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1.1 Introduction

The classic notion of a symmetric space M dates back to Riemann and Cartan:
given any two points z and y of M, there exists an isometry g which maps
each point to the other. This deep and yet simple idea helped spurred vigorous
research in the early 1900’s which resulted in a classification of the irreducible
symmetric spaces (see [9]). Then in 1956, Atle Selberg introduced in his seminal
paper [23] the notion of a weakly symmetric space which naturally generalizes
that of a symmetric space. He called a space M weakly symmetric if it has a
fixed involutive isometry p such that given any two points z and y on M, there
exists an isometry g which maps each point to the image of the other point
under p. If p can be chosen to be the identity, then M is in fact symmetric.
The diagram below gives a picture of this generalization:

M . y M
)
x .\_/. Yy
)
p(x) * 1(y)
Symmetry Weak Symmetry

A symmetric space possesses the crucial property that its space of invariant
linear operators is commutative. As a result, harmonic analysis becomes inter-
esting and fruitful on such spaces. Fortunately, Selberg [23] has proven that
this property is retained for weakly symmetric spaces. It is mainly because of
this fact that makes Selberg’s generalization worth investigating. However, its
significance depends on whether or not there are examples of weakly symmetric
spaces that are not symmetric. Unfortunately, such examples are few in num-
ber and a classification seems far at hand. In fact, the only method known to
us for obtaining concrete examples was described by Selberg in [15], where he
informally constructed circle bundles on the Siegel half-space. Furthermore, he
found applications for these circle bundles in his investigation of automorphic
forms.

It is our thesis that new examples of weakly symmetric spaces can be ob-
tained by generalizing Selberg’s circle bundle construction to bounded symmet-
ric domains. By using the symmetry and fine structure of bounded symmetric
domains, it is proven that the corresponding circle bundles are indeed weakly
symmetric. Applications of these weakly symmetric spaces to harmonic analysis,
representation theory, and automorphic forms are presented.

The contents of our thesis are as follows: Chapter I lays out the structure
theory for simple Lie groups of hermitian type and irreducible bounded sym-
metric domains. Let G be such a Lie group and D = G/K the corresponding
bounded symmetric domain. We shall assume that D is of classical type. The
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factor of automorphy « and a kernel function K are introduced. As they play an
important role in our thesis, the rest of the chapter is devoted to finding explicit
expressions for £ and K. Proofs are given for the complex quadric since we were
unable to find references for it. Other classical results about the Bergman kernel
and the Bergman on D are provided as background for our weakly symmetric
spaces.

Chapter II is the beginning of new material and new results. First, we
describe the construction of a circle bundle D' — D. Let G' and D' be circle
extensions of G and D, respectively. Then a twisted action of G' on D' is
defined using the factor of automorphy k. It is shown that this action is well-
defined and transitive due to a cocycle condition satisfied by . This makes D!
a homogeneous riemannian manifold and the G*-invariant metric (2 is computed
for D! of classical type.

Let o denote complex conjugation on D and extend it to D'. Chapter III
then presents the main result of our thesis:

Main Theorem. (D',G!,0) is a weakly symmetric space.

Furthermore, in case G = SU(m,n) with m # n, it happens that G' can be
replaced with G as the transitive group of isometries of D'. We also prove
that the universal cover of a weakly symmetric space is also weakly symmetric.
It follows that (D, G,0) is also weakly symmetric, where D and G denote the
universal covers of D' and G', respectively.

We go on in this chapter to describe the Cayley transformation of D'. This
is an extension of the Cayley transform ¢ on D which maps it to its unbounded
realization H. As a result, D' should have a similar unbounded realization #,,.
It is shown that H, can be constructed independently, so that via the Cayley
transform, is seen to be precisely the unbounded version of D'. We obtain as
new results expressions for the riemannian metric on 7, in the two cases where
H is either a tube domain with G = SU(n,n) or complex hyperbolic space with
G = SU(n,1). Lastly, it is verified that when G is the symplectic group, H, is
exactly the circle bundle constructed by Selberg.

Chapter 4 then discusses some applications of our circle bundles. We hope
to convince the reader of their usefulness even though the results that we obtain
are not new. The first application deals with D' as a commutative space, or
equivalently, viewing (G',K!) as a Gelfand pair. This means that D(G' /K!),
the space of G'-invariant linear operators on D!, is commutative since D' is
weakly symmetric. However, this result was already proven by Flensted-Jensen
in [2]. There, he actually defined the same extensions G' and K' as we did and
performed harmonic analysis on the function algebra C*°(G'/K'). A direct
proof is given of the commutativity of that C>°(G' //K!), the bi-K, -invariant
functions on G'. This implies that (G',K!) is a Gelfand pair and the commuta-
tivity of E(G! /K!) now follows from certain equivalent definitions for a Gelfand
pair. We show that his method can be used to prove that the function algebra
C*(G//K,) is also commutative, hence (G, K, ) is also a Gelfand pair.

We then make use of Flensted-Jensen’s results about spherical functions on
G! (with respect to K!) to study the relationship between spherical kernels and
spherical functions on D'. Namely, we derive the important property that joint
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eigenfunctions of invariant different operators D(G! /K!) are joint eigenfunc-
tions of the invariant integral operators E(G! /K!).

The last application shortly describes using D' to study representations
of G and automorhic forms on D via the Selberg trace formula. Let £ be a
joint eigenspace of D(G! /K!'). Now, every F' € £ can be written as F(z,t) =
|K(z,2)|2 f(2)e*t, where K(z,z) is a fractional power of the Bergman kernel.
Consider the operator 7' : F +— f. Then the natural action of G! on F by
left translation means that G acts on f under a transformation via the factor
of automorphy. The operator T" becomes an intertwining operator between the
eigenspace representation of G! and the corresponding discrete series represen-
tation of G.

Let T be a discrete subgroup of G such that I'\D is compact. Fix a one-
dimensional representation 7, of K and a one-dimensional representation x of I'.
Let A be the space consisting of square-integrable functions on D that transform
automorphically under I' as follows:

f(mz) = x(m)m*(k(m, 2))f(z), meT, z€ D, k€. (L.1)

The important connection is from observing that if F' € £ is invariant under
T, then T(F) = f is in \A. We construct an appropriate G*-invariant integral
operator I, on D' and go on to prove that its kernel p is spherical in the sense of
Selberg [5]. A dimension formula for A4 can be obtained by applying the Selberg
trace method to I, (as in [23]).

1.2 Preliminaries

The following treatment is taken from R. Herb and J.A. Wolf [12]. Let G be a
connected, simply-connected real simple Lie group of Hermitian type. Denote
by Zg the center of G. Fix a Cartan involution # of G. The fixed point set
K = G? contains the center Zg of G and K/Zg is a maximal compact subgroup
of G/Zg. The space D = G/K is an irreducible bounded symmetric domain.

If g and ¢ are the Lie algebras of G and K, respectively, then g = €& p is
the Cartan decomposition under . Now, ¢ = €5 @ 3¢ where £, = [¢,£] is the
semisimple part of €, and 3¢ is its one-dimensional center. Let K denote the
connected closed subgroup of K with Lie algebra €, and Zx denote the center
of K. Then K is compact, simply-connected, and normal in K. The vector
subgroup Zx = E x ZY%, where E is a finite abelian subgroup and Z% = R the
identity component of Zx, and K = K, - Z%. Also, Z = Zg N ZY is an infinite
cyclic group.

Let gc be the complexification of g. Extend 6 to g¢ so that gc = € + pe.
If b is a Cartan of subalgebra of £, then h is a Cartan subalgebra of g and its
complexification h¢ is a Cartan subalgebra of gc. Let @ be root system for
(gc, be). Then ge has the root decomposition gc = he + Y~ , g Ga- Decompose
® = &, U P, into subsets of compact and noncompact roots. Choose a root
ordering for ® so that ®* and &~ are the set of positive and negative roots,
respectively. This allows us to write pc = py + p—, where po (resp. p_) is
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the holomorphic (resp. antiholomorphic) tangent space. Furthermore, let Z,
be the element in the center of & which defines this complex structure. Set
®F =d* N, and &F =P N P,,.

Let G¢ be the connected simply connected Lie group for gc. Denote by Gg,
Kg, K¢, Py and P_ to be analytic subgroups of G¢ corresponding to g, €, tc,
pr and p_. Let ¢ : G — Gg be the projection map. Then K = ¢ !(Kpg).
If + € PLKrP_, then we write its Py KgxP_ decomposition as z = pi(z) -
ko(x) - p_(z). This allows us to define the map ¢ : Py KcP— — p4 by requiring
that py(z) = exp((z), where exp : p; — Py is the exponential map. Since
Gr C Py KcP- C G¢, we write g € expz - KcP_ so that the restriction map
¢ : Gr — p;4 given by g — z gives the Harish-Chandra embedding of Gr/Kr
onto a bounded domain D in the complex vector space p .

We now lift this picture up to G. The embedding Gg C Py K¢P_ lifts to
a corresponding decomposition map G — P+IZ'@P by lifting p+ and k, to G
via the universal covering ¢ : G — Gg. This gives G/K = GR/KR Now, let

: K¢ — K¢ be the universal covering group. Then K¢ can be thought
of as the complex1ﬁcat10n of K and qk|k = q|K As a result, k, : G = K¢
lifts to no G — K(C such that R,|x : K — K(C This gives the embedding
G — P, KcP_ as defined in [12].

The picture can be made explicit when we choose Gr to be a matrix Lie
group. Since our results pertain only to the case where G is of classical type,
we shall always make this assumption when referring to Gr. There are four
such classical bounded symmetric domains and are numbered according to their
type. Following ([9]), they can be described as follows:

Type Gr/Kr D Cypy

I SU(m,n)/S(U(m) x U(n)) {Z € Mu,(C) : I Z*7Z > 0}
IT. Sp(n,C) NU(n,n)/U(n) {ZeM,,(C):Z*=Z and I — Z2*Z > 0}
III. SO*(2n,C)/U(n) (Z€Mun(C): 2! = —Z and I — Z*Z > 0}

1+1ZZ1? -22*Z >0
IV.  S0,(n,2)/(SO(n) x SO(2)) {Z € M1 (C) : and' ’ _|Z*Z o }

1.3 The Factor of Automorphy

Recall that the action of G and Gr on D agree (via q). If g € G, then we write
A B
¢ D
and G above is called the factor of automorphy and &, the universal factor of
automorphy. However, we will need to generalize k, slightly as it will be used
later to help us define a certain group action. The following description is from
Satake [21]. We extend k, to a map « : Gr x D — K¢ satisfying the following

its projection to Ggr via ¢ as ¢q(g) = ) The function «, defined for G
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relation !:
g-expz € expgz - k(g,z) - P (1.2)

Let 0 € D be the coset element eKr. Then k has the following properties:

Lemma 1.3.1 i) k(g,0) = ko(g), for all g € Gg.
it) k(k,z) =k, for all k € K¢ and z € D.
iii) k(g192,2) = k(g1,922)k(ge, 2), for all g1,9> € Gr and z € D.

Our immediate goal will be to compute the factor of automorphy for those
bounded symmetric domains of classical type.

Proposition 1.3.2 The factor of automorphy has the expression

Types I-III:  k(g,7) = <A B %’Z)C g), gZ = (AZ + B)(CZ + D)~ !
Type 1V: k(g,Z) = <g 3), with U and V' given as follows:
_ 1 . o _(1+ ZZ
Express g7 = 1.0CZ% 1 D%) (AZ1+BZs) with Zy = 2iZ and Zy = (z _ itz ) )
Then

U=A-B'Z, +(g2)[CZ + D(I + L Z)'W,
V=(I+Y92)){92),[AZ, + B+ 1z +[CZ\ + D(I +3ZO]}(I - iw"),

i

¢
where W = —21 (C-D'Z}) <1>, as given below in (1.4), (1.5).

w

The proof really boils down to finding the P, K¢ P_-decomposition of Gg.
Fortunately, the decomposition for Types I-III is rather easy and the answer is
given below without proof (see [12], p. 5). On the other hand, the Type IV
case requires quite a bit more wrangling. Since the author has failed to find
a reference for this decomposition (and probably for good reason because the
calculations get very messy), complete details will be given.

Lemma 1.3.3 Let Gr be of Types I-1II. Then the Py KcP—-decomposition of
18
(A B\ _ (I zZ\(U 0\[(I 0
9=\c¢ p)=\o 1)\o v)\w 0)
where Z = BD ', U=A—-BD 'C,V =B, and W =D 'C.

We begin with some preliminaries. Let g € SO,(n,2). Then according to
28],

e !
p_,.:{Z:( tOZ, Zd"):Z_'i_:(iZ,Z)WhereZisnxl},
— 4y

1The universal factor of automorphy can be extended similarly to & : G x D — I?C (due
to Tirao [25], p. 64).
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and the embedding of Z € D C p, is given naturally as Z — Z. Similarly,

= 0 WL\ ... N N
p_=W= 0 W' = (iW,—W) where Wisn x 1;.

To obtain Py and P_ now requires exponentiating p and p_, respectively. Use

the fact that

5% (0 0 v (22 —i'ZZ

Z7Z = (0 Zi) where 7| = (—itZZ _tyz |
and (Z)* = 0 for k > 3 to compute exp Z = Yo %(2)’” This gives

P—{epo—( ! & >'Z€p}
+ =z T+ 521 ) *

A similar calculation shows that

— 1 w! =
P:{exsz(_tW, I+1W”>:W€p}’
. sWX

tww o itWw

" " o_
where W now takes the form W- = (itWW YW

>. Furthermore, K¢

has the form

Ke = {(g 3) .U € SO(n),V € 50(2)}

Lemma 1.3.4 Let Gg = SO,(n,2). Then the Py K¢ P_-decomposition of g €
GR 18

(A B\ [ I 7z, U 0 I W
9=\c p)=\~tz, 1+izv)\o v)\—w' 14+iw")

where

Z, = (iz, 2), Z:ﬁB(ll. with d= 2 (i 1)9(1>,
t )

WL = (W,~W), W=-%'C(]),

U 0\ _ [(A+Z.D'W' 0
0o v)"™ 0 (I+izZ))(Z,. B+ D)(I—iW") )"

Proof. Multiplying the three matrices on the right hand side above together and
comparing entries leads to the set of equations

U-Z. VW' = A, UW! +Z, V(I + %W’,’)
—tZIU - (I+iz)Hvitw' =C, —ZUW' + (I +3Z0)V(I + 3 W)

B,
D.
3

—~
— |l
~
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The two equations in the second column give V = (I — £ Z%)"*(*Z'. B+ D)(I +
W)~ It can be checked that det(I — £ Z%) = det(I — 1W") = 1 so that the
inverses above makes sense. In fact, we easily see that

(I-Liz0)t=+izy), @+iwn-t=1-1w",

and so
V=0U+320)(Z,B+D)I-iw").

Now use this expression to obtain U = A + Z/, D'W , which follows from rec-
ognizing that ert L= W itw! =o.

It remains to compute what Z', is in terms of g. This requires noticing that
the map

1, 1
@.unzﬂ(z 1)V(i>

identifies SO(2) with GL(1) = C*, and so v is never 0. This is because SO(2)
consists of the matrices

cosf sin@

so = {r= (=0, 5) el

and it is easy to check that (V) = e?. We then use our expression for V above
to obtain

o) =v= o (i 1)v<1>:2li(i 1)D<1>:d,

where we have used the relations (i 1) Z} = 0, W” (1) = 0. Now, the

equation in ( 1.3) involving B gives

1 . 1 1 . .
1-2=22(i 1)V<Z.>:2—izjrv(1 N=2B(1 i),

from which we obtain the desired expression for Z after dividing by d. A similar
argument can be used to find

L
W =54 c<1>

and will be left for the reader. This completes the lemma. O .
Proof. (of proposition) By definition, gexp Z = exp(gZ)x(g,Z)expW. For
Types I-III, this means finding the K¢-component of

4,_(A B\(I Z\_(A AZ+B
gexps =\ p)l\lo 1)~ \c cz+D)"

Now use our Py K¢ P- decomposition to get the desired expression.
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For Type IV, we now have

_(A B I z'. _ (A-B'Z', AZ’++B(I+%Z1)
yxpe=\c p)\~z 1+iz1)~\c-piz, cz, +DI+1z"))"

We use our formula for the P, KcP_ decomposition of Gg = SO(n,2) to get
the Kc-component of gexp Z, which is precisely the factor of automorphy

k(g, Z) = <[0] 3)

First, by rewriting CZﬁr+D(I+%Z1) = % (C’Z1 + CZQ) (1 —i)+%D <—lz i),
we get

v=0(V)=

%(i 1)[C’er+D(I+% 1)](1):%@' 1) (CZi + DZ,).

Then a short calculation shows that we get the correct answer for ¢g acting on
VA

1

7z
92 = %

1 1 1
AZ' B(I +=7" T = A7 BZ.).
[ ++ ( +2 +]<z> (Z 1)(CZ1+DZ2)( 1+ 2)
By denoting W = _ﬁt(c _ Dthr) (i

for U and V as

), we can finally write the expression

V= (I+392)){"(92)[AZ, + B(I+321)|+[CZ} + DI +3 2D (T - 5W"),
(1.4)
and the relation (gZ)lt(gZ)’ = 0 is used to simplify the answer for U:

U=A-B'Z' +(gZ)[CZ| + DI + 1 Z|)]'W. (1.5)

This completes the proof. O

1.4 The Kernel Function

Our next goal will be to define a certain kernel function K for the classical
domains. Now, we can view K¢ = KE x K so that

K¢ = {(g 3) U € K&,V € Kz and det(U)det(V) = 1}.
If k € Kg, we label kT =U and kK~ = V.

Then, following Satake [21], we define the matrix kernel function K : D x
D — K¢:

K(z,w) = ro((expz) ™ (expw)) ",
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where Z represents conjugation with respect to the complex structure on p, so
that elements of p; are sent to p_ (and vice versa). For the classical domains,
this means that if the element z € D C py is viewed as a matrix, then the
complex structure is complex conjugate transpose of matrices:

(02 (0 0
o o) 7 zc 0/

Then the kernel function K : D x D — C* is defined as:

| det(K(z,w)™), TypesI—III
K(z’“’)_{ O(K(z,w)"),  TypeIV

Proposition 1.4.1 The kernel function K for the classical domains is given as

Type I:  K(Z,W) =det(I — Z*W)_

Type II: (Z, W) =det(I — ZW) 1

Type III: K (Z,W) = det(I + ZW)~!

Type IV: K (Z,W) = (1 +1ZZ WW — 22W)~1

Proof. For Types I, II, III, just multiply the following matrices

1 (T o\ (I W\, [ I W
(exp Z7) exPW_(-Z* 0) <0 I>)_<—Z* I—Z*W)

to easily see that

(I WU = Z2*W)~lz%)7! 0
/C(Z,W) = ( 0 (I _ Z*w)l) )

and so K(Z,W) = det(I — Z*W)~!. Now use the fact that {Z = Z for Type II
and *Z = —Z for Type III to get the right expressions for K in these cases.
For Type IV, it can be checked that

—!
= = 1 —Z I w!
\*\—1 _ — +
(e (Z7) e W = | g H%z")(—tm I+%W1>
I+7Z 'wr Wi —Z_(I+ W)
7o —(I+5Z0)W ZWL+ (I + 57T +5W)) )

Now, recall that if
A B U 0
C D 0o V)’

then (V) =4 (i 1)D (1) Therefore, by using the identities
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we arrive at

o) = (i NIZ WL+ @+Z)w+ 3w (])
= 1+ZZ'WW - 2Z*W.
Now use the definition of K (Z, W) = ©(V 1) = O(V)~! to obtained the desired

expression for K. O
We will also need to define a determinant factor of automorphy:

. _ [ det(k(g,2)7)"", TypesI—III
109 ={ oty o) e

Lemma 1.4.2 The kernel function K enjoys the following properties:
i) K(z,w) = K(w,2) and K(z,z) > 0.
ii) K(g2,gw) = j(g,2) " K(z,w)j(g,w)”

1

Proof. Property i) is obvious. Property ii) for Types I-III follows from the
relations

9Z) Iy n(gW) = Z* I, W <= (AZ+B)"(AW+B)—(CZ+D)*(CW+D) =Z*W
and
I—(92)*(gW) = (CZ+D)*'(I-Z*W)(CW +D)~", j(9,Z)=(CZ+D)™".

The identity for Type IV requires a much more complicated expression. To
simplify the notation, recall the definition of Z; and Z, earlier and denote

Z= (Zl> , U=AZ +BZ,, V=(CZ +DZ).
Za

Then we define gZ as normal matrix multiplication to obtain

gZ:<g>’ 9Z2=Uv", v=(i 1)V.

In what follows, we use z and w subscripts to distinguish the terms defined
above for two different elements Z and W. First, some preliminary identities
will be needed:

g Ly gW = W = UiUy =V Vi = ZiWi — Z5W,
ZtggZ =272 =0, << WU+'VV =0.
Also, the following three equalities can be easily verified:
Wy + ZoWo =41+ ZZWW = 2Z*W),
(Vivw)? — 20XV Vv, = 03IV <1 _12> Vv — 205V Vv = iV (_12 i) ViwVw,
1

v = () ve (L 1) ove=es (1)) v,
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This gives (vivy)? — 205V Vv + V.V, 1V, Vi = 0. Using j(g, Z) = (v./2i) 7t
and j(g, W) = (qu/2i) !, we get

L+t(gZ)(gZ) (gW)(gW) —2(92Z)* (gW) =
= ——[vlvw + - 2 (U.U.U,Uy) — 20U,

*
z W zJw

= [VIvy + V.V, WV Vi) = 2(Z7 Wy — Z3Wo + VIV,)]

V3 Uy ViUy
e S ((Vivw)? = 205V Vo + V2V 'V Vi) + vron

(v3vy)? .
=0+j(g, 2) A+ ZZ'WW —2Z*W)j(g, W).

1+ ZZ'WW —22*W)

The transformation property of K(gZ, gW) for Type IV now follows. O

Let K¢ act on p by the adjoint action and consider the linear map J(g, z) =
Ady, k(g,2). It is well-known that d(gz) = J(g,z)dz (see [21], Ch. II, §5), Then
the jacobian of d(gz) is det(J(g, z)) = j(g,2)P, where the exponent p depends
on the bounded symmetric domain (see the lemma below).

Let B(Z,W) be the Bergman kernel on D. Then B can be written as a
constant factor (namely the volume of D) of our kernel function K raised to an
appropriate exponent. Here are explicit formulas for B in the classical cases:

Lemma 1.4.3 (Hua [11]) The Bergman kernel can be expressed as
B(Z,W) = vol(D)™' K (Z,W)P

where the values for vol(D) and p are given by the table below:

Type vol(D) D
I 1'2'1%(17);13 .1()77, DUmdn 4
I —n,(ilf'l')',@%?’l)m% n+1
11 %ng n—1
v ﬁn" n

The Bergman kernel gives rise to the hermitian (or Bergman) metric ¥ on
D defined by the fundamental 2-form i00log B(Z, Z) (see [21], II. §6 and [26],

81):
Lemma 1.4.4 The Bergman metric ¥ on D is given by:
Type I: U =ipTe{(I - Z*Z) *dZ*(1 — ZZ*) 'dZ}.
Type II: O =ipTe{(I - ZZ)"'dZ(I — ZZ)~*dZ}.
Type III: O =ipT{(I+ZZ) *dZ(I + ZZ)*dzZ}.
Type IV: O =ip(1+1ZZ177 —22*7Z)2(2dZ*dZ — d(*ZZ)d(Z Z)).

Lastly, the riemannian metric w on D is obtained by taking the imaginary part
of .
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1.5 One-Dimensional K-Types

Lastly, we need to review how the factor of automorphy can be composed with
representations of K to obtain ”generalized” factors of automorphy. These take
the form 7(&(g, z)), where 7 is a representation of K extended to its complex-
ification IN((C. For our needs however, we will restrict 7 to be one-dimensional,
hence a character of K. Since K = K;Z9% and K, is semisimple, these charac-
ters are in fact prescribed by characters of Z% = {explZy : I € R}. Any such
character of Z% can be parametrized as 7,, where v € R and

%?,,(explZg) =ilv.
We then extend 7, to K = K;Z9 by making it trivial on K,. Complexifying 7,
then gives us a complex character of IZ'@. It is clear that 7, =7 .

Suppose a character 7, of K was fixed. Then recall the covering ¢ : G — Gg.
The discrete subgroup @ = ¢~'(e) N ZY% lies inside Z = Zg N ZY%.. The identity
component of the center of Kgr, Z% , is then a circle isomorphic to Z%/Q. For
7, to push down to a well-defined character 7, of K means that 7, should
be trivial on (. This can be accomplished by properly parametrizing ) inside
Z9.. Furthermore, we shall set 7, (k) to agree with the determinant factor of
automorphy j(k,0)” on Kg. The last step is to extend 7, to Kr and complexify
to a character of K¢. The generalized factors of automorphy are then given as

Type -IIT:  1,(k(g,Z)) = j(g,Z)" = det(CZ + D)~".
Type IV: 7,(k(g,2)) = j(9,2)" = [2 (z 1) (C’Z1 + DZQ)]"’.

27
It will then be necessary to define an argument function arg7, (k) on K as
follows. Since 7 maps into C* and K is simply-connected, we can properly define

arg 7, (k) = %(logﬁ,(k) - logﬁ,—(k))

by fixing a branch point of our logarithm so that arg 7, (explZy) = lv on Z%,.
Since K is also simply-connected, this argument function makes sense when 7,
is extended to K¢.

Then having fixed our branch point means we can push the argument func-
tion down to 7, (k) for k € Kg via the covering ¢ : K — Kpg. This gives the
standard argument function for complex numbers.
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2.1 A Circle Bundle Construction

The construction of our circle bundles will proceed in three steps. The first is
to define line extensions G and D of G and D, respectively. This will give an
action @, of G on D determined from a one-dimensional K-type 7,. From there,
we push ®, down to an action ®. of G' acting on our circle bundle D', where
G! is a quotient of G. This is the second step. Similar, pushing ®. down to
an action of G} (a circle extension of Gg) on D! gives us the desired setting in
completing our third step.

Let D = D x R be the product manifold of D and the real line. If z € D and
t € R, we shall write (z,t) or z; to denote the corresponding element of D. Let
G = G xR be the direct product of G and the real line R as Lie groups. We write
out its elements as g; = (g, ), g € G and s € R and define the multiplication as
(91,51)(92,82) = (9192, S2+s1). Fix a nontrivial one-dimensional representation
7 =7, of K (v a nonzero number) and extend 7 to K.

Lemma 2.1.1 i) The action ®, : G x D — D defined by
gszt = (92,187 (R(g,2)) +t + ) (2.1)

is transitive with isotropy subgroup K, = {(k,arg7(k)) : k € K}. Furthermore,
&, restricted to G (viewed as a subgroup of G) is also transitive with isotropy
subgroup K, and D = G/K, = G/K; as homogeneous spaces under this action.

Proof. i) Let gs = (g9,8) € G and z; = (z,t) € D. Now, define an action
®,:GxD— D as follows:

gsz = (9z,arg7 ' (R(g,2)) +t + s) (2.2)

Observe that @, is indeed an action:

g9sgszt = (992, argi'_l(/i( ,2))+t+ s+ 3)
= (ggz,arg7 1 (&(g gz) k(g,z))+t+s+3)
= (992, arg7 "' (k(g,92)) + (argT Y(R(g,2)) +t+35) +5)
= gs(gz,arg T (K(g,2)) +t+3)
= 9s(gs2)

and so ®, is well-defined.

Next, we show that &, is transitive by showing that &, restricted to G
(considered as a subgroup of G) is transitive on D. Also, since G is already
transitive on D, it suffices to prove that G is transitive on each slice z x R C ID.
Recall the covering ¢ : G — Ggr and pick g € G so that ¢(g) = expz € Py. If
k € K, then &(gkg~?,z) = k since q(gkg~"')exp z = q(g)q(k) = (exp 2)q(k). So
gkg~1(2,0) = (z,arg7(k)) and the orbit gKg *(z,0) is precisely z x R. This
proves transitivity.

Let us now find the isotropy subgroup K, of ®, at the origin (0,0) € D,
where o is the origin in D. For an element g, to stabilize (0,0) means

9s(0,0) = (go,arg 7~ (&(g,0)) + ) = (0, 0).
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Since K is the isotropy subgroup of o and &(g,0) = g whenever ¢ is in K, this
implies g € K and s = arg7(g). Clearly then K, = {k, = (k,arg7(k)) : k € K}.
As for the isotropy subgroup of ®, restricted to G, we instead have g € K and
arg7(g,0) = 0. If we decompose g = kz, with k € K, and z € ZY%, then this
forces z = e. This means g € K, and shows that the isotropy subgroup is
precisely K. Hence, D = G/K, = G/K,. O

The second step is to define D! = D x S! be the product manifold of D
and the unit circle SL. Here, the subscript v on S! indicates that S has
circumference 27v and parametrized by the interval [0,27v). Therefore, an
element (z,t) of D' means z € D and z € [0,27v). Now let Gg be a real form
of G¢ and ¢ : G — GR the projection. Then K = ¢ (Kg), where Ky is the
maximal compact subgroup of Gg. Again, define Q = ¢ '(e) and Q = QN Z%.
Now define the discrete subgroup Q, = {(q,arg7,(¢)) : ¢ € @}. Then Q, is
a normal subgroup of G and so the quotient G' = G/Q, becomes a reductive
Lie group with finite center and K!' = K, /Q, is a compact subgroup of G'.
Let ¢' : G — G* denote the covering map. We shall freely write gs = (g, s) to
denote elements of G or G'. If it is needed to distinguish g, as a coset element
in G', we shall then write [gs] = gsQ, .

Let @ have a suitable parametrization in Z% so that 7, pushes down to a
character 7, of Kg, i.e. 7, should be trivial on Q.

Lemma 2.1.2 The action &, projects to a transitive action ®. : Gt x D' — D!
given by
(952 = (92, arg 7, (K(g,2)) + 1+ 5) (2.3)

is transitive with isotropy subgroup K' = K;Q%/Q,, and so D' = G' /K!.
Proof. To show that ®. is well-defined, it suffices to prove that ®, is trivial on

Q. so that it factors to an action of G' on D'. Let k, = (k,arg7(k)) € Q,.
Note then that kz = z and &(k, z) = k for all z € D. Therefore

kyze = (kz,arg7 1 (&(k,2)) +t+arg7(k))
= (z,—argf(k) +t+arg7(k)))

and hence the action of @, is well-defined on D'.
Transitivity of ®. follows from @, being transitive. As for the isotropy
subgroup of ®., we have

[95](0,0) = (g0, arg 7" (k(g,0)) + ) = (0,0).
Again, it must be that g € K, but now s = arg 7(k(g,0)) modulo 27v. Define
QL ={q€ 7% :argt(q) = 27lv for some | € Z}.

Then g must have the form kq, with K, and q € Q% since arg7(q) = 27lv =0
(mod 27v). So the isotropy subgroup must be K!' = K,Q./Q, and hence
D' =~ G' /K. Note that K! is a compact subgroup of G!. O
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Our last step is to now push ®L down to G}, = Gg x S.. This requires the
projection map ¢ : G — G, where ¢ = ¢ X p,. Here, ¢ : G — Gy is the usual
covering map and p, : R — S! is defined as t — tv.

Lemma 2.1.3 The action ®% : G5 x D' — D' given by
gszt = (92, arg 7, " (k(g, 2)) +1 + 5)

is transitive with isotropy subgroup K, = {(k,arg7(k)) : k € Kr}. Furthermore,
<I>H3 restricted to Gr 1is also transitive with isotropy subgroup [Kr, Kgr] and so
D' = Gy /Ky = Gr/[Kr, Kr].

Proof. The proof of these statements follows exactly the same argument as for
the action ®, We have (g, s)(0,0) = (0,0). We leave it for the reader to check
the details. O

We mention again that the actions ®,, ®L, and ®% defined above depend
on 7,. Because of this dependence, it is appropriate to attach the subscript
v to D, and D} whenever there is a need to identify them as homogeneous
spaces of the form I, & G/K, and D} = G'/K' = G} /K} under the action
of ®, and ®. (or ®%), respectively. Furthermore, the reason for consider the
two different actions ®. and ®f on D' is as follows. First, view D' with the
homogeneous structure G! /K!. Then the extensions G' and K! are precisely
the same extensions defined by Flensted-Jensen [2] for doing harmonic analysis
of functions on G' that are bi-K'-invariant. However, no reference is made of
the manifold D'. This makes our approach different from his since our objective
is to show weak symmetry of D'.

It is clear the I is the universal cover of D'. Furthermore, it is easy to show
that D (resp. D') can be viewed as a line (resp. circle) bundle over D under
their natural projection maps. Define 7 : D — D given by 7(z¢) = z and a right
action on D given by

p:DxR — D
22-0 — (z,t+0).

A similar projection map 7' and right action p' can be defined for D'.

Lemma 2.1.4 (D, 7) (resp. (D', 7Y)) is a principal bundle over D with struc-
ture group R (resp. S') and principal action p (resp. p').

Proof. Tt is clear that p is an action and that 7(2;-6) = w(z¢). Also, p commutes
with @,

gs(zt - 0) gs(z,t+0)
(gz,t + 0 + s+ arg 71 (E(g,2)))
(92,t+ 5+ a+arg7 ' (i(g,2))) -0’

= (gszt) -0

hence 7p = pr. We note that the fiber at each z € D is 7 1(2) ® R. A similar
argument holds for the case of D'. O
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Now, G, G', and G}, have the same Lie algebra g=¢Tp!, where g* = g + R,
pl =p+R and & =& + {7(X) : X € R} (the Lie algebra of K,, K, and K&).
We also have the relations

[e',p'] Cp' and [p',p'] C €. (2.4)

Lemma 2.1.5 D is Riemannian manifold with the G-invariant metric Q,,. The
corresponding metric on D' invariant under G, is the one induced from Q.

Proof. G/K,, has p as its tangent space. The relations (2.4) implies that Ad(KK, )p C
p and so D is a reductive homogeneous space. Any such space has a G-invariant
Riemannian metric 2, (see [18], Prop. 6.58). This makes G a group of isome-
tries for the Riemannian manifold D under ,. Since G}, and G' are quotients
of G and D is the universal cover of D!, the Riemannian metric on D! must be
the one induced from 2,. O

Later on, we shall give an explicit expression for 2, when G is of classical
type. Now, define Z, = {k, = (k,arg7(k)) : k € Z%} to be a subgroup of G.

Lemma 2.1.6 The injection j : G — G defined by j(g) = [(g,0)] gives diffeo-
morphisms of G with G/Z, and G /K, with G/K, . Furthermore, we have G/Q
diffeomorphic to G' /q(Z,) and G|KQ with G' /q(K").

Proof. Let m : G — G/Z, be a projection map. Then it is clear that = o j is
one-to-one and onto with inverse given by (7 o j)~!(gsZ,) = gexp(tvn), where
7 = 7, is the fixed character of K which parametrizes (). This gives the desired
diffeomorphism between G and G/Z,. O

Remarks. Note that if we view D = G/Kj, then the riemannian metric Q,
does not correspond to the standard product metric induced on G /K via the
diffeomorphism G/K; =2 G/K x R. This occurs only when v = 0. In that case,
S! reduces to a point and D' = D becomes a symmetric space. We shall avoid
this trivial situation by always assuming that v # 0.

2.2 The Riemannian Metric

Let G be defined as before and G be a real form of G¢. Fix a one-dimensional
K-type 7, and define the line bundle D and the circle bundle D} as before.
Here are the promised expressions for the G}-invariant metric on D} for the
classical domains. If z is a complex number, let Re z and Im z denote its real
and imaginary parts, respectively. Also, we write Tr{A} to denote the trace of
the matrix A.

Proposition 2.2.1 Let w be the riemannian metric on D invariant under Gg.
Then the riemannian metric 0, on ]D),l, invariant under (Gz]lR 18

0 =wt+ (% sy, (2.5)

v

where § = §(Z) at (Z,t) € DY is expressed as
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Type I: §=ImTr{Z*dZ(1 - Z*Z)~'}.
Type II: 6 =ImTx{ZdZ(1 - ZZ)~'}.
Type III: 6 =ImTr{—ZdZ(1 + ZZ)"'}.

Type IV: 6 =1Im {2Z dZ — 29(2)"dq(Z) } (2) = S -
1+ 1ZZ1Z7 —272*7Z (i 1)2,

The heart of the proof will rely on the following lemma.
Lemma 2.2.2 The following identity holds for the classical domains:
dargj(g,Z) = 0(Z) — 6(9Z) (2.6)
Proof. For Type I, we have j(g,Z) = det(CZ + D)~ ! and so

dargj(g,Z) = (1/2i)(dlogdet(CZ + D)* — dlogdet(CZ + D))
(1/2i)Te{d(CZ + D)*(CZ + D)*~' —d(CZ + D)(CZ + D)~'}.

By setting U = (AZ+ B) and V = (CZ + D) to simplify our notation, it suffices
to find an expression for d(CZ + D)(CZ + D)~! = dVV ~!. First, notice that
gZ = UV 1. Then consider the following equivalent relations:

(2" I)g*Im,ngd@):(z* I)d(f) — UdU - V*dV = Z*dZ.

Now,

Avv-l = VL(vEay) vl

VY UdU — 2*dZ)V !

VAU (dU)V L) — VAl zedZy L

= VN UVVY T 4 dUV ) = Vel ZrdZzy
= (92)*(g2)dVV~' + (9Z)*d(gZ) — V*~1Z*dZV !,

or equivalently
(I =(92)(92))dVV ™" = (92)*d(gZ) = V*~'Z*dZV ",
and so
vV = (I~ (92)"(92)) " (92)"d(9Z) - V* "' Z*dZV"].

We multiply through and take the trace, simplifying the second term on the
right hand side to

To{(I - (92)*(92) ' V*12%dZV ") = Te{(VNI — (92)"(g2))"'V*12*dZ)
= T{(I-Z2*Z)"'z*dZ},

where the identity (I — (92)*(gZ))~! = V*(I — Z*Z)~'V has been used. We
then get

Te{dVV "} = T{(I — (92)"(92)) " (92)"d(92)} = Te{(I — 2" Z)~ 2"dZ}.
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We now use this trace equation to compute

dargj(g,Z) = dargdet(CZ+ D)™ ?
(1/20)Tx{(dVV~1)* —dVV '}

6(Z) = d(92),

as desired.

For Types IT and III, we observe in these two cases that the argument par-
allels that used for Type I. This follows from recognizing that the expression
for the determinant factor of automorphy j(g, Z) doesn’t change. Also, D lies
inside {Z € M,;,,(C) : I — Z*Z >> 0} and GR is a subgroup of SU(n,n), so
dargj(g, Z) produces the same identity formula as in Type I case. Now use the
identities ¥Z = Z and !Z = —Z for Types II and III, respectively, to simplify
the formula to the desired expressions as stated in the lemma.

Again, the Type IV argument is complicated and must be derived separately.
First, we recall some of the notation used earlier in showing the transformation
property of the kernel function K for the Type IV case:

U=AZ +BZ, V=CZ +DZ, v=_(i 1)V
We shall often write v* to mean @ even though v is not a matrix. Secondly, define
q(Z) = Zyzy ", where 2o = (i 1) Z». Then q(9Z) = Vv~ and 2¢(Z)*dq(Z) =
i7Zd(*Z7Z). Now, j(g,Z) = (v/2i)~" and so
dargj(g,Z) = o (logdet(v/2i)* —logdet(v/2i))
= =Tr{(dvv1)* —dvv'}.

Therefore, to find an expression for dvv—!, note that gZ = Uv~! and check the
following equalities:
Z*g*In72 d(gZ) - tZAImQZ
Ztgld(gZ) = tZdZ =0

<~ U*dU —V*dV = Z{dZ, — Z5dZ>,
— UdU + tVdV = 0.
Then compute
dvv~! v* " Ly*doe!
v VE (i 1) (i 1)dVe !

vV EAV 0L 4 e LY <(; _Z> dvol,

0

Add and subtract the term 2¢(¢Z)*dq(gZ) to the right hand side above, but
replace the addition by the equivalent expansion below instead:
2q(gZ)*d(gZ) 207 1V*d(Vo)
207V (dVeT! — Vdov™2)
= 2 WV*dVe !t —dov ) — v VYV — 1)dov !

= v (L ) vt -T2 e2) o

= o VgVl 4oLy < 0

—14

—Im Te{ (I — (92)*(92)) " (92)*d(9Z)} + In Te{(I — Z*Z)~' Z*dZ}

) aVe = TGZZ) (0 2) @2y



CHAPTER 2. CIRCLE BUNDLES 23

where the identity v*v*vv—! — 20*V*Vo~! +tVV tVV = 0 (proved earlier
in our discussion of the kernel function) is used below to justify the previous
substitution:

WgZ)(9Z)t(9Z)(9gZ) = v 2UU'UUv 2
= v 2(UUUU)v 2
= 21Vl oL

If our directions above are correctly put into practice, then our expression
for dvv~! simplifies (namely from cancellation of the terms involving the 2 x 2
matrices):

dvvt = 20" WVHdVe Tt —1(gZ)(gZ) (g Z)(9Z)dvvt — 2q(gZ)*dq(gZ).
Now, expanding the first term on the right hand side above as

WAV = Y (UrdU — Z3dZy + Z3dZ) vt
= 2(gZ2)*dUvt — 20* Y Z}dZ, — Z3dZs)v ™t
= 2(¢2)*(d(Uv™") + 2Uv  dov™") — 20*~1(42*dZ — 2Z Zd(*Z 7)) 25 *
= 2(92)*d(gZ) +2(9Z)*(9Z)dvv "
—jlg, Z2)*(22*dZ —2¢(Z)*dq(2))j(9, Z),

and bring terms involving dvv~! on the right to the left hand side to get:

(1+%92)(92) " (92)(9Z) — 2(92Z)*(92))dvv* =
2(92)*d(gZ) —2q(9Z)*dq(9Z) — j(g, Z)*(2Z*dZ — 2q(Z)*dq(Z))j(g, Z).

A division and application of the transformation property for the K(gZ,gZ)
term then brings our calculation for dvv~! to an end:

1 2(gZ)*d(g9Z) —2q(9Z)*d(9Z) _22*dZ — 2¢(Z)*dg(Z)
14+4g2)(92)t(92)(gZ) — 2(92)*(9Z) 1 +ZZZ7Z -272*7

dvv

As a result,
dargj(g, Z) = o Tr{dv*v* ! —dvv '}
—0(9Z)+6(Z).

This completes the proof of the lemma. O

Remark. The reader may have expected the metric for Type IV to contain the
term t(9Z)(gZ)d(*(9Z)(gZ)) instead of q(gZ)dq(gZ). Oddly, it happens that

HgZ)(9Z)d("(92)(92)) = 4q(gZ)dq(9Z), but 'ZZd('ZZ) = 2¢(Z)dq(Z).

It is this difference by a factor of 2 between the identities above that makes
the Gj-invariance of 2, unclear when the expression t(¢Z)(g9Z)d(*(9Z)(92)) is
used.

Proof. (of the proposition) We first reduce the proof to showing that only the
second term in (2, is invariant under G5 = Gr x S!. This follows from the fact
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that since w is the riemannian metric for D, it is Gg-invariant, hence G x S}-
invariant, because the action of the circle S} on D is trivial.

We have G}, acting on D' as follows: (g,s)(Z,t) = (9Z,f), where f = t + s +
arg7, ' (k(g,Z)). Then df = dt +darg 7, ' (k(g,Z)) and by the previous lemma,

dargt, *(k(g, Z2)) = —vdarg j(g, Z) = 6(9Z) — 6(Z).

Hence,
di dt
——4(g2)=——-0(Z
" 5(97) = - 8(2),
and shows the G}-invariance of Q,. O
We claim that the spaces D' are all isometric to each other for any two
different values of v (excluding the case where v = 0).

Corollary 2.2.3 If vi,vs # 0 are integral, then the map Ty, ,, : ID),l/l — ]D),l,2
given by

1%
TV17V2 (Zatl) = (Z, _2t1) (27)
141

1§ an isometry.

Proof. We will write T" = T, ,, when there is no ambiguity. Clearly, T is a
diffeomorphism. Then observe that T*(dz) = dz and T*(dtz) = (v2/v1)dt;.
Now check the equality 7*Q,, = ,, by using our expression for Q,, and Q,,.
Hence, T' is an isometry. O
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3.1 Weakly Symmetric Spaces

In this section we intend to characterize D! as a weakly symmetric space in
the sense of Selberg. Since all our circle bundles are isometric to each other, it
suffices to consider just one of them by choosing v = 1. From now on, we shall
assume this to be the case (unless otherwise mentioned) and urge the reader to
bear this in mind. We also mention that the results in this section are new and
extend those of Selberg in the symplectic case.

Definition. Let M be a riemannian manifold. Then (M,G,p) is called a
weakly symmetric space if
i) G is a transitive group of isometries on M.
ii) u is an involutive isometry on M (not necessarily in G) with uGu—t C G.
iii) Given any z,y € M, there exists an element g € G such that gz = py and
gy = px.

Let o be ordinary complex (not matrix) conjugation on D and extend it to
D' (also called o) by o(Z,t) = (0(Z),—t) = (Z,—t). We are then ready to
present the main result of our thesis.

Main Theorem 3.1.1 I. (D',GL,0) is a weakly symmetric space.
II. Let Gr = SU(m,n). Then (D',GRr,0) is a weakly symmetric space if only if

The proof will require the following two lemmas:

Lemma 3.1.2 Let Z € D. Then Z and Z are in the same K-orbit, i.e. there
is an element k € K such that kZ = Z. If Gg = SU(m,n) with m # n and
t € [0,27), then k can chosen so that arg T(k(k,0)) =t.

Proof. We first prove the lemma for Gr = SU(1, 1) and then make use of the
Polydisk theorem [28] to handle the general case. Decompose z = re?. Then

define "
—i0
k= <60 ei9> € Kp

so that kz = re™" = Z. For the general case, consideration the decomposition
D = Kg - Gr[¥](z0), where Gr[¥](zo) is the polydisk defined as the product
of |¥| open unit discs constructed from each strongly orthogonal root in the
maximal set ¥. Write

i0

Z =ko- [ 9+(x0) = ko - Iz,.
YED

Then conjugation of Z means Z = k - I1z,. As in the SU(1,1) case, we choose
k., € Kr[y] such that k,z, = Z,. Now define k = ko - Tk, - ky ' to get kZ = Z.
This completes the proof of the first part.

As for the second part, we essentially give an alternative proof of the first
part but reveals the difference between Ggr of tube type and not of tube type.
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This also avoids (masking would be more appropriate) the machinery of the
polydisk theorem. Consider Gg = SU(m,n). We then have the decomposition
p+ = Ad(Kgr)(a;), where a; C py is the subalgebra corresponding to the
maximal abelian subalgebra a in p generated by the strong orthogonal roots.
Then in view of the Harish-Chandra embedding D C p,, we can assume Z =
Ad(ko)(X) for some ko € K and X € ay in the following diagonal form:

rietf

T eit>

.

where 0 is the m x (n — m) zero matrix. Let to = arg7(koky'). We now look
for

eial eiﬁl

eiaz eiBZ
L= (40): s | e

eiam eif”n

so that Ad(k;)X = AXB~! = X. This translates to the set of equations

m n

{a; +0; — Bi=—0;}, i=1,2,..,m Zai+26j =0.

i=1 j=1
Notice that if m = n, then a unique solution is specified, namely
a;=—0; Bi=06; i=1,2,..m; B]'ZO, t=m+1,...,n,

which gives us the desired A and B. However, since we are assuming G is not
of tube type, suppose m < n. Let t € [0,27) and denote

st At -n -3 6)

m n—m

Then by choosing
a;=—(6;+96), fi=6;—-96, i=12,.,m; Bi=¢, j=m+1,..,n,
one can check that
arg (k1) = argdet(B)™! =t — to.
Finally, set k = k:_gkrlkrg Lto get

kZ = Ad(kok1 k") Z = Ad(Foky) X = Ad(%o)X = Ad(ko)X = Z.
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It remains to check that

arg 7(xk(k, 0))

argT(EOklkal)

= argT(koky ') + argT(k1)
to + (t —to

= t

which completes the proof. O

Lemm_a 3.1.3 Let Zb Zy € D. Then there exists an element g € Gr such that
9Z1 = Zy and gZ = Zy. Furthermore, arg7(k(g, Z1)) = arg7(k(g, Z2)) (mod 27).

Proof. To accomplish this, we first pick hy € Ggr such that h1Z; = o and
hi1Zs = Z. Now choose hy € Gg such that heo = Z and hoZ = o. By the
lemma above, there exists k& € K such that ko = 0 and kZ = Z. Then D a
symmetric space means we can pick hy € Gg which exchanges o and Z, i.e.
hoo=Z and hoZ = 0. In summary, consider the chain of maps in the following
diagram:

ZiL, - o = o —= Z =5 Z = Zy = Zy
hy k ho o hyt o
Zy — Z — Z = o = o0 = i = I

Now, it can be easily checked that 0Gro = Gr = Gp, so that ch;'oc = 51—1-
Just set g = El_lh2k'h1 to get gZ; = Zy and ¢Z, = Z;.
As for the proof of the second statement, consider the kernel function K (Z, W)

defined in Chapter I. Recall that K(Z, W) satisfies K(W,Z) = K(Z,W) and
has the following transformation property:

K(9Z,gW) = jl9,2) " K(Z,W)j(g, W)™ ".
To apply this to our situation, use the fact that ¢Z; = Z and gZ» = Z; to get
K(9Z1,922) = K(Z2,71) = K(Z»,Z1) = K(Z1,2Z5),

or
K(Z1,22) = K(9Z1,9%2) = j(g, Z1) "' K(Z1, Z5)j(g9, Z>) ",

from which the fact j(g, Z1)j(g, Z2) = 1 is clear. We conclude from 7(x(g, Z)) =
j(g, Z) that
arg7(k(g, Z1)) = arg 7(k(g, Z2)) (mod 2m).

This finishes the proof of the lemma. O

Proof. (of main theorem) I. By construction, G} is transitive on D!, so property
i) in the definition of a weakly symmetric space is satisfied. For ii), it is clear
that o is an involution and that it normalizes G, since

o(g,8)0 " (Z,t) = olg,s)(Z,~t) _
o(9Z,argt  (k(g,Z)) — t + 5)
(9Z,arg(r7' (k(g, Z)) +t - 3),
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and so o(g,s)o ! = (g,—s) € G. To show that Q is preserved under o, observe
that its first term is invariant under conjugation. As for its second term,

dt —ImTe{(I — Z*Z)~'dZ* Z}

is sent to its negative under conjugation, so under the square, is also invariant
under o. This proves ii).

To prove iii), let (Z1,t1),(Z2,t2) € D'. Then it suffices to find an element
(g,5) € G, such that

(9,8)(Z1,t1) = 0(Z2,t2), (9,5)(Z2,t2) = 0(Z1,t1).
This translates into the following equalities:

971 =2y  arg ' 7(k(g, Z1)) +t + 5= —t
9Zy =71 ' arg ' 7(k(g, Z2)) +t2+ 5=t

The first pair of equations is satisfied by choosing g from the previous lemma.
For the second pair of equations, just set s = —(t; +t2 +arg7!(k(g, Z1))) and
again use the lemma to check that the equations hold. Hence, (D', G}, 0) is
weakly symmetric.

I1. If we view Gg as a subgroup of G}, then it suffices to show that (g, s)
can be chosen with s = 0 and arg 7= (k(g, Z;)) = —(t1 + t2). Denote

to = arg T(ﬁ(ﬁl_lhg,o) +arg 7(k(h1, Z1)).

From the previous lemma, we can choose k obtained in part I so that arg 7(k(k, 0)) =
tl + tg — to. Then

Ii(g,Zl) = Iﬁ)(ﬁl_thk‘thl)
= k(h; h,0)k(khi, Z))
= H(E;th,O)Ii(k,O)Iﬂ‘,(hl,Zl).

As a result, we can now choose s = 0 since

arg7(k(g, Z1)) =to + (t1 + t2 — to) = t1 + to.
This completes the proof of our main theorem. O
Corollary 3.1.4 (D, G, o) is a weakly symmetric space.

This will follow from the proposition below which states that the universal
cover of a weakly symmetric space is weakly symmetric. Let (M,G,u) be a
weakly symmetric space. Denote by MNand G the universal covers of M and
G, respectively, and m# : M — M, p : G — G their respective covering map.
Also, let i be an extension of pu to M. If x,y € M, then d(z,y) shall mean
the distance from z to y with respect to the riemannian metric on M invariant
under G and p.
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Proposition 3.1.5 If (M,G, ) is weakly symmetric, then (M,é,ﬂ) is weakly
symmetric.

Proof. Write M = G/K. Let H = p 1(K)" be the identity component of
p Y(K). Then M = G/H. Suppose #,5 € M and z = 7(%),y = n(j) their
projection to M. Since M is weakly symmetric, we can choose g € G such

gr = uy, gy = px. Then since 771 (gz) = 771 (uy) = {ji(w) : w € 7=(y)} and
7 € 71 (y), g lifts to a unique § with §(&) = (7). If d(-,-) denotes the distance

between two points on M (or M), then we have
d(i(9),9(9)) = d(3(%), §(7)) = d(i(g), i(Z)),

which implies that g(¢) = n(Z), as desired. This completes the proof. O

3.2 The Unit Disc

Let Gr = SU(1,1). The characterization that D' (v = 1) is weakly symmetric
can be made more explicit. Let (z,¢) and (w,r) be two distinct points in D!.
Then without loss of generality, we can pick (w,r) to be the origin (0,0). The
strategy is to pick h € Gr to switch o and z and compose with an element
k € Kr mapping z to Z to obtain the desired g. The answer is

- 1/
k:(vz/z 0_), h:—(.z_ ’?), d=i—z.
0 z|Z iz =i

This leads to the element (g, s) as being
1 (i/Elz —ivzz .
=3 (VL TNE). =t

Now check that argr(g,z) = arg7(g,0) = —arg(i/z) to obtain (g,s)(0,0) =

(z,—t) and (g, 5)(2, t) = p(0,0).
We next compute the Laplacian A on D'. Write z € D as z = = + iy. By
definition, any riemannian manifold (M, Q) has a Laplacian A defined by

_ _ 1 9 ko 2L _ y
Af = div grad f = T zl:al“z (%:Q ||Q||6$k>, 19| = | det(Q2:)]-

Lemma 3.2.1 If G = SU(1,1), then
0? 0? 1 0 0\ 0 0?
A:1_2_2 ~ ~ 1_2_25_ . ~\ = 1 2 2_.
(-2 -) (g + 3z ) +1=a* =3 -2 (55 + 57 ) 407 o
Proof. The metric Q of D! can be expressed in matrix form as

1+y?/d®> —zy/d —y/2vd
Q) = —zy/d 1+2%/d® z/2vd
—y/2vd x/2vd 1/4v?
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It can be checked that
- d? 0 2yvd
Q) = 0 d? —2zvd
2yvd  —2zvd (1 + 2% + y?)4v?

1
1ol = o,
It remains to just write out the definition of the Laplacian to obtain the desired

formula in the lemma. We leave this tedious calculation for the interested reader.
O

Remark. The expression for § takes the form:

TI-@ )

5() = Im { zZdz } zdy — ydx

1-—2zz

Then differentiating 0 gives

~ m dz N\ dz _ dz A\ dy
d(0) =1 ﬂhmw} - @1 PP

We notice that the numerator term dz A dy above is the symplectic form on R?.

3.3 The Unbounded Realization

In this section we describe the unbounded realization of D! by extending the
Cayley transform on D to D'. Our goal is to verify that for Gr = Sp(n,C) N
SU(n,n) and v = 1, the Cayley transform of D! is indeed the circle bundle
constructed by A. Selberg in [15].

Fix a one-dimensional Kp-type 7, with v integral. Let ¢ be the Cayley trans-
form, ¢(D) = H the unbounded realization, and Gg = cGrc ™! the correspond-
ing group of isometries of H. It is then possible to independently construct
circle bundles H — H in the same fashion as D' — D. We do this by first
defining the group extension

Gh =Gr x S} = ¢(Gp x S))e™! = cGre™! x S,

giving G the direct product structure. Now set H = H x SL. Then define the
following group action ® : G} x H — H:

(G,8)(w,r) = (qw,arg T *(k(§,w)) + 1 + ).

The point is that by properly extending ¢ to a transformation of D', its image
should correspond precisely to our unbounded domain H = H x S} described
above. Therefore, we define an extended Cayley transform c by

c(z,t) = (¢,0)(2,t) = (cz,arg 7' (k(c, 2)) + t) = (w, 7).

Observe that this extension is not trivial on the circle component of D' but twists
it via a factor of automorphy. Of course, it is easily checked that this action is
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compatible with ¢ in the sense that the following diagram is commutative:

Dt = H
(9:) | | @9
D' = H

If @ is the metric on H, then call Q the corresponding metric on H invariant
under Gr. We shall later explicitly compute (2 and prove that indeed

() = Q.

Theorem 3.3.1 (H, @ﬁg,&) is weakly symmetric, where & = coc™' and o is
complex conjugation on D' .

It is straightforward to check that H satisfies all the conditions of a weakly
symmetric space by transforming this situation over to D' and use the fact that
(D', G4, 0) is weakly symmetric. However, it would be more interesting for us
to explicitly characterize the action of @]%E on H, namely determine (g, W), and
compute the riemannian metric. We shall discover below that for tube domains
of Types I (m = n) and II, this is possible. Afterwards, we check our results by
applying the extended Cayley transform c.

Let Gg = SU(n,n). Then the Cayley transform c is given by

(Dl
c=\-r 1)

! consists of following matrices:

and the group é’R = cGre™

G = {g: (é‘ g), A*C = CA*, A*D—C*B =1, B*D:D*B}.

Let M, (C) be the space of n x n complex matrices and V the subset of all
hermitian matrices. Then ¢Z =i(Z + I)(I — Z)~' = W maps D to

H={W=X+iY € My(C) : X,Y €V and Y >> 0},

and Y >> 0 means that it is positive definite. The action of Gr on H is
W := gW = (AW + B)(CW + D)~'. Tt can be checked that & acts on H as
W =-W=-X +iY.

We will need to compute the factor of automorphy x(g, w). By definition,

gexp(W) € exp(gW)k(g, W)P-.
The decomposition below now tells us what (g, W) should be:

- (A B I W I gw A—(gW)C 0 I 0
geXp(W)—(c D)(O I>€<0 I>< 0 cw+p)\U o)
If 7 = 7, is a one-dimensional K-type,

T (k(g, W)) = det(CW + D)™".

The following lemma will be needed to compute the metric on H.



CHAPTER 3. WEAKLY SYMMETRIC SPACES 33

Lemma 3.3.2 If Wy, W, € H, then
Wz — Wl = (WQO* + D*)il(Wz — Wl)(C’Wl + D)71 (31)

Proof. We first observe that (gW)* = gW*. Then rewriting it as (g\W*)* = giWW
and using the properties of Ggr, we have

Wy =W, = (AWs 4 B)(CWy + D)~' — (AW, + B)(CW, + D)~!
[(CW$ + D)~ ]*(AWS + B)* — (AW, + B)(CW, + D)~!
= (WoC* 4+ D*)"[(WoA* + B*)(CW, + D)
—(WoC* + D*)(AW, + B)|(CW, + D)~
= (WhO* 4+ D*)"[Wy(A*C — C*A)W, 4+ Wy (A*D — C*B)
—(D*A — B*C)W; + (B*D — D*B)|(CW; + D)™ !
= (WQC* + D*)il(WQ — Wl)(CW1 + l))i1

and so the lemma follows. O

The lemma above allows us to compute the differential of W. Set W, =
W + AW, Wi = W and define AW = W, — Wi. Then using the lemma and
allowing AW — 0, we have

dW = limaw_o[(W + AW)C* + D*|~"(AW)(CW + D)~ !

— (WC*+ D) aw(CW + D) ! (32)

Now write W = X +4Y. If welet Wo = W and W) = W* = X* —iV* =
X — 1Y, then again from the lemma above

X =(WC* +D*)"'X(CW* 4+ D)~*

Y = (WC* + D*) 'Y (CW* 4+ D) ! (3.3)

Observe that (W)* = (X)* —i(Y)* = X —iY.
Recall that the action of G}, on H can now be written as
(§,5)(W,r) = (§W,r + s + argdet(CW + D)*) = (W, 7).
Write Tr{W} for the trace of the matrix W.

Lemma 3.3.3

dr 1 dr 1 1
— 3 — §Tr{Y dX'} (3.4)

Proof. Making use of (3.2) and (3.3), we see that

Tr{Y'dX} =

dW -Y~' = (WC* + D*)~'dW (CW + D)~'(CW* + D)Y "' (WC* + D*)
dW* - Y~! = (W*C* + D*)"HdW*(CW* + D)"Y (CW* + D)Y "L (WC* + D*)~1)

Then observing that the trace of matrix is preserved under conjugation, we have

Tr{dX -V~'} = LTo{dW -V} + Te{dW* Y~}
= Im{aw(cw + D)= (W + DY}
FTe{(W*C* + D*)~1dW* - Y=L (WC* + D*)}].
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Now write

(CW*+D)=(CW+ D)+ (CW*—-CW) =(CW + D) —2iCY
(WC* + D*) = (W*C* + D*) + (WC* —=W*C*) = (W*C* + D*) 4+ 2iYC*
and use conjugation again to see that
Tr{dX -Y '} = L[Tr{dW - Y '} - 2iTe{dW(CW + D) 'C}
+Te{(dW* - Y1} + 2{Te{(W*C* + D*)"LdW* - C*}]
= Tr{dX -Y 1} —i[Te{CdW (CW + D)~ '}
~Te{(W*C* + D*)~LdW* - C*}].

1
2

We next note that

darg det(CW + D)

3-dlog det(CW + D)” — log det((CW + D)*)"]
Z[Te{CdW (CW + D)~'} = Te{(W*C* + D*)~1dW*C*}]
and so using the fact that drf = dr + dargdet(CW + D)”, we can then conclude

S 2
Tr{dX -V '} =Te{dX - Y '} + —(dr — dr).
Our proposition is now clear. O
It is well-known that the metric @ on H is the following:

O =Te{Y 'dX}* + Tr{YV taY}*
Theorem 3.3.4 The Riemannian metric Q, on H given below is @]ﬁ-invariant:

Q, =+ (% - %Tr{Y’ldX}f (3.5)

Proof. Again, we use the reduction that the first term in (3.5) is just the metric
on H and since it depends only on the action of é, it is clearly @]}Q—invariant.
Proposition 3.3.3 then tells us that the second term is also invariant under @]ﬁ
and so the same can be said for Q,. It is clear that ), is positive definite and
hence is Riemannian. O

We now verify that the metric induced by ¢ on H, = ¢(#,) defined earlier
coincides with € computed above for Types I (m = n) and II. Denote by
6 = iTr{yldx}.

Proposition 3.3.5
c* () =9, (3.6)

Proof. Writing out 0, = w+ (dt/v—4)?. Classically, we already have ¢* (@) = w,
so it suffices to show that the differential map c* satisfies that c*(dr/v — ) =
dt/v—§. The proof then requires first finding Z*dZ (I — Z*Z)~" in terms of dW
and secondly dt in terms of dr. We have Z = ¢~ (W) = (W —il)(W +il)~!
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and so [ —Z = 2i(W +iI)~!. Differentiating the inverse Cayley transform gives
dZ = 2i(W +iI)"tdW (W +iI)~!. Furthermore, the following identity is true:

I-72*7 = I—(W+il)*Y(W —il)*(W —il)(W +il)~!
= (W +i)* Y[(W +il)*(W +il) — (W —il)*(W —il)](W +4I) !
= (W+i)* 14Yy)(W +il)~ L
Use these facts to compute
Te{Z*dZ(I — Z*Z)~'} = Tr{%(W +i)* "YW —iD)*(W +il)~HdWY ~Y (W +il)*}
= Te{i(W +il) HdWY Y (W —il)*}.

To find dt in terms of dr, we first need to determine 7(x(c, Z)). This we can

get, from
g (L AT\ (1 Z\ _ (il i(l+2)
cexpe={_r r)\o 1)7\-1 1-2 )

so that 7(k(c, Z)) = det(I — Z)~". Now differentiate to get

dargT t(k(c, Z)) 3: (dlogdet(I — Z) — dlogdet(I — Z)*)
LT{—(I - Z)~'dZ +dZ*(I — Z)*~'}
—vIm Tr{I — Z)~'dZ}
—vIm Te{(W +iI)(W +iI)~ ' dW (W +4I)~'}
= —vImTe{(W +iI)"1dW}.
Next, denote by A = Te{Z*dZ(I — Z*Z)~'} — Te{(W +iI)"'dW}. From the
previous calculations, A simplifies to
A = Tr{%(W +il)THdWY TH(W —dD)* + 2iY]}
= Te{i(W +il) 1dWY Y(W +il)}
Tr{idWY '},

~

from whence we get after writing W* = X —iY the identity Im A = 1 Tr{Y 'dX}.
Since dr = darg 71 (k(g, Z)) + dt, we conclude that

dt/v —ImTr{Z*dZ(I — Z*Z) '} = [dr —dargT (k(g,2))])/v —ImTx{(I — Z*Z) " *dZ*Z}
— drfv —ImT{Z*dZ(I = 2*Z) "t — (W +il) *dW'}
dr/v —TIm A

dr/v — $Te{Y ~1dX},
as desired. O B
In case Gr = Sp(n,C) N SU(n,n), we have Gg = Sp(n, R) and
H={W=X+iY: W=W'and Y >0}

is the Siegel generalized upper-half plane. Now view Gr as a subgroup of
SU(n,n) and H as a subspace of the corresponding domain for SU(n,n) to
see that the metric for H in this case is exactly the same:

When v = 1, (~21 given above is precisely the metric computed by Selberg for
his circle bundle (see [15]) as promised.
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3.4 Hyperbolic Space

We shall compute €2, (and assume v = 1 for simplicity) when D is a complex
hyperbolic space by using the Cayley transform c. Let Z = (2, ..., z,) denote
the elements of D and W = (wy, ..., w,) denotes the elements of H. The Cayley
transform ¢(Z) = W (and its inverse) is then explicitly given by
A+ oz ) (0

/ 1<j<n;, w,=1 zZj = -, 1<73<n; z, = -.
l—Zn’ =) ; Wn 1—2n7 j ’LUn-l-Z’ =) ) Zn wn +i

Wy — 1

Write w; = x; 4+ 4y;, for 1 < j < n. Then the unbounded realization is then
described as H = {W € C" : 4y,, — E?;ll |w;|> > 0}.

Lemma 3.4.1 Let H, be complex hyperbolic space. The riemannian metric Q
1§ given as

n—1 2
= (dr Do (wydy; —yjdag) + 2dwn> (3.7)

Q=0+ =
Proof. Using the Cayley transformation equations above, we obtain

wy, + 1)dw; — w;dwy, 2idwy,
( Jdw; — w;

= e T e

The metric Q, (assume v = 1 for simplicity) is given as Q = w+ (dt —§)?, where
zZ*dZ j=1 247
6:ImTr{7*}:Im M .
1-72Z I—ijlzjzj
Then a short computation gives

1 B 1 B lw,, + i|?

I=Z°Z 1-% 5 Ay fwl

Now check that

77az Y gy YT wdwy 200+ )dw, — (S0 wP)dw,

1-2"Z  1-371%2 Ay -0 w2 (wa+0) @y — X021 wj?)

We'll also need to determine 7! (k(c, Z)) since dr = darg T 1 (k(c, Z)) + dt.
First, observe that

2i 1 2 2i
cexp Z = 2 1 P 2
i1 1 =z, )
-1 1 0 1 1

2’i21

22'an1
i(1+ zp)
1—2z,
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This gives 771 (k(c, Z)) = 1 — 2, = 2i/(w, + i) and

darg 1 (k(c, Z)) = —Im { dzn } — _Im { dwn }

1—2z, Wy, + 1

Then combining

n—1 _ .
. widw; + 2idw
§+dargt 1 (k(c, Z)) Im { 2j=1 nil & }
dyn — Ej:l lw;[?

Z;l;ll (z;dy; — yjdz;) + 2dz,

-1
dyn =325 lwi?

We can now write the answer for ) as

Q = O+ (dr —dargt7 (k(c, 2)) — 6)?

- E?:_f (zjdy; — yjde;) + 2dx, 2

O+ |dr— — . ’
Ayn — Ej:l |wj]

as desired. O

37
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4.1 Gelfand Pairs

The notion of weakly symmetric spaces is intimately related to that of Gelfand
pairs. Therefore, we first provide a treatment of Gelfand pairs in connection with
our circle bundles D'. Denote by C*°(G) as the space of infinitely differentiable
functions on G and define the following subspaces of C*°(G):

C*(G) ={f € C(G) : f has compact support}
C*(G//K) ={f € C*(G) : f(hg) = f(gh) = f(g) for all h € K}
CK(@Q)={feC>®(G): f(hgh™') = f(g) forall h € K}

Also, we define C*°(G/K) to be the space of infinitely differentiable functions
on G/K. If fi, fo € C°(G), then define their convolution to be

(% fo)(@) = /G £1(9) falg™"2)dg

The spaces C°(G) and Cg° (G /K') become algebras under this convolution prod-
uct.

Definition. We say that (G, K) is a Gelfand pair if the algebra C*(G//K) =
C*(G) N C*(G//K) is commutative under the convolution product. In that
case, the homogeneous space G/ K is said to be commutative.

There are many other characterizations of a Gelfand pair (G, K) in terms
of its spaces of G-invariant differential operators and integral operators. Let
E(G/K) be the space of G-invariant endomorphisms of C°(G/K). Let D €
E(G/K) be such that, if given a function f € C°(G/K) and an open subset V
of G/H we have f|y = 0 implies D f|yy = 0, then D is said to satisfy the local
property and called a differential operator of C°(G/K).

Let h € L'(G//K) and define a function py on G/K x G/K as follows:

pr(zK,yK) = h(y 'z) (4.1)

Observe that pj is well-defined since h is bi-K-invariant. Now, let I, be an
integral operator on C*°(G/K) N L?(G/K) with kernel pp,, where we define

I, f(zK) = /G P UK S (4.2)

Then I, is well-defined and pj, is G-invariant, since
pr(9eK, gyK) = h((gy)~'g9z) = h(y~'z) = pu(2K,yK) (4.3)

for all g € G and hence, I,, € E(G/K). The invariant kernel py, is also called a
point-pair invariant (see Selberg [23]).
We define the following subspaces of E(G/K):

D(G/K)={D € E(G/K) : D satisfies the local property}
I(G/K) = {I,, € E(G/K):h € L'(G//K)}
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Note that D(G/K) is just the space of G-invariant differential operators and
I(G/K) = L*(G//K). Here are the awaited equivalent conditions for (G, K) to
be a Gelfand pair.

Theorem 4.1.1 The following are equivalent if G is a reductive Lie group and
K a compact subgroup:

(i) (G, K) is a Gelfand pair.

(i) The space of double cosets K\G/K is commutative.

(iti) E(G/K) is commutative.

(iv) D(G/K) is commutative.

(v) I{(G/K) is commutative.

These equivalence conditions are well known results; we refer the interested
reader to [27], Chapter 8 and [4], Proposition 1.7.1 for details. We mention that
it is still unknown whether weak symmetry is equivalent to the Gelfand pair
conditions.

We next investigate the commutativity of certain function spaces on D and
D', Tt is then profitable to view D = G/K, and D! = G'/K! as homogeneous
in what follows. Define the subspace

F(G/Ks) = CR(G) N C® (G Ky).
Then there is the following inclusion of subspaces:
C*(G//K) C CH(G//K,) C CF(G//KS).

Lemma 4.1.2 (Flensted-Jensen) CX(G//K) is commutative under convolu-
tion.

Proof. See [2], Theorem 3.1. O
Recall the injection j : G — G discussed in Section 2.1.

Lemma 4.1.3 (¢f. [2], Prop. 4.1) CK(G//K,) = C*(G//K,) as function
algebras under convolution.

Proof. We mention that Flensted-Jensen [2] has shown that CX(G//K) =
C(G' //K!). We extend his argument to . Let f € C°(G//KK,). Then foj is
just the restriction of f to G. Since j(K) C K, , this means foj € C*(G//Ks).
Note that to show f oj € CK(G//Kj) it suffices to show that it is invariant
under ZY%. Let k € ZY%. Then the following calculation

j(kg) (kg,0)

(k,arg7(k))(g,arg 7" (k))
(k,arg 7(k))(gk,0)(k~", arg 7" (k))
(k,argT(k))j(gz) (k=" arg 7" (k))

implies that f(j(kg)) = f(j(gk)). Hence, foj € CK(G//K.).
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Conversely, let h € CX(G//K;). We wish to show that there exists an
f € C(G//K,) such that foj = h. Define

£(9,) = h(exp(==Zo)g) (44)

To see that f is indeed in C*(G//K, ), let k, € K,. Then
kg,s +tv)

f(kl/gs) = (
h(exp(—*t% Z)kg)
= h(exp(—2n)exp(—tZo)k°k'g)
h(
h(
f(

k* exp(—tZy) exp(tZo) exp(—=2Zy)g)
eXf(——Zo) 9)
g

As a result, f is left K,-invariant. Similarly, reminding ourselves that h is
invariant under inner automorphisms of K,

f(gskV) = f(gks+tu)])
h(exp(— S*f”Zo)gk)
h((k ) " exp(—tZo) exp(—£Zo)gk)
= h(k™" exp(—£Zo)gk)
h(
f(

ex (—;ZO) )
gs)

and so f is also right K,-invariant. It is clear that f must be unique and
hence the mapping f ~ f o j establishes a bijection between CX (G //K,) and
O (G//K, ).

Let dz,dw, dy,dz be the Haar measures on G, G, G/Z, Z, respectively, and
set fz dz = 1. Since dw = dydz, we use the diffeomorphism j : G — G/Z to
normalize dy so that the bijection f — f o j preserves the L'-norm between our
algebras. It remains to check that the convolution product is preserved. Let

fi, f2 € C(G//K,).
((fl*fZ)oj)(g) f@l fl j )fz( )

f@l zfzfl 9)y 27 fo(zy)dadz

Ja f1 "N f2(i(2))dz

((fr OJ) ( 207))(9)

Hence, CX(G//K;) and C2°(G//K,) are isomorphic as algebras.

We have also proven that C2°(G//K, ) is commutative. To see that we can
also get Flensted-Jensen’s result that C>°(G!/K!) is commutative, it suffices
to prove that our definition of f in (4.4) is well-defined on the coset space G*
because G' and K' are quotients of G and K, , respectively. This requires the
following expression for elements of K!'. Decompose elements of K as k = k°k!
where k° € K, and k' € Z%. Now write k! = exp(tZp) for some real number ¢
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so that k, = k*. If k, is an element of Q,, then k, = k* and

flgsky) = f(gkt,s—l-tu)
= h(exp(—=~ Z;)gk?)
= h(exp(—=Zo) exp(—tZy)gk")
= h(exp(—3Zo) (k") 'gk")
= f(g,9)

implies f is well-defined on G*. O

Remarks. Note that the proposition above does not hold when v = 0 because
our definition in Equation (4.4) is absurd. The mapping f — foj fails to be one-
to-one in this case because G/K, reduces to a direct product of G/K and R, and
so the strict containment CX(G//K;) C C2°(G//K,) becomes clear. However,
commutativity of C*(G/K,) still holds because now G/K, = G/K x S! is a
direct product of two weakly symmetric spaces.

It is also interesting to observe that even though G/K; and G/K, are dif-
feomorphic as Riemannian manifolds, (G, K;) and (G,K, ) are not equivalent
as Gelfand pairs in general, since the space of double cosets K;\G/K, and
K, \G/K, may not be isomorphic. However, they do coincide when v # 0 and
G is a bounded symmetric domain not of tube type.

Lemma 4.1.4 (cf. [2], Theorem 3.3) C°(G//K,) = C*(G//K,) if and only
if G is not of tube type.

4.2 Spherical Representations

Assume G and K as in the previous section so that (G, K) is a Gelfand pair.
Then E(G/K) is commutative. This leads to us the notion of spherical kernels

and their corresponding spherical functions. Let I be an integral operator on
C*(G/K) of the form

I(f)(z):/Dp(z,w)f(w)dw, feC®(G/K), zwe D.

Denote by I(G/K) the space of such operators I that are invariant under G,
ie. p(gz,gw) = p(z,w) for all g € G. Following Godement [6], p is then called
an invariant kernel of I. Furthermore, p is said to be a spherical kernel if
it satisfies the property

| peaatu,w)du = popte,w), g constant

D

for every invariant kernel ¢ € I(G/K) with compact support (as a function of
one variable).

Lemma 4.2.1 (Godement [6], p. 144-03) p(z,w) is a spherical kernel if and
only if
D.p(z,w) = \pp(z,w) for everyD € D(G/K),

where A, is a constant depending only on p.



CHAPTER 4. APPLICATIONS 43

Let ¢ be a complex-valued continuous function on a homogeneous space
D = G/K. Wesay that ¢ is a spherical function on D if (i) ¢(0) = 1,0 = eK, (ii)
( is invariant under the left action of K, (iii) Dy = Ap¢ for each D € D(G/K).

Translating these properties to functions on G, we say that ¢ is a spherical
function on G with respect to K if (i) p(e) = 1, (ii) ¢ is bi-K-invariant, (iii)
Dy = Apyp for each D € Dk (G).

Let 7 : G - G/K is a quotient map. Then ¢ = ¢ o is a spherical function
on G with respect to K if and only if ¢ is a spherical function on G.

Lemma 4.2.2 (Godement) If p is a spherical kernel on D, then p(gK) =
p(gK, K) is a spherical function on D. Conversely, if ¢ is a spherical func-
tion on D, then p(gK,hK) = ¢(h™1g) is a spherical kernel on D.

Proof. Follows immediately from Lemma 7.1. O

Let D! be a weakly symmetric space so that (G',K!) is a Gelfand pair.
Flensted-Jensen [2] has characterized the spherical functions on G' (with re-
spect to K!'). We summarize his results below, which are just generalizations of
Harish-Chandra’s results for spherical functions on G with respect to K. Let
G! =K' A, N be the "Iwasawa decomposition” of G!. For z € G!, let H(z) € at
be the unique element such that z € K' exp(H (x))N.

Lemma 4.2.3 (Flensted-Jensen) Let dk,da,dn be Haar measures on K', A,
and N, respectively. The Haar measure dg on G' can be normalized so that

flg)dg = / f(kan)e*"H9) dkdadn (4.5)
G KA, N

for each f € C.(G).

Theorem 4.2.4 (Flensted-Jensen) Every spherical function on G' w.r.t. K!
is of the form

or(g) = / C(iA—0) (H(gk) g
Kl

where X € (a')&. Moreover, p\ = ¢, if and only if \ = w(u) for some w € W,.

A joint eigenfunction f on D! is an eigenfunction of each of the operators
D € D(G'/K!), and so determines a homomorphism z : D(G! /K!) — C defined
by Df = u(D)f. Any such homomorphism p has a joint eigenspace given by

E,={feC®G" /K" : Df = u(D)f for each D € D(G'/K")} (4.6)

Lemma 4.2.5 (c¢f. [10] IV, Prop. 2.4) The joint eigenfunctions on G' /K' are
characterized by the following integral equation: Fach joint eigenspace &, # 0
contains ezactly one spherical function ¢. The members f of £, are character-
ized by

/ flakyK)dk = f(@K oK), 7,y € G (47)
Kl
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Proof. The proof mirrors that given by Helgason [9] in the case of symmetric
space. O

Lemma 4.2.6 Every square-integrable joint eigenfunction of D(G!/K') is a
joint eigenfunction of I(G! /K!).

Proof. Let f € £, with ¢ the corresponding spherical function. Denote by
f=fomand $ = ¢ om to be their pullback to G!. If I,, € I(G'/K"), then
the following reordering of integration is permissible by Fubini’s theorem, since
¢ and f are square-integrable (and so is ¢):

Ly f@KY) = o pe(@K, yKD) f(yK)d(yK")
= o Jor pro 001y 0) Flyk)d(yKY ) dk
S F@)¥(g " 2)dg
Jor Flzg)¥(9~")dy
le A N f(zkan)p(n=ra " k=1)e? () dkdadn
[ n F@)@(an)(nta1)e2 H (@) dadn
f(z) Jaan @(kan)(n~ta k)2 (H (@) dkdadn
f(@KY) [ @(9)p(g~")dyg
F@KY) Jor o K, 9K )g(gK", K )dg
f@K ) pgp(K', K

where p, is a constant depending only on ¢ since p is a spherical kernel. Hence,
Ipw f = ,upf- a

We next investigate the connection between spherical representations of G!
and discrete series representations of G. This will make use of some deep re-
sults of Langlands [14]. For any integer k, let L?(D', k) denote the space of
square-integrable functions on D that transform under G according to the one-
dimensional K-type 7F = j* where j is the jacobian factor of automorphy
defined in chapter I. Then H?(D', k) will be the subspace of holomorphic func-
tions. Write elements of D as w = gK. Now, consider the reproducing kernel
K (z,w) defined as follows for f € H?(D', k):

Ki(z,w
p j(g,0)*j(g,0)
Then Langlands has proven the following;:

Proposition 4.2.7 (Langlands)

_ Kk(Z,’LU) w)dw
NG = || o et

defines the orthogonal projection of L*(D', k) onto H?(D', k).

This proposition now implies that K(z,w) has the following properties:
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Corollary 4.2.8 (Langlands) i) K(gz,gw) = j(g,2)*K (z,w)j(g,w) *.

ii) K(z,w) = K(w,z) and K(z,2) > 0.

K K
i) .k(z,w). b, w) dw = K(z,u).
p j(g,0)*j(g,0)*

Properties i) and ii) now tell us that K (z,w) has the same transformation
properties as our kernel function K (z,w) raised to the exponent —k and hence,
must agree (see Satake [21]).

Lemma 4.2.9
Ki(z,w) = K(z,w)™".

Let & be an eigenspace of D(G' /K'). Since 0/t is a fundamental operator
of D(G'/K!), every F € & can be written as F(z,t) = Ki(z,2) 2 f(2)e’** for
some integer k € Z and function f on D. Define the operator T : F — f. As-
sume that g,F represents the action of G' on F by left translation. Then using
the above transformation property of F' and writing j(g, z) = |j (g, z)|e**87(9:)|
we can compute the image T'(gsF):

Lemma 4.2.10 '
T(gsF)(z) = j(g,2)" f(2)e™*
Proof.
F(gs(2,t) = Flgz,t+s+argm *(k(g,2)))

Ki(gz, g2)7% f(gz)eik(t+sarei(s.2)
Kk (Z, 2)75 |](g, Z)|7kefik arg j(g,z))eikseikt
Ki(z,2)72(g, 2) 7k f(2)etkeeitt
and so T(gsF)(2) = j(g,2)7*f(z)etks. O

We hope to show in a later section that T : € — L*(D, k) is an intertwining
operator for ms restricted to G C G' and the discrete series representation y.

-

Lemma 4.2.11 ]
K, (Z, w)ezk(tfr)

is an G' invariant kernel on D' x D! for all k € 7.

pr (2, wr) = (4.8)

Proof. Again, using the transformation property of Ki(z,w) described above
and the fact that j(g,2) = |j(g,2)|e'*87(9*) it becomes straightforward to
check that pg(gszt, gswr) = pr(ze,wy). Let I be the corresponding integral
operator with kernel p;. Then

I(F)(z) = /pk(zt,wr (wr)dwr

zkt
Keo) / . K f(w)dwdr
= K(o,0)” IKZZ 2ff”“tplc(f)()

and so I is a projection of £ such that T'(I(£)) = H*(D,r*). O
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4.3 Holomorphic Discrete Series

Let m be an irreducible representation of G' on a Hilbert space E. If 7 is a
representation of K on V', then we say that v € E transforms according to
7 if m(K)v is isomorphic to a finite number of copies of V. Let E, be the
subspace of E consisting of vectors which transform according to 7 and denote
by P. : E — E. the corresponding projection. Consider the operator P.m(z)P;
and define ¢(x) = Tr(P,7w(z)P;) to be its trace. If m denotes the multiplicity of
T in mg, then we say that ¢ is a 7-spherical function of height m. In the case ¢
has height one, we have the following characterization of 7-spherical functions:

Theorem 4.3.1 (Godement) Let ¢ be a continuous function on G. Then ¢ is
a T-spherical function of height one if and only if

(k™ ahy)dk = $(2)$(y) (4.9)
K/Z
In this paper, we shall only be concerned with 7-spherical functions of height
one. Therefore, ¢ will now simply be called a 7-spherical function.

Lemma 4.3.2 If oy is a spherical function on G' with respect to K', then its
restriction to G is a T-spherical function.

Proof. The fact that ¢, is a spherical function means that

[ oxtahads, = 660, (4.10)

Define ¢ to be the restriction of ¢y to G. If k € Z% and g € G, then
o(kz) = ¢(k)p(g) and so the restriction of ¢ to Z2 determines a character of
Z%. Denote by 7 = ¢|Z?{. Extend 7 to a one-dimensional representation of K
by allowing 7 to be trivial on K. Then

o(k~ eky) = oa(k " aky) = 77 (k) pa(zkvy) (4.11)

for k € K. The transformation k — k, has Jacobian 7(k) and so

ok~ zky)dk = | o(zk,y)dk, = $(x)d(y). (4.12)
K/Z K
Hence, ¢ is a m-spherical function. O

We wish to show next that if o) € L*(G'/K!), then the restriction ¢ can
be realized as a square-integrable matrix-coefficient of a holomorphic discrete
series representation 7. Denote by V' the representation space of 7, A the highest
weight of 7, and v the corresponding highest weight unit vector. Consider the
associated line bundle V, — G/K, where V., = G xg V, induced from 7. If H
denotes the space of L2-holomorphic section of V, — G//K, then we may view

1. f holomorphic
H=L G-V 2 flgh)=1""(k)f(g9), keEK, geG },
3. Joyz IF ()12 dg < o0
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where the norm of f(g) is given by the inner product (- ,-), on V.

Let m denote the unitary representation of G on the Hilbert space H acting
by left translation. Denote by E. to be the subspace of H consisting of elements
which transform according to 7, i.e. if v € E,, then 7(K)v is isomorphic to a
finite number of copies of V. The projection of H onto E. we will write as P;.
Now define the operator ®7(r) = Prw(z) P on H and set ¢ (z) to be its trace.

Extend 7 to a representation of K¢ so that A becomes a linear functional
on he. Let p be the maximal root of ®}.

Theorem 4.3.3 (Harish-Chandra) If (A + p,p) <0, then m is an irreducible
unitary representation of G and 7|k has T as the unique minimal K -type.

Lemma 4.3.4 If (A +p,p) <0, then ¢ = ¢T is a matriz coefficient of .

Before proving the lemma, we shall need to describe Harish-Chandra’s con-
struction of the holomorphic discrete series (extended to our situation for G
simply-connected). More precisely, we define a space of functions on W =

P_KcG as follows:

1. F holomorphic
H:={F:WwC 2. F(pkx)=1(k)F(x), pe P_, ke K¢, x e W },
3. fG/Z |F(g)]? dg <

Let f € H and define a function F by F(g) = (f(¢g~'),v,)r. Then under
the correspondence f <+ F', we have that f is holomorphic section if and only if
F' is holomorphic function. It is easily shown that H = H as Hilbert spaces and
the action of G on H by right translation is equivalent to = (see [14], p.102).
We keep this equivalence in mind and define

P(x) = (1(k(x))va, va)r

Theorem 4.3.5 (Harish-Chandra) If (A + p,u) <0, then
(i) ||]|> < 0o and ¢ € H.
(ii) (m(2)Y,¥) =y (2)||v]] >
(iii) 1PN 7% = Mgeq |(A(Hg) + p(Hps))/ p(Hp)!.

Proof. For part (i), see [7], Lemma 9. For parts (ii), see [7], corollary to Theorem
2. For part (iii), see [8], Theorem 4. O

Proof. (of the lemma) By definition, Harish-Chandra’s theorem says that ¢ € E,
and 7 irreducible means that {¢/||¥||} is an orthonormal basis for E. since E;
has dimension one. Then the Schur orthogonality relations imply

Y v
10 Nl

and so part (ii) of Harish-Chandra’s results now gives us ¢ = ¢7 = 1. We
conclude that ¢ is a square-integrable matrix coefficient of the holomorphic
discrete series representation 7. O

67 (2) = tx(P, (@) P;) = (n(x) )
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4.4 Invariant Eigenfunctions

Let T be a discrete subgroup of G which acts discontinously on D. Then F =
['\D is a fundamental domain of D. If we also view I as a subgroup of G', then
F, =T\D' will be called a fundamental domain of D'.

Lemma 4.4.1 Let T be a discrete subgroup of G. Then

(i) F is a fundamental domain of D if and only if F, is a fundamental domain
for Db,

(i1) F is compact if and only if F, is compact.

(11i) F has finite area if and only if F,, has finite area.

Proof. (i) T' acts discontinuously on D if and only if F,, acts discontinuously on
D'. O

Let x be a representation of I' on V, and 7, a one-dimensional K-type.
Extend x to I', and define

C®> (D', x) to be the space of infinitely differentiable functions on D' with
values in V,, and which transform as follows:

F(m(z,1)) = x(m)F(z,1) (4.13)

Similarly, let L?(D!, x) be the space of square integrable functions F on D! with
values in V,, and transforms as in (4.13):

/ F(z,t)F(z,t)d(z,t) = / F(z,t)F(z,t)d(z,t) < oo, (4.14)
Dt Fu
where d(z,t) is a G!-invariant measure on D'. We define an inner product on
L*(D', x):
(Fl,FQ) = / Fl(Z,t)FQ(Z,t)d(Z,t) (415)
Fu

Then L?(D!, x) becomes a Hilbert space under this inner product.
Let us assume x to be one-dimensional and &k an integer. We define

_ 1 /7el
£ k) = {FEL2(ID)1,X): ; ]_‘;FF__%(FD)F for all D € D(G' /K") (4.16)
catl =

to be the eigenspace of D(G' /K!) corresponding to u. Also, define A(x, k)
to be the space of square-integrable functions on D which transform as follows:

f(2) = x(m)7* (k(m,2))f(2), m € T. (4.17)

The following lemma now gives us the first connection between eigenfunctions
of D(G' /K!') and functions on D that transform automorphically.

Lemma 4.4.2 Let F(z,t) € E(x, k). Then

k

F(z,t) = K(z,2)2 f(2)e'*, (4.18)
where f(z) € A(x, k).



CHAPTER 4. APPLICATIONS 49

Proof. Since F € £(x, k) has eigenvalue k under the differential operator 2 50 it
must be of the form '
F(z,t) = g(z)e™
for some integer k. Now K(z,z) is nonvanishing so we can write g(z) =
K(z, z)gf(z) Then using the transformation property of F', we have
F(m(z,t) = x(mF(zt) '
F(mz,t+argt™' (k(m,2)) = x(m)K(z,2) f(2)e™
K (z,2)%|r(k(m, 2))|Fei@™ " m2) f(ma)e=kt = x(m)K(z,2)% f(2)et

and so f(mz) = x(m)7*(k(m, 2)) f(2), which means f € A(x,k). O

4.5 Selberg Trace Formula

Let I,, € I(G'/K') act on F € L*(D', x) as follows:
/]D)1 py (2, w)F(w)dw :/ Zx(m)pw(z,mw)F(w)dw. (4.19)
Foor

We define

Py(z,w,x) = Y x(m)py(z,mw) (4.20)
mer

and view Py as the kernel of the integral operator I,,, on L?(D', x). To insure
that the summation on the right side of (4.20) converges, we assume that Py
has the following properties (see Selberg [23], p. 60): there exists a majorant =
of pd, (meaning Ipy(z,w)| < E(z,w) for all z,w € D') such that
fD1 z,w)dw < 0o
(ii) E has regular growth, i.e. there exists positive constants A and J such
that
E(z,w) < A ky(z, w)dw, (4.21)
d(w,w)<d
where d(w, @) denotes the shortest geodesic distance between w and w. Selberg
has proven that under these assumptions, the series for py(z,w,x) converges
absolutely for z,w in D'.
Since the set of fundamental differential operators {Dy, ..., Dy, %} may be
chosen to be self-adjoint, there exists an orthonormal system of eigenfunctions
{F;} which forms a basis for C°° (D', x) and satisfying

DiF; = XiF;, j=1,..,1 (4.22)

such that the I-tuples \' = (\i, ..., )\?) have no finite point of accumulation. We
expand Py, as follows:

Py (2, wy, X Zh (A Fi(20) F; (wy). (4.23)
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Let us formally compute the trace of I, :

Tr(I,,) = Y h(X). (4.24)
On the other hand, we have Tr(,,) = [ Tr(Py(2t, 2, X))d2t, and so
Tr(L,,) = Y Tr(x(m)) /F pu(2t, m2)dz (4.25)
mer v

Following Selberg [23], we divide I into its conjugacy classes {m}r inside
G', where m is a chosen representative. Let I',,, denote the centralizer of m in T’
and write [f] as the coset element in T'),\I" represented by m. The right hand
side of (4.25) now becomes

Z Z Tr(x(m*lmTh)/}_ Py (26, T mimzy)dzy (4.26)

{m}r‘ Fm\F v
Before simplifying this expression any further, we first observe that Tr(x (. ~tmm)) =
Tr(x(m)). Also, for any coset [mh] € T',;,\I', we have
/ Py (zt, T mmz)dz = / Dy (2, m2¢)dze, (4.27)
Fo mF,

where mJF, is the translation of 7, by m. As a result, (4.26) can be rewritten
as

Y D Tr(x(m) / Py (2, mz)dze, (4.28)

{m}r L\ Fo

where 7" is the fundamental domain for T',, in D'. We transform the integral
on the right hand side to integration over G' /K! as

/ py (2K maK!)d(zK"). (4.29)
Fo
According to Selberg ([23], p. 65), this integral becomes
/ P(gy 'm g )dgs, (4.30)
G /G

where G, is the centralizer of m in G'. Hence, the final equation for the Selberg
trace formula becomes

Tr(I,,) = Z Tr(x(m))vol(Gr, /T'm) Yy (m), (4.31)
{m}r

where
Ty (m) = / g m ™ ge)dgs (4.32)
Gl /G
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is a function which depends only on the conjugacy class of m in G'.

Let I, be a integral operator on D' with spherical kernel p and corre-
sponding spherical function ¢. Assume that p is square-integrable. Then I,
is in fact a Hilbert-Schmidt operator, which implies that it has a discrete spec-
trum and that its eigenspaces are finite-dimensional. More precisely, the spec-
trum contains only one nontrivial eigenvalue h(I,,) with eigenfunctions con-
sisting of those elements F € &£(x, k) such that F(z) = K(z,2)? f(z)e** with
f(z) € A(x, k). To compute h(I,), let F' € E(x, k). Then

I,,F = p,F (4.33)

and so h(Ip,) = pp. If we introduce a basis F1,..., Fy of £(x, k), then the trace
of I, is Tr(I,,) = ppN. On the other hand, the Selberg trace formula tells us
that
N = 3 Te((m)) ol (G /Ton) T (). (4.34)
{m}r

Since the dimension of A(y, k) equals N, we now have a formula for computing
this dimension.
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