some amount after each revolution. This is evident from
his comment following Proposition 2, Theorem 2, Book III:

[The inverse-square law] is proved with great exactness from the fact that the
aphelia are at rest. For the slightest departure from the ratio of the square would
(by book 1, prop. 45, corol. 1) necessarily result in a noticeable motion of the
apsides in a single revolution and an immense such motion in many revolutions.

Figure 2 illustrates how the apsis O P for the revolving elliptical orbit in solid has
moved to O P ′ after one revolution in comparison to the fixed elliptical orbit (dashed).
In general this amount of rotation per revolution, called precession and denoted by φ,
cannot be calculated exactly since the solution to the corresponding equation of motion
for a body acted upon by an arbitrary force law F(r),

d2u

dθ2
+ u = F(u)

h2u2
, (3.1)

requires the evaluation of an elliptic integral.

O P

P ′

θ

Figure 2. Precession of the apsis

However, not so well known is the case where precession is very easy to calculate,
in particular when the orbit is traced out by a revolving ellipse. In this regard Newton
poses the following problem in Book I of the Principia:

Proposition 43 Problem 30
It is required to find the force that makes a body capable of moving in any trajec-
tory that is revolving about the center of forces in the same way as another body
in that same trajectory at rest.
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To explain what Newton means by a revolving orbit (or trajectory), consider two
objects of equal mass, m and m̃, that are released into their respective orbits (see Figure
3a), the former following a fixed elliptical orbit (in solid) and the latter a revolving
elliptical orbit (in bold) in the sense that their radial distances are always equal and
their angles θ and θ̃ = αθ , respectively, always maintain a fixed ratio α at all times.
The position of m̃ can therefore be interpreted as that on a rotating ellipse (dashed)
with angle of rotation specified by ω = αθ − θ .

m

m

~

αβ
θ

m~

m

(a) Rotating Ellipse (b) Revolving Orbit

Figure 3.

Figure 3b shows the revolving orbit (in bold) after one revolution of the fixed orbit
assuming for example α = 1.5 and corresponds therefore to a precession of

φ = ω

∣∣∣∣
θ=2π

= 2πα − 2π = 2π(1.5) − 2π = π. (3.2)

To translate Proposition 43 into mathematical terms, suppose r = f (θ) describes
the orbit of mass m under an arbitrary central force law F(r), and define r = f̃ (θ̃) to
be a revolving orbit of f (θ) in the sense that θ̃ = αθ and

f̃ (θ̃ ) = f (θ), (3.3)

where α is a fixed parameter. Newton’s problem can now be reformulated as follows:
Is the revolving orbit r = f̃ (θ̃ ) also governed by a central force law F̃(r), and if so
how does it compare with F(r)? In Book I of the Principia, Newton gives the solution
through his Revolving Orbit Theorem, which reveals how the force law of one orbit
compares with that of a revolving one.

Proposition 44 Theorem 14
The difference between the forces under the action of which two bodies are able
to move equally—one in an orbit that is at rest and the other in an identical orbit
that is revolving—is inversely as the cube of their common height.

The following is a modern version of the above theorem.

Revolving Orbit Theorem. Let r = f (θ) denote the orbit of a mass with angular
momentum h and governed by a central force law F(r). Then the revolving orbit
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r = f̃ (θ̃ ) = f (θ), where θ̃ = αθ , represents the motion of the same object under the
central force law

F̃(r) = F(r) + h̃2 − h2

r 3
. (3.4)

with corresponding angular momentum h̃ = αh, and conversely.

To prove this theorem we first observe that, as we have already seen, an orbit r =
f (θ) governed by F(r) satisfies the equation of motion given in (3.1) with u = 1/r . As
Chandrasekhar demonstrates in [2], it is now a straightforward application of the chain
rule to verify that r = f̃ (θ̃ ) = f (θ), where θ̃ = αθ , must satisfy the corresponding
equation of motion:

d2u

d θ̃2
+ u = 1

α2

d2u

dθ2
+ u = 1

α2

(
d2u

dθ2
+ u

)
+

(
1 − 1

α2

)
u

= 1

α2

F(u)

h2u2
+

(
1 − 1

α2

)
u = F(u) + (h̃2 − h2)u3

h̃2u2
(3.5)

= F̃(u)

h̃2u2
,

where

F̃(u) = F(u) + (h̃2 − h2)u3. (3.6)

Hence, r = f̃ (θ̃ ) is governed by the central force law

F̃(r) = F(r) + h̃2 − h2

r 3
(3.7)

as claimed.

4. PRECESSION OF THE LUNAR APSIS. It was well known during Newton’s
time that the orbit of the moon around the earth is not precisely elliptical (as dictated
by the inverse-square law) but deviates slightly from this, which Newton viewed as a
perturbation due to the attraction of a third body, i.e., the sun. He believed that anoma-
lies in the moon’s motion could be explained by modeling this perturbation as an
additional central force. Towards this end Newton poses in Book I of the Principia the
following general problem in his attempt to calculate apsidal precession of the moon’s
orbit:

Proposition 45 Problem 31

It is required to find the motions of the apsides of orbits that differ very little from
circles.

His approach is to approximate nearly circular orbits by revolving elliptical orbits, a
model that was already proposed by Jeremy Horrocks in 1632 to explain lunar pre-
cession [21]. Since the latter orbits are dictated by his Revolving Orbit Theorem, this
allowed Newton to calculate precession as a first-order approximation.
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Following [2], we define r = fN (θ) to be an elliptical orbit described by the inverse
square force law (per unit mass)

FN (r) = h2/R

r 2
,

where h2/R = G M and R is the semi-latus rectum of the ellipse. It follows from
Newton’s Theorem that the revolving orbit r = f̃N (θ̃) = fN (θ), where θ̃ = αθ , obeys
the force law (per unit mass)

F̃N (r) = h2/R

r 2
+ h̃2 − h2

r 3
= h2r/R + (h̃2 − h2)

r 3
. (4.1)

Now let F(r) be an arbitrary central force law in the form

F(r) = C(r)

r 3
(4.2)

and assume that r = f (θ) is a nearly circular orbit governed by F(r), i.e., an orbit
with relatively small eccentricity, as illustrated in Figure 4.

T

r

X

Figure 4. Nearly circular orbit

Next, write r = T − X where T is the mean distance (or length of the semi-major
axis for an elliptical orbit) and X by assumption is relatively small. It follows that F(r)

can be approximated to first order (linear) in X as

F(r) = C(T − X)

r 3
≈ C(T ) − C ′(T )X

r 3
. (4.3)

Similarly, we can rewrite (4.1) as

F̃N (r) = h2(T − X)/R + (h̃2 − h2)

r 3
. (4.4)

This can be simplified further by setting R = T , which Newton assumed to be valid
for nearly circular orbits:

F̃N (r) = h̃2 − h2 X/T

r 3
. (4.5)
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Then from the approximation F(r) ≈ F̃N (r), we can equate the numerators of (4.3)
and (4.4) to yield

C(T ) = h̃2,

C ′(T ) = h2/T .

Hence, we obtain the following formula for apsidal precession ([2, p. 194]):

α2 = h̃2

h2
= C(T )

T C ′(T )
. (4.6)

A few remarks are in order:

1. Newton does not actually derive the general formula (4.6); however it is clear
that he recognized it through his calculation of α2 for several particular force
laws, which we discuss in the examples below. Also, Newton makes the substi-
tution T = 1 in his formulas for α2, which seems to have been done in order to
simplify his calculations later on in the Principia when he considers precession
of the lunar apsis. We shall not follow him in this regard.

2. The assumption that the given orbit r = f (θ) be nearly circular is crucial in
order to approximate it accurately by a revolving elliptical orbit having the same
initial conditions. Figures 5a and 5b illustrate how for C(r) = r 0.7 the revolving
elliptical orbit (dashed) yields a worse approximation to the exact orbit (in solid)
when the eccentricity, e = (rmax − rmin)/(rmax + rmin), is doubled.

(a) e = 0.3 (b) e = 0.6

Figure 5. Approximation of nearly circular orbit by a revolving elliptical orbit

3. A higher-order generalization of (4.6) can be obtained if we use the relation
R = T (1 − e2), which holds for an elliptical orbit with eccentricity e, instead of
the approximation R = T that Newton makes. Up to second order in e, we have

α2 = h̃2

h2
=

C(T )

T C ′(T )
− e2

1 − e2
≈ C(T )

T C ′(T )
+

(
C(T )

T C ′(T )
− 1

)
e2. (4.7)

Let us now explicitly calculate precession for some particular force laws using (4.6).

422 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 115



Integre Technical Publishing Co., Inc. American Mathematical Monthly 115:5 January 18, 2008 2:54 p.m. nguyen.tex page 423

Example 1. Assume that F(r) takes on a monomial power law of the form

C(r) = ar n, (4.8)

where a is an arbitrary constant. Then

α =
√∣∣∣∣ C(T )

T C ′(T )

∣∣∣∣ =
√∣∣∣∣ aT n

T (naT n−1)

∣∣∣∣ = 1√|n| . (4.9)

Therefore, the amount of precession per orbit is

φ = 2π

(
1√|n| − 1

)
. (4.10)

It follows that higher power laws produce greater precession. Examples of graphs of re-
volving orbits and their precessions are shown in Figure 6 for several particular values
of n. Each should be compared with the corresponding fixed elliptical orbit (dashed)
for the case n = 1.

φ φ

(a) n = 2: φ ≈ −105◦ (b) n = 4: φ = 180◦

φ

(c) n = 1/2: φ ≈ 149 (d) n = 1/4: φ = 360◦

Figure 6. Precession for Power Law C(r) = arn
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Example 2. Assume F(r) to be a binomial of the form

C(r) = arm + br n, (4.11)

where a and b are arbitrary constants. Then

α =
√∣∣∣∣ C(T )

T C ′(T )

∣∣∣∣ =
√∣∣∣∣ aT m + bT n

maT m + nbT n

∣∣∣∣. (4.12)

We now show how Newton employed (4.12) to calculate the precession of the lunar
apsides. To this end, assume the moon is subject to an extraneous force1 that is a
perturbation of the inverse-square law:

Fc(r) = G M

(
1

r 2
− cr

)
. (4.13)

Here, c is such that the ratio between the force of gravity and Newton’s extraneous
force2 when r = T satisfies

cT

1/T 2
= 100

35745
, (4.14)

or equivalently,

c = 100

35745T 3
. (4.15)

Putting (4.13) into standard form (4.3) yields

C(T ) = G M(T − cT 4) (4.16)

We then apply (4.12) with a = G M , b = G Mc, m = 1, and n = 4 to obtain

α =
√

T − cT 4

T − 4cT 4
≈ 1 + 3cT 3

2
. (4.17)

The resulting precession is

φ = 2π(α − 1) = 3πcT 3

= 300π

35745
≈ 0.026 rad (4.18)

≈ 1.5◦.

As noted earlier, Newton knew this answer to be incorrect in comparison to the ob-
served value of approximately 3◦ per revolution. He would not live to see the correct
theory for lunar precession, thus making this a rare mathematical failure for one of the
greatest minds that ever lived. However, his blunder in introducing an extraneous force
paved the way for Einstein to introduce a cosmological force into his theory of general
relativity, which we discuss next.

1This extraneous force Newton assumed to be due to the radial attraction of the sun even though he never
explicitly mentions it, most likely because it failed to provide him with the correct value for the moon’s apsidal
precession.

2For a discussion as to how Newton obtained the ratio c for his extraneous force, see [22].
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5. GENERAL RELATIVITY AND PRECESSION OF MERCURY. It is well
established that Einstein’s theory of general relativity describes the motion of planets
and other celestial bodies more accurately than Newton’s theory of gravity. According
to Einstein, the curvature of any region of four-dimensional space-time is affected by
the presence of matter in it. This relationship is governed by his field equations ([19])

Ri j − 1

2
Rgi j = 8πTi j , (5.1)

where ds2 = gi j dxi dx j is a Lorentzian metric that describes the geometry of the re-
gion of interest, Ri j is the Ricci curvature tensor, R the scalar curvature, and Ti j the
stress-energy momentum tensor that describes the distribution of matter in the region.
The solution to (5.1) for a region that contains only a static spherically symmetric
object of mass M is given in spherical coordinates by the Schwarzschild metric:

ds2 = −
(

1 − 2MG

r

)
dt2 + 1(

1 − 2MG
r

)dr 2 + r 2 dθ2 + r 2 sin2 θ dφ2. (5.2)

To connect this with Newtonian theory, we look for a potential 
 generated by
the gravitational field described by (5.2). For a test particle of mass m moving slowly
through this field, which we assume to be relatively weak, such a potential is related
to the metric term g00 = −(1 − 2G M/r) in the Schwarzschild metric as follows ([19,
p. 78]):


 = g00 + 1

2
= MG

r
. (5.3)

This is precisely the potential that yields Newton’s inverse-square law for gravity:

F = −m
d


dr
= G Mm

r 2
. (5.4)

To see how this differs from general relativity, we consider the notion of effective
potential for our test particle. To this end, recall that the equation of motion given by
(2.3) can be integrated to express conservation of energy as

1

2

(
dr

dt

)2

+
(

G M

r
− h2

2r 2

)
= E . (5.5)

We identify

Ve = G M

r
− h2

2r 2
(5.6)

in (5.6) as the effective Newtonian potential with centrifugal term h2/(2r 2) and the
constant of integration E as the total conserved energy. However, the actual equation
of motion derived from the Schwarzschild metric is found to be ([18, p. 139])

1

2

(
dr

dt

)2

+
(

G M

r
− h2

2r 2
+ MGh2

c2r 3

)
= E . (5.7)
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Thus we see that the effective general relativistic potential

Ve = G M

r
− h2

2r 2
+ MGh2

c2r 3
(5.8)

contains an additional term, MGh2/(c2r 3), which is significant for relatively small r .
This leads to the general relativistic force law (per unit mass)

FE(r) = G M

r 2
+ 3G Mh2

c2r 4
. (5.9)

To calculate the amount of precession due to FE (r), we apply formula (4.12) in
Example 2 by setting a = G M , b = 3G Mh2/c2, n = 1, and m = −1:

α =
√

G MT + 3G Mh2/(c2T )

G MT − 3G Mh2/(c2T )
≈

√
1 + 6h2

c2T 2
≈ 1 + 3h2

c2T 2
.

Hence, the resulting precession for a nearly circular orbit defined by (5.9) becomes

φ = 2π (α − 1) = 6πh2

c2T 2
. (5.10)

Let us now apply (5.10) to the anomalous precession of Mercury’s perihelion, one
of the hallmark tests of general relativity. Since Mercury’s orbit is nearly elliptical,
we take advantage of the relations h2 = G M R and R = T (1 − e2) where T is the
semi-major axis and e is the eccentricity to obtain (cf. [13] and [15])

φ = 6πG M R

c2T 2
= 6πG M(1 − e2)

c2T

= 6π(6.673 × 10−11)(1.99 × 1030)(1 − 0.2056)

(2.9979 × 108)25.79 × 1010
(5.11)

= 4.6069 × 10−7 radians/revolution.

Since Mercury makes approximately 415.2 revolutions per century, this leads to an
anomalous precession of 39.45 arc-seconds per century and is in close agreement with
the observed amount of 43 arc-seconds per century.

6. EINSTEIN’S COSMOLOGICAL CONSTANT. Einstein introduced the cosmo-
logical constant � into his field equations as a divergence-free term to allow for static
solutions ([19, p. 155]):

Gi j + �gi j = 8πTi j , (6.1)

where Gi j = Ri j − 1
2 Rgi j is the Einstein tensor. In the absence of matter (6.1) reduces

to

Gi j + �gi j = 0. (6.2)

It is well known that a flat space-time solution to (6.2) exists for positive � and is
given by the de Sitter metric:

ds2 = −
(

1 − 1

3
�r 2

)
dt2 + 1(

1 − 1
3�r 2

)dr 2 + r 2dθ2 + r 2 sin2 θdφ2 (6.3)
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As before we can identify the Newtonian potential 
 corresponding to (6.3) in the
weak-field case as


 = (g00 + 1)

2
= �

6
r 2. (6.4)

Thus the force exerted by this potential on a test particle of mass m is

F = −m
d


dr
= −�

3
mr. (6.5)

For positive � the cosmological force in (6.5) is repelling (recall Newton’s convention
regarding a negative force) and since it permeates throughout space (if it exists at all),
this implies an accelerated expansion of the universe. This expansion and the vacuum
energy that drives it have made the cosmological constant the leading candidate for
dark energy, an attempt to explain the anomalous acceleration (recession) observed in
galaxies, one of the hottest unresolved issues in physics today ([9], [11]).

If we therefore assume the existence of a cosmological force in addition to the New-
tonian force due to the gravitational attraction between m and M , then the resulting
force law is (per unit mass)

F�(r) = G M

r 2
− �

3
r. (6.6)

Comparison of the two force laws Fc and F� given by (4.13) and (6.6) clearly shows
that Newton’s extraneous force corresponds precisely to Einstein’s cosmological force.

7. REVOLVING GENERAL RELATIVISTIC ORBITS. Equation (4.6) can be
viewed as an approximation of precession based on Newtonian mechanics and revolv-
ing elliptical orbits. However, it is also possible to develop a second-order approxi-
mation based on revolving general relativistic (GR) orbits. To this end, let r(θ) be a
GR-orbit obeying the force law

FE(r) = G M

r 2
+ 3G Mh2

c2r 4
= G Mr 2 + 3G Mh2/c2

r 4
. (7.1)

Then a revolving GR-orbit must follow the modified force law

F̃E(r) = FE(r) + h̃2 − h2

r 3
= G Mr 2 + 3G Mh2/c2 + (h̃2 − h2)r

r 4
. (7.2)

Now given any arbitrary force law F(r) in the form

F(r) = C(r)

r 4
(7.3)

we can again compute precession as in Section 4 for a nearly circular orbit by assum-
ing r = T − X with T and X as before. Then approximating F(r) to second-order
(quadratic) in X ,

F(r) = C(r)

r 4
= C(T − X)

r 4

≈ C(T ) − C ′(T )X + C ′′(T )X 2/2

r 4
, (7.4)
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and identifying it as F̃E(r), we equate (7.2) and (7.4) to obtain

C(T ) − C ′(T )X + C ′′(T )X 2/2

= G M(T − X)2 + 3G Mh2/c2 + (h̃2 − h2)(T − X).

Thus,

C(T ) = G MT 2 + 3G Mh2/c2 + (h̃2 − h2)T ,

C ′(T ) = 2G MT + (h̃2 − h2), (7.5)

C ′′(T ) = 2G M.

Solving the first and second equations in (7.5) for the two angular momentums yields

h̃2 = C ′(T ) − 2G MT + c2[C(T ) − T C ′(T ) + G MT 2]
3G M

,

h2 = c2[C(T ) − T C ′(T ) + G MT 2]
3G M

.

This leads to the following formula for precession:

α2 = h̃2

h2
= 1 + 3G M[C ′(T ) − 2G MT ]

c2[C(T ) − T C ′(T ) + G MT 2] . (7.6)

Observe that in the classical nonrelativistic limit where c → ∞, i.e., the speed of light
is assumed to be much greater than all other motions, we have

lim
c→∞ α2 = 1. (7.7)

To determine the amount of precession, we apply Newton’s Binomial Theorem as
before:

α ≈ 1 + 3G M[C ′(T ) − 2G MT ]
2c2[C(T ) − T C ′(T ) + G MT 2] . (7.8)

Therefore,

φ = 3πG M[C ′(T ) − 2G MT ]
c2[C(T ) − T C ′(T ) + G MT 2] . (7.9)

Observe from (7.9) that φ = 0 if and only if C ′(T ) = 2G MT , i.e. h̃ = h.
As an application, let us now determine the influence of the cosmological constant

on precession of GR-orbits. The corresponding gravitational force law with nonzero
� takes the form (see Section 6)

F(r) = G M

r 2
+ 3G Mh2

c2r 4
− �

3
r

= G Mr 2 + 3G Mh2/c2 − �r 5/3

r 4
(7.10)

428 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 115



Integre Technical Publishing Co., Inc. American Mathematical Monthly 115:5 January 18, 2008 2:54 p.m. nguyen.tex page 429

In this case

C(T ) = G MT 2 + 3G Mh2/c2 − �T 5/3,

C ′(T ) = 2G MT − 5�T 4/3, (7.11)

C ′′(T ) = −20�T 3/3.

and so

φ = − 15πG M�T 4

9G Mh2 + 4c2�T 5
. (7.12)

Lastly by using the approximation h2 = G MT , we obtain

φ = − 15πG M�T 3

9G2 M2 + 4c2�T 4
. (7.13)

To apply this formula to, say, Mercury’s orbit, we use current accepted bounds on
the cosmological constant which place it on the order ([8])

|�| < 10−45 km−2. (7.14)

Since 4c2�T 4 	 9G2 M2 for Mercury, we find (using Newton’s Binomial Theorem
once again) that

|φ| ≈ 5πT 3 |�|
3G M

<
5π(5.79 × 1010)3 · 10−45

3(6.673 × 10−11)(1.99 × 1030)

< 7.65 × 10−33 rad/revolution (7.15)

< 6.55 × 10−25 arcsec/century.

This shows the influence of the cosmological constant on precession of planetary orbits
(beyond what can be accounted for by general relativity) to be quite negligible and
unfortunately beyond current experimental detection (cf. [1], [14]).
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