WEAKLY SYMMETRIC SPACES AND
BOUNDED SYMMETRIC DOMAINS

HIEU NGUYEN

ABSTRACT. Let G be a connected, simply-connected, real semisimple Lie group
and K a maximal compactly embedded subgroup of G such that D = G/K
is a hermitian symmetric space. Consider the principal fiber bundle M =
G/Ks — G/K, where K is the semisimple part of K = K - Z% and Z%
is the connected center of K. The natural action of G on M extends to an
action of G! = G x Z?(. ‘We prove as the main result that M is weakly
symmetric with respect to G' and complex conjugation. In the case where
D is an irreducible classical bounded symmetric domain and G is a classical
matrix Lie group under a suitable quotient, we provide an explicit construction
of M = D x S! and determine a one-parameter family of Riemannian metrics
Q on M invariant under G'. Furthermore, M is irreducible with respect to €.
As a result, this provides new examples of weakly symmetric spaces that are
non-symmetric, including those already discovered by Selberg (cf. [M]) for the
symplectic case and Berndt and Vanhecke [BV1] for the rank-one case.

INTRODUCTION

In his seminal 1956 paper [Se], Atle Selberg introduced the notion of a weakly
symmetric space in his investigation of automorphic forms. Naturally, this notion
generalizes that of a symmetric space. Let M be a Riemannian manifold with a
transitive group of isometries G and a fixed isometry p satisfying uGu=' = G,
p? € G. Then M is called weakly symmetric with respect to G and p if it has the
property that given any two points x,y € M, there exists an element g € G such
that gz = py and gy = pz. According to J. Berndt and L. Vanhecke [BV1], if M is
connected, then Selberg’s definition is equivalent to that of a ray-symmetric space,
a notion due to Z.I. Szabo [Sz]. This means that M has the following geometric
property: given any point z € M and any geodesic vy passing through z, there
exists an isometry ¢ € G - p of M which fixes & and reverses the direction of
v. Equivalently, W. Ziller [Z] characterizes this property at the infinitesimal level
as g reversing the tangent vector of v at x. Furthermore, if this reversal can be
achieved for all geodesics passing through x by a single element g, then M is in fact
a symmetric space and g is the geodesic symmetry at x.

It is classical result that the space of invariant differential operators on a sym-
metric space is commutative. Selberg showed in [Se] that this property is retained
for weakly symmetric spaces. More precisely, if M is weakly symmetric with respect
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to G and pu, then the space of G-invariant differential operators on M is commuta-
tive!. His analysis of these spaces resulted in many applications, the most notable
being the celebrated Selberg trace formula.

The first example of a weakly symmetric space that is non-symmetric was given
by Selberg [Se] as the total space of a principal S'-bundle over the upper-half plane.
He extended the proof to principal S!-bundles over the Siegel half-space (cf. [M]).
Unfortunately, lack of any further examples forced the topic into hibernation. But
recently, there has a been a reawakened interest in the topic, starting in 1994 with
Berndt and Vanhecke [BV1], who used an equivalent geometric characterization of
weakly symmetric spaces to obtain new examples that are non-symmetric, includ-
ing horospheres in complex projective space, tubes in complex hyperbolic space,
and spheres of Hopf fibrations. Since then, many papers have appeared on the sub-
ject with discoveries of many new examples, including ones that are not naturally
reductive as homogeneous spaces (see [BV1], [BV2], [BKV], [BRV], [BTV], [GV1],
[GV2]).

The aim of this paper is to demonstrate that Selberg’s construction of weakly
symmetric spaces as total spaces of principal S*-bundles over the Siegel half-space
extends to principal fiber bundles over hermitian symmetric spaces. This is achieved
by translating Selberg’s results into the context of Lie groups. Let G be a connected,
simply-connected, real semisimple Lie group and K a maximal compactly embedded
subgroup of G such that D = G/K be a hermitian symmetric space. This forces D
to contain only noncompact irreducible factors, but our arguments are valid for the
compact case as well (see discussion after Corollary 6). Then K can be chosen to
be the fixed point set of a Cartan involution o of G. If s is the geodesic symmetry
of D induced from o, then D is obviously symmetric, hence weakly symmetric,
with respect to s. The help of the group G is not needed here in order to reverse
tangent vectors on D at the fixed point of s. Furthermore, by transitivity of G,
this symmetry holds at any point of D.

As a next step, it is natural to look at principal fiber bundles M — D and
determine whether M is weakly symmetric in order to possibly discover new exam-
ples which are not symmetric. This will require that M has a Riemannian metric
which is not obtained as a product of lower-dimensional symmetric spaces. Under
this constraint, our investigation leads us to consider weak symmetry of D with
respect to an involution different from s. Namely, this involution will be complex
conjugation on D and is known to exist for all hermitian symmetric spaces.

More precisely, the principal bundle M = G/K; — G/K, where K = K, Z% | K
is the semisimple part of K and Z% is the connected center of K isomorphic to a
vector group. Define p to be complex conjugation of D induced from an involution
6 of G. The main result of this paper (Theorem 5) is that M is weakly symmetric
with respect to extensions G' of G and ji of u. The extension of the isometry
group G is necessary in order to ensure that the isotropy subgroup of M is large
enough to reverse its tangent vectors with respect to fi. This is done by defining
G' =G x ZY%. As Z9 normalizes Kj, there is a standard construction of extending
the natural action of G on M to G'. Hence, M = G'/K*.

The proof of our main result involves first demonstrating that D is weakly sym-
metric with respect to G and p (Prop. 3). Here is a sketch of the argument: let

n general, a homogeneous space G/K having this commutative property with respect to G
is called a G-commutative or G-spherical manifold.
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g = @ p be the the Cartan decomposition with respect to o. We identify T, (D),
the tangent space of D at the origin o, with p and the isotropy representation of K
on T,(D) with the adjoint representation of K on p. The reversal of elements in p
with respect to Ad(K) and 6 will then follow from the property that every Ad(K)-
orbit of p intersects a maximal abelian subalgebra a C p on which € reverses all
elements. We now extend this argument of weakly symmetry to M. This requires
observing that the adjoint action of K on p! = p @ 3 agrees with Ad(K) when
restricted to p and is trivial on 3, the Lie algebra of Z%. Hence, it follows that M
is weakly symmetric with respect to G and fi.

Let Zg be the center of G and @ C Z% N Zg be a cyclic subgroup. We obtain
as a corollary that Mg = G/QK; is weakly symmetric with respect to G&) =
G'/(Q x Q1) and fip. In case D is a classical irreducible bounded symmetric
domain and Gg = G/Q is isomorphic to Gg, a simple matrix Lie group, we go
on further to determine explicitly a one-parameter family of Riemannian metrics 2
on Mg. This construction involves using the determinant factor of automorphy j,
a concept inherently defined for bounded symmetric domains, to define a twisted
group action ® of G, = G x S' on Mg = D x S*:

(9,8)(2,t) —= (92,5 + t + argji(g, 2)), (g,5) € G, (2,1) € My.

We prove in Prop. 14 that ® induces a G}Q—invariant metric 2 on Mg. Furthemore,
the explicit description of Q will show that Mg is irreducible as a Riemannian
manifold. Hence, this result provides new examples of weakly symmetric spaces
that are not symmetric and include those already discovered by Selberg for the
symplectic case, where Gg = Sp(n,R), and Berndt and Vanhecke [BV1] for the
rank-one case, where Gg = SU(n,1). We also refer the reader to the two papers
[Na] and [Z].
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1. Weakly symmetric spaces. Let M = G/K be a homogeneous Riemannian
manifold and p a fixed isometry of M (not necessarily in G) satisfying uGu=! = G
and p? € G.

Definition 1. ([Se]) M is called weakly symmetric with respect to G and p if
given any z,y € M, there exists an element g € G such that gz = py and gy = pzx.

Motivated by a characterization of weakly symmetric spaces in [Z] in terms of the
full isotropy subgroup of M, we give a lemma that characterizes a weakly symmetric
space when p fixes at least one point of M. This characterization will be especially
useful later for proving weak symmetry of hermitian symmetric spaces. Its proof
uses partly the same argument as that in [BPV], where weak symmetry is shown
to be equivalent to ray-symmetry.
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Lemma 1. Assume that M is connected and pu has a fixed point z,. Define K to
be the isotropy subgroup of G at z, and T, (M) to be the tangent space of M at z,.
Then M s weakly symmetric with respect to G and u if and only if given any tangent
vector v € T, (M), there exists an element k € K such that d(k o p),_ (v) = —v.

Proof. Let M be weakly symmetric with respect to G and p. According to [BPV],
Proposition 4.4, this is equivalent to M being ray-symmetric and implies that if v
is a geodesic passing through z, with tangent vector v at z,, then there exists k € G
such that s = k o p is the nontrivial involution on 7 which fixes z, and reverses the
direction of v, i.e. d(k o p),, (v) = —v. It follows that k fixes z, since u does and
hence, k € K.

In the other direction, let z,y € M. Define v to be a geodesic connecting z
and y with midpoint m so that z = 7(¢) and y = (—t) for some real value t.
We next choose an element h € G which maps m to z, and v, = and y to v,
xp, and yp, respectively. If we set v = 4(0), then there exists by assumption an
element k € K such that d(k o u)., (v) = —v. As an isometry maps geodesics to
geodesics, this implies that & o u(y,) = 4. In other words, k o u reverses v so
that (ko u)(xn) = yr, and (ko p)(yn) = zp. As p normalizes G and p? € G, the
element g = ph tkuh = ph=tkp~tp?h lies inside G. It can now be verified that
the conditions go = py and gy = px are satisfied. O O

2. Hermitian symmetric spaces. The following treatment, including most of
our notation, is taken from [HW] and [He]. Let G be a connected, simply-connected,
real semisimple Lie group of Hermitian type. Denote by Zs the center of G. Fix a
Cartan involution o of G. The fixed point set K = G contains the center Zg of
G and K/Zg is a maximal compact subgroup of G/Zq. The space D = G/K is a
hermitian symmetric space with noncompact irreducible factors. If g and £ are the
Lie algebras of G and K, respectively, then g = £ @ p is the Cartan decomposition
under 0. Now, ¢ = €, @ 3¢ where £; = [, ¥] is the semisimple part of & and ¢ is its
center. Let K, denote the connected closed subgroup of K with Lie algebra €, and
Zy denote the center of K. Then K, is compact, simply-connected, and normal
in K. The subgroup Zyx = E x ZY%, where E is a finite abelian subgroup and the
vector subgroup Z% denotes the identity component of Zg, and K = Ky - Z2.

Let 7 : G — G/K denote the natural projection map and view the action of an
element g € G on ¢ = hKK € D as left translation on G, denoted by 7(g):

(1) gz = 71(g9)hK.

Then under 7, we can identify p with T,(D), the tangent space of D at the origin
o = eK (e is the identity element in G) and the adjoint action of K on p becomes
the isotropy representation of K on T,(D).

Choose a to be a maximal abelian subalgebra of p and lift this picture to the
level of Lie groups so that A is the subgroup of P with Lie algebra a. Then the
following result of M. Flensted-Jensen gives a special involution corresponding to
complex conjugation of D that will be crucial in constructing new examples of
weakly symmetric spaces. We refer the reader to [F] for its proof.

Proposition 2. ([F], Prop. 2.1) There exists an involution 8 of G such that

(i) 06 = bo,
(ii) 0(a) = a=* for all a € A,
(iii) 0(Ks) = Ks and 0(c) = ¢! for all ¢ € ZY%,
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or equivalently,

(i) dodf = dfdo,
(i) d0(H) = —H for all H € q,
(iid' ) dO(ts) = €5 and dO(X) = —X for all X € 3.

Next, through 7, we can push 6 down to an involution p of D defined by
(2) wgK) =6(g)K,  gK€D.

It is clear that u is an isometry with respect to any metric on D that is invariant
under G (acting by left translation).

Proposition 3. D is weakly symmetric with respect to G and p.

Proof. Under 7, we identify T,(D) with p so that if v € T,(D), then X € p is
the corresponding element satistying dm.(X) = v. Also under this correspondence,
the isotropy action of K on T,(D) becomes the adjoint action of K on p. It is
well-known (cf. [He], Ch. V, Lemma 6.3) that this adjoint action satisfies

Ad(K)(a) = p.
Furthermore, the Cartan involution o satisfies do.(X) = —X for all X € p and it
commutes with Ad(K).
To prove the lemma, write X as Ad(h)(H) for some H € a and h € K. By

definition of the adjoint action, we have df.(X) = Ad(6(h))(—H). Define k =
h6(h~!) € K. It then follows that

(Ad(k) 0 d.)(X) = Ad(hO(h " 1)8(h))(—H) = —Ad(h)(H) = —X.
Expressing this result now in terms of the isotropy representation gives d(k o
W)o(v) = —v. Lastly, as D is connected and p? = 1 and uGu~! = G, we ap-

peal to Lemma 1 to conclude that D is weakly symmetric with respect to G and
. ([l ([l

Principal fiber bundles. Consider the principal fiber bundle G/K, — G/K with
fiber K/K,. We intend to prove that M = G/ K is weakly symmetric with respect
to certain extensions G' of G and fi of p. The reason for the need to enlarge the
isometry group G is that its isotropy subgroups in general do not contain enough
elements to reverse tangent vectors on M. As ZY normalizes K (in fact Z9%
commutes with K), there is a standard construction for extending the left action
of G on M to an action of G = G x ZY%., the direct product of G and ZY., where
Z9 acts on the right (cf. [O], Sect. 4.4):

(9070)(9KS) = gOgCK37 (go,C) € Gl: ng € M.

It can be easily checked that the isotropy subgroup of G at the base point 6 = eK,
under this action is given by K* = {k = (k,¢™!) : k € K}, where we have the
decomposition k = k'c with k' € K and ¢ € ZY,.

Lemma 4. M = G'/K".
Next, since §(K,) = K, this induces an isometry ji of M defined as follows:
A(gKs) =0(g)Ks,  gK, € M.
We are now ready to state our main result.

Theorem 5. (Main result) M is weakly symmetric with respect to G* and ji.
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Proof. The argument is a straightforward extension of that used in the proof of
Theorem 3. Again, consider the natural projection 7 : G — G/K,. As usual, we
identify T5(M) with p! = p + 3 through #. Correspondingly, the isotropy action
of K on T5(M) becomes the action of Adg:i(K*') on pl. Furthermore, Adg: (K*)
agrees precisely with the action of Adg(K) on p and is trivial on ;.

Let & € T5(M) and write X = X + Z as the corresponding element in p!,
where X € p and Z € 3. It is clear that df.(X) = df.(X) — Z. Now, as D is
weakly symmetric with respect to G and p, there exists an element k£ € K such
that Ad(k)(—X) = df.(X). Write k = k’c with k' € K, and ¢ € ZY% and define
k= (k™',¢) to be an element of K. It follows that

(Adgi (k) 0 df.)(X) = Adgr (k) (Adg (k) (—X) = W) = X —W = —X.

In terms of the isotropy representation, this translates to d(k o ji)5(0) = —0. Of
course, it can be checked that aG'a=! = G, i? € G* and [ fixes 6. As M is
connected, this proves that it is weakly symmetric with respect to G' and [i by
Lemma 1. | |

Let Q@ C ZY be a cyclic subgroup and consider the quotient My = G/QKs,.
Define G, = G' /(QxQ™") and K, = K'/(QxQ™"), where @x Q™" = {(¢,¢™") €
G' : q € Q}. Then Mgy = Gg/Kp. Furthermore, it is well-known that D is
contractible. Therefore, My — D is a trivial bundle and hence, Mg = D x S*
if D is irreducible. Now, pushing fi down to an involution fig of Mg, we get the
following result as an easy consequence.

Corollary 6. M is weakly symmetric with respect to G and fig. Furthermore,
if Q C Z% N Zg, then Mg is weakly symmetric with respect to G%Q and fig.

Compact case. We mention that our arguments work for the compact case as well.
Let D = G/K be a compact hermitian symmetric space. Then G can be chosen to
be a connected, simply-connected, simple Lie group and K to be the centralizer of
its connected center Z%. Let g = €+ p* be the Cartan decomposition of the Lie
algebra of G and fix a* to be a maximal abelian subspace of p. Now replace a and
p by a* and p*, respectively, in the discussion of this section to obtain dual results
for the compact case, namely weak symmetry of D and M as presented in Prop.
3 and Theorem 5. This is because Prop. 2 again provides an involution 6 of G
whose differential preserves £, and reverses elements in a* and j¢. Furthermore, the
property Ad(K)(a*) = p* continues to hold. Hence, the arguments in the compact
case now proceed along the same lines, in fact word for word, as in the noncompact
case.

3. Bounded symmetric domains. In this section, we shall assume that D is
a classical irreducible bounded symmetric domain and () chosen so that Gg =
GR, a simple matrix Lie group. We present results about factors of automorphy,
determinant factors of automorphy and kernel functions that will be needed in the
following sections to explicitly construct Mg and describe a certain one-parameter

family of Riemannian metrics on Mg invariant under Gg.

Preliminaries. Let gc be the complexification of g. Extend ¢ to g¢ so that gc =
Ec + pc- If b is a Cartan of subalgebra of €, then h is a Cartan subalgebra of g
and its complexification h¢ is a Cartan subalgebra of gc. Let @ be root system
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for (gc, he). Then ge has the root decomposition gc = he + Y-, cq 9a- Decompose
® = ¢.U®,, into subsets of compact and noncompact roots. Choose a root ordering
for @ so that ®T and ®~ are the set of positive and negative roots, respectively.
This allows us to write pc = p+ +p—, where py (resp. p—) is the holomorphic (resp.
antiholomorphic) tangent space. Furthermore, let Zg be the element in the center
of € which defines this complex structure. Set ®F = ®* N @, and ®F = #* N @,,.

Let G¢ be the connected simply connected Lie group for gc. Denote by Gg, Kg,
K¢, Py and P_ to be analytic subgroups of G¢ corresponding to g, €, ¥c, p; and
p_. Let ¢ : G — GR be the projection map. Then K = ¢~ !(Kg). If z € P KpP_,
then we write its Py KrP_ decomposition as = py(z) - ko(x) - p—(«). This allows
us to define the map ¢ : Py KcP- — py by requiring that py(z) = exp ((x), where
exp : p+ — P is the exponential map. Since Ggr C Py KcP_ C G¢, we write
g € expz- KcP- so that the restriction map ¢ : Gg — p4 given by g — 2 gives the
Harish-Chandra embedding of Gr/Kg onto a bounded domain D in the complex
vector space p.

We now lift this picture up to G. The embedding Grp C P KcP- lifts to a
corresponding decomposition map G — Py I?CP_ by lifting p4 and K, to G via the
universal covering ¢ : G — Gg. This gives G/K = Gr/Kg. Now, let gk : IN((C — K¢
be the universal covering group. Then K¢ can be thought of as the complexification
of K and gx|r = ¢q|k. As aresult, k, : G — K lifts to &, : G — K¢ such that
Fo| : K < K¢. This gives the embedding G — Py K¢ P_ as defined in [HW].

The picture can be made explicit when we choose Ggr to be a matrix Lie group.
Since our results in this section pertain only to the case where Gy is of classical
type, we shall always make this assumption when referring to Gg. There are four
families of classical bounded symmetric domains and we list them according to type
[He]:

Type Gr/Kr D Cyps

I SU(m,n)/S(U(m) x U(n)) {Z€ My,(C) :I—-2*Z > 0}

II.  Sp(n,C)NU(n,n)/U(n) {Z eM,,,,(C) : Z' = Z and
I-72*7Z > 0}

I11.  SO*(2n,C)/U(n) {ZeM;;,(C) : Zt = —Z and
I—-27*7Z >0}

IV.  S0,(n,2)/(SO(n) x SO(2)) {Z€Mu(C):1—2*Z >0 and
1+ 1222 — 227 > 0}

Factors of automorphy. Recall that the action of G and Gr on D agree (via q).
If g € G, then we write its projection to Gg via ¢ as q(g) = <é g) The
function k, defined for G and Gr above is called the factor of automorphy and &,
the universal factor of automorphy. We extend x, to a map k : G x D — K¢

satisfying the following relation 2:
(3) g-expz €expgz-k(g,z) - P—, g€ Gr,z€D.
Let o € D be the coset element eKp. Then k has the following properties:

2The universal factor of automorphy can be extended similarly to % : G x D — I?C (due to
Tirao [Ti], p. 64).
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Lemma 7. ([Sa], p. 68)
i) k(9,0) = Ko(g), for all g € Gg.
i) k(k,z) =k, for all k € K¢ and z € D.
iii) k(g1 92,2) = k(91,922)k(g2, 2), for all g1,92 € Gr and z € D.

Proposition 8. The factor of automorphy has the expression
' _(A—-(g92)C 0 _AZ+B
Types I-11I:  k(g,Z) = < 0 cZ+D) =CZ+D

Type 1V: k(g,2) = <g 3), with U and V' given as follows:

Ezxpress

1
92 = ez v D7) At B2)

. . 1+ 227
with Z1 = 2iZ and Zy = (i— z'tZZ>' Then
U=A- BitZg_ +(9Z)[CZ, + D(I + %Zil)]tW,
V=(+3(92)){"(92) [AZ} + B(I + 5ZY)]
+CZ + DU+ LZDINT - sw),
1

where W = ~ %0 “C-D'Z) (

1

1), as given below in (5), (6).

The proof really boils down to finding the K¢ part of the P, K¢ P_-decomposition
of Gr. For Types I-III, this is rather easy and has been done (cf. [HW], p. 5). On
the other hand, the Type IV case requires quite a bit more wrangling. Since the
author has failed to find a reference for this decomposition (and probably for good
reason because the calculations get very messy), details will be given below.

Lemma 9. Let Gg = SO,(n,2). Then the Py K¢ P—-decomposition of g € Gg is

(A B\ [ I 7z, U 0 I W
9=\c p)=\~tz, 1+iz2)\o v)\—w' 14+iw")

where

7, = (i2,2), z:zg_.dBG) with d= L (i 1)D<1>,

WL = (iW,-W), W=—-L"C i ,

U 0\ [A+2z.D'W" 0
0o v)~ 0 (I+L12)(Z" B+ D)1 -L1w") )"

Before proving Lemma 9, we shall first need some preliminaries. Let G =
SO,(n,2). Then according to [W],

. 1
p_,.:{Z:( tOZ/ Z+>:Z_'k:(z'Z,Z)whereZisnxl},
=z, 0
and the embedding of Z € D C p. is given naturally as Z — Z. Similarly,

—~ 0 wr ) ) .
p-=W= T E WL = (iW,—W) where Wisn x 1.
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To obtain P and P_ now requires exponentiating p; and p_, respectively. Use

the fact that
55 (0 0 "o tzz  —itZZ
ZZ-(0 Z1> WhereZ+_<—z'tZZ RVEE

and (Z)* = 0 for k > 3 to compute exp Z = Y e & (Z)*. This gives

P—{epo—( ! = -Zep}
+= = : +
—tz\ 1+1zY

A similar calculation shows that

e 1 w! =
P:{exsz(_tW, I+1W”>:W€p}’
. sWZ

tww o itWw

" " o__
where W now takes the form W- = (itWW YW

). Furthermore, K¢ has

the form

Ke = {(g 3) .U € SO(n),V € SO(Z)}.

Proof of Lemma 9. Multiplying the three matrices on the right hand side above
together and comparing entries leads to the set of equations

U—Z\ VW' = A,
—ZLU -1+ 1z)Vw!L =C,
) UW. + 2, V(I + W) =B
L+ Z\ V(I +5W!) =B,
—ZUWL + (I + 32V +3W!) = D.
The last two equations above give V = (I — $Z/)"*('Z, B+ D)(I + iW") 1. It
can be checked that det(/ — 1 ZY) = det(I — $W”) =1 so that the inverses above
makes sense. In fact, we easily see that

(I-izht=1+izy, (I+iwnt=1-1w",
and so
V=U+320)(Z\ B+ D)I—-iW").
Now use this expression of V' to obtain U = A + Z! D'W’, which follows from
recognizing that Z_Q_t L= W W = 0.

It remains to compute what Z is in terms of g. This requires noticing that the
map

1, 1
@.V.—mzﬂ(z 1)V<Z.>

identifies SO(2,C) with GL(1) = C*, and so v is never 0. This is because SO(2,C)
consists of the matrices

SO(2,C) = {V: < cost Sina) 0 (C},

—sinf cosé

and it is easy to check that ©(V) = €. We then use our expression for V' above to

obtain o) =v= L 1)‘/(1):%(2' 1)D<1>:d,
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where we have used the relations (i 1) Z} =0, W” ( 1) = 0. Now, the equations

in (4) involving B give

v (D lovi - le
a-z=1z(i 1)V<Z.>_2iz+v(1 )= B(1 i),

from which we obtain the desired expression for Z after dividing by d. A similar
argument can be used to prove that

1 (i
W—‘m"(l)

and will be left for the reader. This completes the lemma. O O

Proof of Proposition 8 for Type IV. We have

; _ (A B I z
gexpa = ¢ p)\-z, 1+1iz!

B <A - B'Z!, AZ +B(I+ %Zﬁ;) >
C-D'Z, CZ,+DI+ ;ZY)

We use our formula for the Py KcP_ decomposition of Gg = SO(n,2) given in
Lemma 9 to get the Kc-component of gexp Z, which is precisely the factor of
automorphy x(g,Z) = (g 3) First, by rewriting

cz, +piu+izy=t(cz +cz)y(1 —i)+lip( L i

+ 27+ T AT 2 27\ —i 1)°
we get
1 . ! 1 " 1 1.
v=0(V)= % (i 1)[CZ, +D(I+ §Z+)] i) =5 (i 1)(CZ +D2).

Then a short calculation shows that we get the correct answer for g acting on Z:

1
i 1)(CZy +DZy)

1 1
92 = 5[AZ} + BU + 521 <1> =1 (AZy + BZ»).

Denoting by W = —ﬁt(C - D'Z') (z >, we can finally write the expression for

1
V as
(5) V=T +592)){"(92)[AZ} + B(I + 521)]
-I-[C'Zjr +D(I+ %Zjﬁ)]}([ - %W’_’),

and the relation (gZ)f{_t(gZ)’ = 0 is used to obtain a simplified answer for U:
(6) U=A-B'Z' +(9Z)[CZ| + D(I + 3 Z)I'W.

This completes the proof. O O
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Kernel functions. Our next goal will be to define a certain kernel function K for
the classical domains. Now, we can view K¢ as consisting of diagonal matrices k =

<g 8) with U and V submatrices of appropriate sizes and det(U) det(V) = 1,

where we label k™ = U to designate the upper left diagonal part of k and k= =V
for the lower right diagonal part. Then, following [Sa], we define the matrix kernel
function £ : D x D — K¢:

K(z,w) = fo((expz) " (expw)) ",

where Z represents conjugation with respect to the complex structure on p, so that
elements of py are sent to p_ (and vice versa). For the classical domains, this
means that if the element z € D C py is viewed as a matrix, then the complex
structure is complex conjugate transpose of matrices:

o (02 _, (0 0
=7 \o o) 7 zZ* 0)°

Then the kernel function K : D x D — C* is defined as:
| det(K(z,w)™), TypesI—III
K(z,w) = { OK(z,w)™), Type IV
Proposition 10. The kernel function K for the classical domains is given as

Type I.  K(Z,W)=det(I — Z*W)~ 1.
Type 1I:  K(Z,W) =det(I — ZW)™L.
Type III: K(Z,W) =det(I + ZW) L.
Type IV: K(Z,W)= 1+'ZZ'WW —2Z*W)~L.

Proof. For Types I, 11, III, just multiply the following matrices

. I o0\(I W I W
(exp Z7) leXpW:<—Z* 0> (0 I>:<—Z* I—Z*W>

to easily see that

0 (I - z*W)~!

and so K(Z,W) = det(I — Z*W)~!. Now use the fact that {Z = Z for Type II and
17 = —Z for Type III to get the right expressions for K in these cases.
For Type IV, it can be checked that

(exp (Z')*) texp W =
—
= I/ _Z_—// ! W-Ii_
7 1+17" ) \-'WL I+ 3wy
I+7Z ‘W Wi —Z (I+iw)
Z_— I+ 5Z)WL TWL A (14 571+ 5W)

K(Z,W) = <(I+ W(I —Z*W)~1z2*)! 0 ) |

Now, notice that

,-;o(g g):@ 3):@%:%(2' 1)D<1>.

It follows from the two identities

7”(1):(2' W =o, (i 1)71W1<;>:8¢fﬁtww,
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that
o) = (i NIZWL+u+3Z)u+ 3w (])
= 1+ZZ'WW —2Z*W.
Now use the definition of K(Z, W) = O(V~!) = ©(V)~! to obtained the desired
expression for K. O O

Determinant factors of automorphy. We will also need to define the determinant
factor of automorphy j : Gr x D — S' associated to the factor of automorphy:

. [ det(r(g,2)7)"t, TypesI—1III
@ 10:9={ ey Tperv
Lemma 11. The kernel function K enjoys the following properties:
i) K(z,w) = K(w,z) and K(z,z) > 0.
i) K(gz, gw) = j(g,2) ' K(z,w)j(g,w) ™"

Proof. Property i) is obvious. Property ii) for Types I-IIT follows first from the
equivalence of the two equations

(QZ)*Im,n(gW) =Z"Ln W,
(AZ + B)*(AW + B) — (CZ + D)*(CW + D) = Z*W,

and the relations

I—(92)*(gW)=(CZ+D)y*~'(I-Z*W)(CW + D)™,

jl9,2)=(CZ+ D)~
The identity for Type IV requires a much more complicated expression. To

simplify the notation, recall the definition of Z; and Z, earlier in Proposition 8 and
denote

7= <Zl> . U=AZ + B, V=(CZ+DZ).
Zs
We then define gZ as ordinary matrix multiplication to obtain

il U —1 .
gZ = (V)’ gZ =Uv ", v:(z l)V.
In what follows, we use the letters z and w as subscripts to distinguish the terms
U and V associated to each of the two different elements Z and W as defined
immediately above. First, some preliminary identities will be needed:

Zg Ly gW = 2°W <= UrUy, — ViV = Z;Wy — ZiWs,
ZtggZ = 27 =0 — WU+VV =0.
Also, the following three equalities can be easily verified:

Z\Wy + ZoWo = 4(1 + ZZWW — 22*W),

(Vivy)? — 20XV Vv, = —0i V) (_12 ;) ViV,

tVZVZtiVw = U;V; ( 1 i) vaw.

—1
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This gives (viv,)? — 21)*V Vvw + V.V, 'V, Vy = 0. Using j(g,2) = (v./2i)!

and j(g, W) = (qu/2i) ", we get
1+1(gZ)(g2) (gW)(gW) — 2(9Z)" (gW) =
= [V v, + (U.U. UuUs) — 2UU,]
vsz vz w
= - [viv, + VLV, W Vi) — 2(Zi Wy — Z5Wa + V. V)]

1 * p *Y 7k 7 1/
= m((v Tow)? — 205V Vv + VIV, TV V)
(1 +ZZTWW —2Z*W)
= 0+](g, Z)*A+ZZWW —2Z*W)j(g,W).
The transformation property of K(gZ, gW) for Type IV now follows. O |

Let K¢ act on p4 by the adjoint action and consider the linear map J(g,z) =
Ady, k(g,2). It is well-known that d(gz) = J(g,z)dz (cf. [Sa], Ch. II, §5), Then
the jacobian of d(gz) is det(J(g,z)) = j(yg, z)?, where the exponent p depends on
the bounded symmetric domain (see the lemma below).

Let B(Z,W) be the Bergman kernel on D. Then B can be written as a constant
factor (namely the volume of D) of our kernel function K raised to an appropriate
exponent p (depending on D). Furthermore, the Bergman kernel gives rise to
the hermitian (or Bergman) metric ¥ on D defined by the fundamental 2-form
i00log B(Z, Z) and the Riemannian metric w is obtained by taking the imaginary
part of ¥ (cf. [Sa], II. §6 and [TW], §1):

Lemma 12. The Bergman metric ¥ on D is given by:

Type I: Y =ipTe{(l — Z*Z)~'dzZ*(I — ZZ*)~'dZ}.

Type II: ¥ =ipTe{(I - Z2)"*dZ(I — ZZ)~'dZ}.

Type III: © =ipTe{(I +ZZ) *dZ(I + ZZ)~'dZ}.

Type IV: Y =ip(1+1ZZ1ZZ —22Z*Z)"*(2dZ*dZ — d(*ZZ)d(1ZZ)).

4. An explicit construction. In this section, we follow [M] and demonstrate how
Mg can be constructed more explicitly. Assume that D and G/@Q are the same as
in the previous section. Then Mg = D x S'. Because of this fact, we begin by
describing a twisted group action ® of G, = Gg x S* on D! = D x S' which
makes use of the determinant factor of automorphy. We then prove that Mg is
diffeomorphic to D! under this action. Furthermore, we go on to describe a one-
parameter family of Riemannian metrics  on D! invariant under G*. Therefore,
by using this identification in the next section, we shall obtain new examples of
weakly symmetric spaces.

Let D' = DxS" be the product manifold of D with the unit circle S' parametrized
by the interval [0,27). If 2 € D and t € S!, we shall write (z,t) or 2z; to de-
note the corresponding element of D!. Let G4 = Ggr x S be the direct product
of Gg (listed in section 3) and S* as Lie groups. We write out its elements as
gs = (9,5), g € G and s € [0,27) and define the multiplication as (g1, s1)(g2, s2) =
(9192, 52 + s1(mod 27)). Let j(g, z) be the determinant factor of automorphy map
from Ggr x D — S* as defined in (7).

Lemma 13. The automorphic group action ® : G x D' — D! defined by
(8) gszt:(gzva‘rgj(gaz)+t+5)a s EG]%{: Zt EDl-
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is transitive with isotropy subgroup K = {(k,— argj(k,0)) : k € Kg} at the point
(0,0) so that D' = G /K. Hence, D' is diffeomorphic to Mg under the action
of ®, where G/Q = Gg.

Proof. The lemma is trivial except for transitivity of ®. In fact, we shall prove
that Gg, considered as a subgroup of G}, is transitive on D!. Furthermore, as Gg
is already transitive on D, it suffices to prove that Gp is transitive on any slice
{z} x St C D'. By identifying z with the coset gK so that gKgg~! is the isotropy
subgroup of Ggr at z, it is clear that the orbit of gKrg~' on the S' factor and
described by argj(k,0), k € Kg, is transitive.

Now, it follows from the isomorphism Gg = G that G = G, and Kp), = Kj.
As Mg is diffeomorphic to Gg, /K, it is then clear that D' is diffeomorphic to Mg
under the action of ®. O O

The Riemannian metric. We now give explicit expressions for a one-parameter
family of G}-invariant metrics on D! for the classical domains. If z is a complex
number, let Rez and Im z denote its real and imaginary parts, respectively. Also,
we write Tr{A} to denote the trace of the matrix A.

Proposition 14. Let w be the unique Riemannian metric on D invariant under
Ggr. Then the following one-parameter family of Riemannian metrics Q = Q, on
D! is invariant under G}:

(9) Q, =w+rv(d-6)? veRt,
where the differential one-form § = §(Z) at (Z,t) € D! is expressed as

Type I: 6 =ImTr{Z*dZ(1 — Z*Z)~1}.
Type II: 6 =ImTr{ZdZ(1 - ZZ)~'}.
Type II: 6 =ImTr{—-ZdZ(1+ ZZ)~'}.

Type IV: 6 =1Im {2Z dZ__ 29(2)"dq(Z) }, (2) = L
1+1ZZ127 —22*7Z (i 1)2

Furthermore, D' is an irreducible Riemannian manifold with respect to .
The heart of the proof relies on the following lemma.

Lemma 15. The differential one-form § transforms under G}, as follows:

(10) dargj(g,2) = 0(Z) = d(92)

Proof. For Type I, we have j(g,Z) = det(CZ + D)~! and so

dargj(g,2) (1/2i)(dlog det(CZ + D)* — dlogdet(CZ + D))
(1/2i)Te{d(CZ + D)*(CZ + D)*~*
~d(CZ +D)(CZ+D)™'}.

By setting U = (AZ + B) and V = (CZ + D) to simplify our notation, it suffices
to find an expression for d(CZ + D)(CZ + D)~! = dVV~!. First, notice that
gZ = UV ™! and check that the following two equations are equivalent:

(2~ I)g*Imyngd<?> (z* I)d<f>,

UrdU - V*dV = Z*dZ.
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Now,

avy -1

VL(Vray) vl

V- UrdU — 2*dZ)V L

VLUK (du) V) — Vel zrdz vt

= VU UVTAVY L 4 dUVY) — Vel Zrdz v !
= (92)*(g2)dVV =Y + (92)*d(gZ) — V*~1Z2*dZV ",

or equivalently
(I -(92)*(92))dVV "' = (92)*d(gZ) - V* ' Z*dZV
and so
vVt = (I - (92)"(92)) " ((92) d(gZ) - V*~' Z*dZV "],

We multiply through and take the trace, simplifying the second term on the right
hand side to

Te{(I - (92)*(92))~'V*~1Z*dZV~'} =
=Te{V (I - (92)"(92))V*"1Z*dZ}
=Te{(I - 2*Z)"12*dZ},

where the identity (I — (9Z)*(9Z)) ' = V*(I — Z*Z)~'V has been used. We then
get
Tr{dVV =} =Te{( — (92)*(92)) ' (92)*d(9Z)}
—Te{(I - 2°7) 1 2*dZ).

We now use this trace equation to compute

dargj(g,Z) = dargdet(CZ + D)1
= (1/20)Te{(dVV 1) —avV 1}
= -ImTe{(I - (92)*(92)) *(92)*d(9Z)}
+Im Te{(I — Z*Z) "' Z*dZ}
= §(2) -6(92),

as desired.

For Types II and III, we observe in these two cases that the argument parallels
that used for Type I. This follows from recognizing that the expression for the
determinant factor of automorphy j(g, Z) doesn’t change. Also, D lies inside {Z €
M (C) : I —Z*Z >> 0} and G is a subgroup of SU(n,n), so dargj(g,Z)
produces the same identity formula as in the Type I case.

Again, the Type IV argument is complicated and must be derived separately.
First, we recall some of the notation used earlier in showing the transformation
property of the kernel function K for the Type IV case:

U=AZ1+BZy,, V=CZ +DZ,, v={(i 1)V.
We shall abuse notation and often write v* to mean v even though v is not a matrix.
Secondly, define q(Z) = Z»2;", where 25 = (i 1) Z>. Then g(9Z) = Vv~! and
2q(2)*dq(Z) = ZZd(*ZZ). Now, j(g,Z) = (v/2i)~" and so

dargj(g,Z) = £ (logdet(v/2i)* —logdet(v/2i))
- 1 Tr{(dvv=1)* — dvv1}.

2i
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Therefore, to find an expression for dvv—!, note that gZ = Uv~! and check the
following equalities:
Z*g* L, 0 d(g2) = 121,27 <= U*dU —V*dV = Z;dZ, — Z3dZs,
Ztgld(gZ) = ZdZ =0 <~ WdU + *vav = 0.
Then compute
-1

v*~ly*dov=t
= oW (i 1)" (i 1)dVe !

= VAV ot <? _OZ>dVv—1.

dvv

Add and subtract the term 2¢(gZ)*dg(gZ) to the right hand side above, but re-
place the addition by the equivalent expression obtained from the expansion below
instead:
2q(gZ)*d(gZ) 207 1V*d(Vo1)
20V (dVot — Vdov™2)
= (utV*dVeTt —dvvt) — 2V VeT — 1)dov!
= vy (_12 i) dVot —¥(g2)(92) " (9Z)(9Z)dvv~?
= o7 VraveT! oty (_OZ é) A
— H92)(9Z) " (92)(9Z)dvv",
where the identity v*v*vv™! — 20*V*Vo=! + tVV V'V = 0 (proved earlier in our
discussion of the kernel function) is used below to justify the previous substitution:
W92)(92)"(92)(9Z) = v UUUUL?
= v UUWUU)v 2
= 207 VvVl — 1.

If our directions above are correctly put into practice, then our expression for
dvv~! simplifies (namely from cancellation of the terms involving the 2x 2 matrices):
dvo™! =207 VAV —4(gZ)(9Z) (9Z)(9Z)dvv™" — 2q(9Z)*dq(gZ).

Now, expand the first term on the right hand side above as
20V dVe—t = 20 YW U*dU — Z3dZ, + Z3dZs)v !
= 2(9Z2)*dUv=t — 2v*=Y(Z;dZ, — Z3dZ,)v™?
2(92)*(d(Uv™t) + 2Uv ™ dov™t)
— 2042 dZ — 2 ZZd(1ZZ)) 2y *
2(92)d(9Z) +2(92)*(9Z)dvv™"
— (9. 2)*(22"dZ — 2¢(2)"da(2)) (9. Z),
and bring terms involving dvv~! on the right to the left hand side to get:

(1+%92)(92) " (92)(92Z) = 2(9Z)" (9Z))dvv ™" =
=2(92)"d(9Z) — 2q(9Z)"dg(92)
- jly,2)*(227dZ - 29(Z)*dq(Z))j(9, Z)-
A division and application of the transformation property for the K(g9Z, gZ) term
then brings our calculation for dvv~" to an end:
1 2(92)"d(gZ) —29(9Z)*d(92) _227dZ —2q(Z)"dq(Z)
1+ 4gZ)(92) (92)(92) — 2(92)*(9Z) 1+'2Z"ZZ -2Z*Z
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As a result,
dargj(g,Z) = £Tr{dv*v*~! —dvo™'}
= —0(92)+0(2).
This completes the proof of the lemma. O O

Remark 1 (Author’s Remark). One might expect the expression for § in the Type
IV case to contain the term

(11) 177d('227)
instead of ¢(Z)*dq(Z). Oddly, it happens that
H92)(92)d("(92)(92)) = 44(9Z)*da(9Z), but ZZd(‘'ZZ) = 2q(Z)"dg(Z).

It is this difference by a factor of 2 between the two identities above that makes
the G}-invariance of 2 unclear when the expression (11) is used.

Proof of Proposition 14. We first reduce the proof to showing that only the second
term in  is invariant under G}, = Gg x S*. This follows from the fact that since w
is the Riemannian metric on D, it is Gp-invariant, hence Gp x S'-invariant, because
the action of the circle S* on D is trivial.

Now, we have G} acting on D! as follows: (g,s)(Z,t) = (9Z,1), where { =
t+ s+ argj(g, Z). Then df = dt + dargj(g, Z) and by Lemma 15, it follows that

dargj(g,2) = 6(9Z) — 6(2).

Hence,

dt — 6(gZ) = dt — 6(2),
and shows the G-invariance of . Since nondegeneracy and positivity of Q is
clear, it follows that it is a Riemannian metric. It is also clear from the explicit
expression of () that it does not agree with the metric induced from D' considered
as a product of two symmetric spaces, namely D and S'. Hence, D' is a non-
symmetric irreducible Riemannian manifold. | |

New examples. Again, we maintain the same assumptions about D and G as
before. Let p be ordinary complex conjugation of D considered as a subset of C".
We claim that p is induced from the involution 8 of G described earlier in Prop. 2.
Define 6 (g) = pgpu~* for any g € Gr. Then 6g(g) acts on D as follows:

AZ + B
0 Z ===
=(9) (CZ+D
Therefore, O is just complex conjugation and hence a well-defined involutive map
of Gr. As Op satisfies all the properties in Prop. 2, this proves our claim by the
uniqueness of . By Prop. 3, it follows that

>:gZ, ZeD.

Proposition 16. D is weakly symmetric with respect to Gg and p.
Corollary 17. Let Z1,Z> € D. There exists an element g € Gr such that
argj(g; Zl) = argj(g; ZZ)
(

Proof. Consider the kernel function K(Z, W) defined in Proposition 10. We recall
that K(Z, W) satisties K(W, Z) = K(Z,W) and has the following transformation
property:

K(9Z,gW) = j(9,2) ' K(Z,W)j(g: W)™
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To apply this to our situation, use the assumption that D is weakly symmetric with
respect to Gr and p. This provides us with an element g € Gg such that gZ; = Z,
and gZ, = Z;. It follows that

K(9Z1,922) = K(Z3,7Z1) = K(Z2, Z1) = K(Z1, Zs).
On the other hand,
K(9Z1,92») = j(9, Z1) 'K(Zy, Z2)j(g, Z2) ",

from which the identity j(g, Z1)j(g, Z2) = 1is clear. We conclude that arg j(g, Z1) =
arg j(g, Z2). O O

Now, extend p to an involution fi of D* defined by u(Z,t) = (u(2), —t) = (Z, —t)
and check that pGLia~! = G and fi? € G§. According to Theorem 5, we can state
that

Theorem 18. D! is weakly symmetric with respect to G} and fi.

This result provides new examples of weakly symmetric spaces that are not
Riemannian products of symmetric spaces, as D! is irreducible with respect to 2.
In the case where Ggr = Sp(n, R), the manifolds D! correspond to those examples
discovered by Selberg (cf. [M]), who used the unbounded realization of D as a
generalized Siegel half-plane, and in the case where Gg = SU(n, 1), D! was shown
to be weakly symmetric with respect to its full isometry group in [BV1] by using
its realization as a tube in complex hyperbolic space.

Unit disc. Let Gg = SU(1,1). We examine how weak symmetry of the unit disc D
and its circle extension D' behaves at the group level. By definition, there exists
an isometry (g,s) € G that will exchange any two arbitrary distinct points (z,t)
and (w,r) in D! with respect to complex conjugation fi. By transitivity of Gy, we
can assume without loss of generality that one of the points, say (w,r), is the origin
(0,0). The strategy is to first find an element h € Ggr that will switch o and z and
then compose it with an element & € Kr mapping z to z. This will give the desired
element g which will reverse the two points o and z with respect to u. Define

e—targz 0 1 i iz B
k_( 0 eiargz>7 h_ﬁ<22’ _Z->, (]5—].—2’2’.

This leads to the element (g, s) as being

1 ie~iaTer i /7Z2 z
g:ﬁ jotargz |7 S:_t_'_arg;'

iVzz  —ie
Now check that arg j(g, z) = arg j(g,0) = — arg % to obtain the desired property of
weak symmetry: (g,s)(0,0) = (z,—t) and (g, s)(2,t) = (0,0).
Lastly, as an application, we compute the Laplacian A on D'. Write z € D as
z = x + 1y. By definition, any Riemannian manifold (M,() has a Laplacian A
defined by

Af =div grad f = % Z aixl <Z le\/ﬁ%) , Q= det(Qyy).
1 Ic
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Lemma 19. If G = SU(1,1), then the Laplacian of D' with respect to Q =
(described in Prop. 14) is given by

. o? o? . 0] g\ 0
12,229 9 2 2\ A T
A=(1-z"—y°) <6x2+8y2>+2(1 x* —y)(z y)<8:v+8y) T
2
dz? + dy?
(1—a2 —y2)?
pressed in matrix form as

1+y3)/¢* —zy/e*  ylo

ydx — xdy

Proof. The metric () = 1—2 2

2
+ <dt + > on D' can be ex-

Q:=(Qy)=| -—ay/¢®> (QA+a?)/¢* —a/dp |, ¢=1-2zz
y/o —z/¢ 1
It can be checked that
#* 0 —y¢
(12) Va=— @h=[ 0 &
¢ —y @ (1+2%+y?)

It remains to just write out the definition of the Laplacian using the expressions
n (12) above in order to obtain the desired formula in the lemma. We leave this
tedious calculation for the interested reader. O [l

Compact case. It is natural to expect that a similar construction of Mg should
work in the compact case as well; however, a global description becomes more
difficult to obtain when D is compact. One reason is that the determinant factor of
automorphy is not well-defined on G x D, at least not globally. Another reason is
that the principal fiber bundle Mg — D is no longer necessarily trivial. Of course,
there are known explicit realizations of Mg as a surface in complex projective space,
but only when D has rank one (cf. [BV1], [Na]). Perhaps the duality that exists
between compact and noncompact symmetric spaces could be employed. In any
case, the author will conjecture that Mg has a Gj-invariant Riemannian metric
locally given by the formula

Q=w+ (dt —9)%,

where for instance, if Gg = SU(m + n), then w is the unique Gg-invariant Rie-
mannian metric on D = SU(m +n)/S(U(m) x U(n)) and

§=ImTr{Z*dZ(1+ Z*Z)"'}.
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