POLAR ISOTROPY ACTIONS ON COMPACT WEAKLY SYMMETRIC
SPACES

HIEU D. NGUYEN

ABSTRACT. Let M = G/H be a compact weakly symmetric space with G a connected
simple Lie group and H a closed connected subgroup of G. Consider the isotropy action
of H on the tangent space of M at the origin. We classify those actions that are polar in
the sense of Conlon [C], Dadok [D] and Palais and Terng [PT]. Our proof use M. Kramer’s
classification of spherical pairs and Dadok’s result on reducible polar actions to perform a
case-by-case study of the corresponding isotropy action of H.

1. INTRODUCTION

Let M be a complete Riemannian manifold and H a compact Lie group acting on M by
isometries. It is an interesting problem to classify those actions that are hyperpolar since L.
Conlon has shown in [C] that such actions are variationally complete . Following Palais and
Terng [PT], we shall say that the action of H on M is polar if there exists a submanifold A of
M (called a section) that meets every H-orbit and meets them orthogonally. Moreover, if A
is flat with respect to the Riemannian metric on M, then the action is called hyperpolar. If
M is symmetric and H is a symmetric subgroup of the isometry group of M, then the action
of H on M is hyperpolar (cf. [HPTT]). Heintze, Palais, Terng, and Thorberg in [HPTT2]
have shown that if M is a homogeneous space with H a group acting on it with a fixed point
and such that the action is hyperpolar, then M must be locally symmetric. If M = R"” and
the action is linear, then all polar actions have been classified by Dadok [D] in the sense that
the H-orbit structure is equivalent to that of an s-representation, i.e. the isotropy action
of a symmetric space. In this case, observe that the notions of polar and hyperpolar agree
since sections are automatically flat being subspaces of R".

If M = G/H is a homogeneous Riemannian manifold, then Conlon has proven in [C] that
a polar action of H on M with section A induces a polar action of H on 7T,(M) with section
2 =T,(A) via the isotropy representation (the converse is false however; a counterexample
is given in Lemma 3.8). This theorem allows us to partially classify hyperpolar actions on
M by classifying polar actions on T,(M). Known results in this matter can be found in [C],
[D], [PT], [HPTT], [PTh], and [Ko].

This paper investigates polar isotropy actions on compact weakly symmetric spaces, a
natural class of manifolds to consider since it includes all known examples of polar isotropy
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actions, including symmetric spaces, isotropic spaces, and exceptional manifolds related to
the Cayley plane. Recall that a manifold M = G/H is weakly symmetric if each tangent
vector can be reversed by the isotropy action of H modulo a fixed isometry p. Our recent
work on weakly symmetric spaces in [N1] and [N2] has revealed that for certain nonsymmetric
and nonisotropic manifolds, weak symmetry essentially follows from the fact that they are
polar; a tangent vector is reversed by mapping it to a section where p is involutive. This
suggests viewing polar isotropy actions as special cases of weak symmetry even though the
former depends on the Riemannian metric and the latter does not. Our main result is

Theorem 1.1. Let M = G/H be a compact weakly symmetric space with G a connected
compact simple Lie group and H a closed connected subgroup of G. Moreover, provide M
with the naturally reductive Riemannian metric induced by the Killing-Cartan form defined
on the Lie algebra of G. Then the isotropy action of H on T,(M) is polar if and only if M
15 one of the following spaces:

(i) M is a symmetric space.

(ii) M is an S'-bundle on an hermitian symmetric space of nontube type.

(iii) M is an S*-bundle on HP™.

(iv) M is one of the following isotropic spaces: SO(8)/Spin(7), SO(7)/Ga, or Go/SU(3).
(iv) M is either SO(9)/Spin(7) or SO(8)/Ga.

Our proof makes use of Kramer’s classification of spherical pairs in [Kr] and their equiv-
alence with weakly symmetric spaces (cf. [N2]). As a result, this allows us to perform a

case-by-case analysis of the orbit structure of each isotropy action. Our work is summarized
in Table 3.

2. PRELIMINARIES

Let H be a compact Lie group acting isometrically on a complete Riemannian manifold
M with metric g.

Definition 2.1. The action of H on M is said to be polar if there exists a closed smooth
submanifold A of M which meets every H-orbit of M orthogonally. In that case, we shall
call A a section of M. If A is flat under g, then the action is called hyperpolar.

Consider the situation where M is homogeneous, i.e. M = G/H. Assume that the natural
action of H on M is polar with section A. By homogeneity we may assume that A passes
through the origin o = eH.

Lemma 2.2. ([C], Theorem 3.7) If the natural action of H on M = G/H is polar with
section A, then the isotropy representation of H on T,(M) is polar with section Q = T,(A).

The following lemma will be useful in our arguments.

Lemma 2.3. ([D], Theorem 4) Let m : H — O(V) be a polar representation of a connected
compact Lie group G. Assume that V =V, @& Vs is a H-stable decomposition. Then:
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(i) m; - H — O(V;), i = 1,2, are polar representations. Every section ) of V' is of the
form € = Q4 & Qs with £; being a section of V;.

(i1) Fiz a section = Q& Let by = Z(§2y) be the centralizer of Qy in 'ty and by = Z ()
be the centralizer of Q1 in b. If H; is a connected Lie group having b; as its Lie algebra, then
the action p : Hy x Hy — SO(V; @ V3) defined by

p(h1, ha)(vi,v2) = (m(hy)vr, w(he)va)
15 a polar representation and the orbits of p coincide with the orbits of 7.

Definition 2.4. We say that M = G/H is weakly symmetric if there exists an isometry pu
(not necessarily in G) satisfying uGu=' = G, p(eH) = eH, pu? € H, and given any tangent
vector v € T,(M), there exists an element h € H such that d(ho u),(v) = —v.

Consider the natural projection map 7 : G — G /H. We identify T,(M), the tangent space
of M = G/H at o = eH, with q via 7. It follows that the isotropy action of H on 7,(M)
is precisely the adjoint action of H on q. Moreover, the H-orbit of v € q has tangent space
t- v = [t v] with [-, -] being the Lie bracket on g.

3. PROOF OF THEOREM

Assume now that G is a connected compact simple Lie group and H a closed connected
subgroup of G so that M = G/H is a compact homogeneous manifold. Under these assump-
tions, the author has proven in [N2] that the classification of compact weakly symmetric
spaces and that of compact spherical pairs coincide. This allows us then to prove Theorem
1.1 by dividing M. Kramer’s classification of all such spherical pairs in [Kr] into six families
(categorized below) and determining which ones are polar.

I.  Symmetric spaces, including SO(8)/(SU(2) - Sp(2)).
II. S'-bundles over hermitian symmetric spaces of nontube type:
SU(m +n)/U(SU(m) x SU(n)), SO(2n)/SU(n) and Eg/Ds.
III. S?-bundles over HP":
Sp(n+1)/(Sp(n)U(1)).
IV. Isotropic spaces:
G9/SU(3), SO(7)/Gy and SO(8)/Spin(7).
V. Spaces of Cayley-type:
SO(8)/Ga, SO(9)/Spin(7) and SO(10)/(SO(2) x Spin(7)).
VI. Spaces of orthogonal structures:
SO(2n+1)/U(n), SU2n +1)/Sp(n) and SU(2n +1)/(Sp(n) - U(1)).

The proof below shows that almost all of these families are polar, the exceptions being
the spaces of orthogonal structures and SO(10)/(SO(2) x Spin(7)).

Proof of Theorem 1.1. Our proof consists of case-by-case arguments as follows.
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3.1. I. Symmetric spaces. If M = G/K is a symmetric space, then it is well known
isotropy representation 7, : K — O(T,(M)), called an s-representation, is polar with sections
being maximally abelian subspaces €2 = a C p. Here, p is such that g = €& p is the Cartan
decomposition of g = Lie(G). (cf. [C], [D]).

3.2. II. S'-bundles on hermitian symmetric spaces. Let G be a connected semisimple
matrix Lie group with finite center and K a maximal compact subgroup of G such that
D = G/K is a hermitian symmetric space. Let g = €+ p be the Cartan decomposition of
g with respect to a Cartan involution o, where g and € are the Lie algebras of G and K,
respectively. Then € = b+ 3¢, where b is the semisimple part of £ and 3¢ the one-dimensional
center of €. Let H be the subgroup of K with Lie algebra f and Zx the center of K. Then
H is connected and K = HZ)., where Z9% is the connected component of Z.
Let a be a maximal abelian subspace of p. The following lemma will prove useful.

Lemma 3.3. ([N2], Lemma 3.7) If G/K is not of tube type, then Ad(H)(a) = p.

Consider now the weakly symmetric space M = G/H with tangent space b @ 3¢. It has
isotropy representation m = 7, @ Id where 7, is the s-representation of G/K on p and Id
is the one-dimensional trivial representation on 3¢ It follows from Lemma 3.3 that every
H-orbit of 7 intersects Q = a@® 3. Moreover, (h-, Q) = 0, since ([¢, a],a) = 0 and [h, 3¢] = 0.
Hence, the intersection is orthogonal and so 7 is polar with section €.

3.4. III. S2’-bundles on quaternionic projective space. Let M = Sp(n)/(Sp(n —
1)U(1)). Then T,(M) = H" @ R?. As for the isotropy action action of Sp(n — 1)U(1)
on T, (M), it is known that Sp(n) acts on H" as v, and trivially on R?. Moreover, U(1) acts
on R? by rotations (its action on H" is nontrivial but we shall not care to know what it is). It
easily follows that 7 is polar with section 2 = R; @ Ry where R; and Ry are one-dimensional
lines in H" and R?, respectively. This is because the actions of Sp(n) and U(1) are transitive
on spheres in H" and R2, respectively.

3.5. IV. Isotropic spaces. It is well known that for such spaces the isotropy representation
7 is transitive on the unit tangent sphere. Obviously, 7 is polar with one-dimensional
sections.

3.6. V. Spaces of Cayley-type. (i) Spin(9)/Spin(7) = S*5: Here, T,(M) = R” & R® and
7 = pr ® A7. It is known that Spin(7) acts transitively on S¢ x S” C R” & R® with isotropy
subgroup SU(3) (cf. [Z]). Hence, 7 is polar with two-dimensional sections 2 = R & R.

(ii) Spin(8)/Gy = S” x S” (not polar): Here, T,(M) = R" ® R" and 7 = 07 @ 0;. Assume on
the contrary that 7 is polar. Since o is transitive on spheres in R7, Lemma 2.3 forces the
section to be two-dimensional and to decompose as €2 = mathbbR @& R. The normalizers H;
and H, are both easily seen to be SU(3). However, the orbits of H; x Hy = SU(3) x SU(3)
acting on R” ®@R” are not the same as those of H = G5 acting on R”®R’. This is because the
orbits of H contain S® x S® and those of H; x H, do not; the former follows from G5 being
transitive on two-frames in V5(R” and the latter from the fact that SU(3) is not transitive
on spheres in R7. As this contradicts Lemma 2.3, we conclude that 7 is not polar.
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(iii) SO(10)/(SO(2) x Spins(7)) (not polar): Here, T,(M) = R" & (R® ® R?) and 7 =
pr®A;Rpy. Let v =w+(y,2) € RTOR® @R? where y, 2 € R®. To show that 7 is not polar,
let us assume the contrary. Then 7 being polar implies that its restrictions, namely namely
pr acting on R” and A; ® py acting on R® ® R? are polar by Lemma 2.3. Now, it is clear
that p; is transitive on spheres and hence has one-dimensional sections 2;. On the other
hand, A7 ® p, is forced to have at least a two-dimensional section, )y, because its action
is not transitive on spheres. If we assume €2y = (Rey, Res) with {eq, e, ..., €} representing
the standard unit vectors in R®. Now, let H; = N(£23) and Hy = N(£2;) be the normalizers
of Qy and Q; in H, respectively. Then the action of H, x Hy on R” @ (R® ® R?) is polar
with sections €2; & {2 and the orbits of H; x Hs are the same as those of m. However,
H, = SU(3) and Hy = Spin(6) x SO(2) with the action of Spin(6) = SU(4) being that of
pg on R® = C*. From here it is easy to check that the action of H; on R® @ R? is not polar
since not every Hy-orbit intersects €5 = (Rej,Rey). This contradicts our conclusion that
the action of Hy x H, is polar by part (ii) of Lemma 2.3. Hence, 7 cannot be polar.

3.7. VL. Spaces of orthogonal structures. (i) G/H = SO(2n+1)/U(n): Let M, be the
symmetric space SO(2n+2)/U(n+ 1) and denote by w5, the s-representation of U(n+ 1)
on T,(M,y1) with section a,,;. However, M, ; also has the homogeneous presentation
My = SO(2n + 1)/U(n) with isotropy action of U(n) given by 7 = 7 |y(n). Moreover,
its tangent space decomposes as 1, (M) = T, (M,) & C* (z' € M,,) under 7 = 75 & iy,

We now prove that 7 is not polar by again employing Lemma 2.3. Assume the contrary
that 7 ¢s polar. Since 7} is an s-representation and p, is transitive on spheres, Lemma 2.3
forces m to have section of the form a, & R, where a, C T,/(M,,) is a section for 73 and
R C C" is a one-dimensional section for u,. Let h; and by be the centralizers of R and a,,
in h = Lie(H), respectively. Denote by H; and Hj to be the connected Lie groups with
Lie algebras h; and by, respectively. Then H; = U(n — 1) and H, is a proper subgroup of
U(n) whose identity component is either SU(2)z", i.e. sn-copies of SU(2), if n is even or
SU(2)z=D x U(1) if n is odd (cf. [Kn], p. 530). But it is clear in either case that the
action Hy — SO(C") is not transitive on spheres and therefore cannot have one-dimensional
sections. This contradicts the conclusion that p : H; x Hy — SO(a, @ C") is polar by part
(ii) of Lemma 2.3. Hence, 7 cannnot be polar.

(ii) G/H = SU(2n + 1)/Sp(n): Let M, be the symmetric space SU(2n + 2)/Sp(n + 1)
and denote by 7"*! the isotropy representation of Sp(n+1) on T, (M, 1) with section a,,;.
However, M, also has the homogeneous presentation M, 1 = SU(2n + 1)/Sp(n) where
the isotropy action of Sp(n) here is 7 = w?+1|5p(n). Moreover, its tangent space decomposes
as Ty(My41) =T, (M,) @ H" @R (¢' € M,) under 7 = 77 @ v, ® Id (v, is the standard
representation of Sp(n) on H").

To see that 7 is not polar, we run through the same argument as that used for SO(2n +
1)/U(n). Assume the contrary that 7 is polar. If we ignore the trivial summand of r,
then 7 must have sections of the form a, ® R, where a,, C T,,(M,) is a section for 7¢ and
R C H" is a section for v,. Let h; and by be the centralizers of R and a, in § = Lie(H),
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Table 3 - Polar isotropy actions on compact weakly symmetric spaces

Weakly symmetric space Isotropy action Section

M =G/H m:H— SO(T,(M))|QcCT,(M)

I. Symmetric spaces s-representation aCp

I1. S'-bundles over hermitian symmetric spaces | s @ Id abRCpdR

1. S*-bundle over HP" (U @ (+)) ® s ReRCH & R?

IV. Isotropic spaces
SO(8)/Spin(7) P71 RCR
SO(7)/Gs o7 RCR
G4 /SU(3) 13 R CRS

V. Spaces of Cayley-type
SO(9)/Spin(7) pr @ A7 RORCR @R
SO(8)/Gs o7 @ o7 not polar
SO(10)/S0O(2) x Spin(7) p7® (A7 ® p2) not polar

VI. Spaces of orthogonal structures
SO@2n+1)/U(n) N Ly D fin, not polar
SU(2n+1)/Sp(n) Ny, @ vy, not polar
SU(2n+1)/(Sp(n)U(1)) (A*y, — 1d) ® v, not polar

respectively. Denote by H; and H, to be the connected Lie groups with Lie algebras b,
and bho, respectively. Then H; = Sp(n — 1) and Hy = SU(2)". But it is clear that the
action Hy — SO(H") is not transitive on spheres and therefore cannot have one-dimensional
sections. This contradicts part (ii) of Lemma 2.3. Hence, 7 is not polar.

(iii) G/H = SU(2n+1)/Sp(n)U(1): As a corollary to the SU(2n+1)/Sp(n) case, it follows
that the isotropy representation for SU(2n + 1)/Sp(n)U(1) cannot be polar either since its
isotropy representation is the same as that for SU(2n+1)/Sp(n) minus the trivial summand.

This concludes the proof of Theorem 1.1. We refer the reader to Table 3 for a summary of
our results. O

As an application, we prove that there are actions which are polar at the tangent space
level but not hyperpolar at the manifold level.

Lemma 3.8. If M = G/K, is an S'-bundle on an hermitian symmetric space of nontube
type, then the action of Ky on T,(M) is polar but the action of Ky on M is not hyperpolar.
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Proof. Our classification in Theorem 1.1 proves that the action of K on T,(M) is polar. To
prove that the action of K, on M is not hyperpolar, assume on the contrary that A is a flat
section for this action. Then Q = T,(A) = a @ 3 must be an abelian subspace of T,(M) = q
since its sectional curvature is determined by the Lie bracket defined on q. However, it can
be easily verified that  is not abelian, namely [3¢, a] # 0. Hence, the action of K, on M
cannot be hyperpolar. O
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