TRAVELING WAVE SOLUTIONS TO THE MOLECULAR LASER EQUATIONS

HIEU D. NGUYEN

ABSTRACT. We discuss traveling wave solutions to the molecular laser equations.

1. INTRODUCTION

The molecular laser is the doubly-massive analog of the atomic laser that is based on the principles of
Bose-Enstein condensates (BEC) and Feshbach resonance. In [LS], Hong Ling describes a mathematical
model which we call the molecular laser equations (MLE) (see also [DKH)):

Bpa _ 1%,

@ i =3 g T Qaldal” + Nom[*)a + Vo + abmo);
6¢m _ 1 82¢m «
(2) 17 =7 022 + ()\l(ba|2 + /\mlﬁbm|2)¢m + (V + 6)¢m + §¢Z

Here, ¢, and ¢,, are the atomic and molecular fields, respectively, V and e are the strength of external
magnetic fields, A,, Ay, and and A are the strengths of atomic, molecular, and atomic-molecular interactions,
respectively, and « is the atom-to-molecule rate of conversion.

In this paper we discuss certain traveling wave solutions and small amplitude approximations to MLE.
To this end, we shall assume that ¢, and ¢,, have the form

(3) ¢a($, t) = ’U.(.{L‘ — ct)ei(kt+wz)
(4) ¢m($a t) = v(a: — ct)e2i(kt+ww)

where u and v are real and ¢, k,[, 0 are constants. Denoting the moving frame here by z = x — ¢t, we obtain
the following formulas:

(5) 1% = —icu,e®® — kue
18% 18 o
(6) —5 63;'; = —5@ (Uzeza + zwue’a)
(7 = —% (uzzeio + 2iwu,e? — w2uei9)

Substituting these formulas into (1) and (2) and separating real and imaginary parts leads to

(8) uy = —kuy = u(z,t) =u(lz —kt) =>c=k
9) vy = —kvg = v(z,t) = v(x — kt)
1 1 .
(10) JUse = (§k2 + w4+ V)u + Au® + W?u + avu
1 .
(11) qlee = (% + 2w + € + V)v + Auv + Apv® + %uz
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2. LINEAR SOLUTIONS

In this section we assume that u and v are proportional, i.e. v = Au, where A is constant. Then the
second half of the equations above become

1 1 .
(12) o Uzz = (§k2 +w+ V)u+ Aud + AA%03 + aAu?
1 .

(13) AUz = (F + 20 + e+ V) Au+ Mu® + X A%0° + %uz
Equating coefficients yields
(14) Aa=af/A=>A=+1
(15) Ao +AAZ =20+ 2),, 4% = A, = A + 22,

1 k2 24V
(16) §k2+w+V:2(k2+2w+e+V):>w:_(?Jr 6; )

Assuming these restrictions, we can then integrate either equation to obtain

1 2
(17) Stae = 3(V—eJu+ adu® + (A, + N)u?
(18) = u) = C+av® + bu® + Ay + A)u*

where a = %(V —¢)and b= %aA. Lastly, we separate variables and integrate to solve for u.

du

19 = [ dzx
(19) VO +au? + bud + (A, + N)u? /

We now concentrate on cases which yield bounded solutions:
CASEIL: C=0,a>0,b<0. It follows that

4q3/2e Ve
a — 2+/abeVaer 4 h2e2var — 4q()\, + \)e2Vae

(20) u(z) =
CASEIl: C=0,A,+A=0,a>0,b<0. In this case,

(21) u(z) = —Zsech? [ﬁ (x + 6)]

erffo-(5452)1)
oo fafo- (£ +732):)

and so

(22) ba(z,t) = +7V ecn? [\/ V- (- Kkt +6)
a 3
V

1 1
(24) (—k+c)u= g Uaz + Eczu + (Aat? + M) u + wu + auv
1
(25) (=2k +2¢%)v = —qv= t v+ (M + M) + (w4 €)v + %u2
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3. QUADRATIC SOLUTIONS

In this section we further assume that u > 0 and v = Ku? with K > 0. Equations (24)-(25) above then
simplify to

(26) u,, = au + bu® + pu®

(27) K(u,)? = —Ku,,u+ du® + eu* + qu®

where

(28) a=2k+w)—c* b=20N\,+akK), p=2)\K>
(29) d=22k+w+e—c)K +a, e=2)\, ¢=2)\,K*

Integrating (26) yields

(30) u? = au’® + gu4 + §u6 +Ch
On the other hand, substituting (26) into (27) produces
(31) u? = —Cru+ (d/K — a)u® + (e/K — b)u* + (¢/ K — p)u®

In order for (30) and (31) to be consistent with each other, we therefore require that the following constraints
hold:

(32) Ci =0
d a

(33) a—?—aiK_Q(w_e)

b e o} / 20 < < 4
(34) §—E—b:>w—e——)\(1+ 1+)\—a)\>, )\—g/\—a

pP_4q 4

- = = — m = —)\
(35) Tl p=A 3
Assuming this, the solution for u can now be found by integrating (30):
(36) / du = :I:/dz

uy/a +bu?/2 + put/3

To integrate the left-hand side, we consider two cases:

CASE I: Assume p = 0. It follows from (28) that either A = 0 (no atom-molecular interaction) or K =0
(no molecular component), which rules out this case. Note: If K =0, a > 0, b < 0 and A # 0, then we find
that (36) degenerates to the one-soliton solution for w:

(37) u(z,t) = 2\/% sech[v/a(z — ct + D) % ¢]

with e = 2.3/]b].
CASE II: Assume p # 0. In this case, we make the the substitution v = Ku?, which transforms the
integral on the left-hand side of (36) to

(38)

/ du _/ dv
uy/a +bu?/2 + pud /3 vWA + Bv+ Cv?’
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where here A =4aK, B=2band C = 34_112' This last integral depends on the sign of A, in particular.

( 1 2¢/A(A + Bv+ Cv?) + Bu 4+ 24
- 1 A>0
2/ ” ( )
dv 1 Bv +2A

39 = ¢ - in~t( —/ L

(39) /U AT Bor O WA sin (v *32_4140) (A<0)
2

_27*’33’9;50“ (4 =0)

From this we find that bounded solutions for u and v exist only for A > 0 and B? — 4AC > 0. These
conditions are satisfied when 2(k + w) > ¢ and A < 0, respectively, in which case

4A3/2
(40) v(z,t) =
Ae~VA(@—ct+C2) L (B2 — 4AC)eVA(z—ct+C2) _ 2\/AB
v(z,t)
= 44/ 22227
(41) u(z,t) 7

4. SMALL AMPLITUDE APPROXIMATION

We now assume |v| << |u|. In this case, the auv and Av?u terms can be dropped in the first MLE
equation and the \,,v% term can be dropped in the second equation to give

(42) Uy + (2 — 2w —2k)u — 2X,u® =0

(43) Vo — 4 + 2k +w + e — v = 200

Integrating the first equation above yields

(44) (u;)? = au® + bu* + Oy

where a = 2(w + k) — ¢? and b = \,. which we factor as

(45) (u2)? = (A — Bu®)(C — Du?)
Case I: Assume C; =0 and again a > 0 and b < 0. Then

(46) u(z,t) = Ksech[L(z — ct) + Cy £ ¢]

where K =2, /4, L = Va, and e? = 2./]b|.

Case II: Assume Cy # 0. By requiring AD # 0, BC' # 0 and making the substitutions v = \/A/Bw,
k? = AD/BC, it follows that the general solution for u can be expressed in terms of elliptic functions:

1 dw
47 / = /dz
47 VBC J /(1 —w?)(1 — k?*w?)
or

A

(48) u(z,t) =4/ Esn(vBC(m —ct) + Ca, k)
To find v, let us for the moment assume Case I holds so that
(49) u(z) = Ksech[L(z + Cs) + ¢],

where K = 24/a/b and L = \/a. Without loss of generality, we now assume C2 = 0 and ¢ = 0. Then (17)
reduces to the nonhomogeneous Legendre differential equation

(50) v., — 4AK?sech®(Lz) + w + € + 2kJv = %K%ech2 (Lz)
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The substitutions y = tanh(Lz), m? = 4(w + € + 2k)/L?, n(n+1) = —4\K?/L? and r = 2aK?/L? will put
(50) into standard form:

2

m
(51) [(1 - y2)vy]y - 1_—y2v +nn+v=r
Assuming m and n are non-negative integers, it follows that the homogeneous solutions of (51), denoted
by v*(y), can be described in terms of Legendre polynomials. In particular, let P,(y) be the Legendre
polynomial of degree n and P (y) be its associated Legendre polynomial given by

(52) PI W) = (<D™ (1= S Palu), = 0,1,
Then
(53) v (y) = Py (y) + c2Qy' (y)

where Q7' (y) is the unbounded homogeneous solution to (51). Therefore, the nonhomogeneous solution
becomes

(54) v(y) = vp'(y) + By (y)

where R (y) is a particular nonhomogeneous solution to (51).
Next, we consider certain special cases. For m = 0, we have

(55) P (y) = Pa(y)
(56) RO(y) = ——
For n = 2, we have
(57) PE(y) = 535~ 1)
(58) Py(y) = —3y(1 — )"/
(59) P (y) = 3(1 - y?)
and
(60) R() = §
(61) Ry(y) = 5(1 ")
2 _ 7‘112(3 - 292)
For n = 4, we have
.
(63) Ri(2) = 20
(64) Ri(z) = 4’°—5u — 2%)(1 + 1422)
o,y T22(90 — 16527 + T72%)
(65) Ru(z) = 180(1 — 22)
(66) Rj(z) = (1 -2%)(1 - 22°)
(67) RY(z) = (45 — 5402° 4 9302* — 6442° 4 1612°)

720(1 — 22)2
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For n = 6, we have

0,y =
(68) RY(:) =
(69) RL(z) = %(19 — 1272% + 3722 — 2642°)
2 2 4 6
9, _ T2°(210 — 7702 4+ 9242* — 3632°)
(70) Bq(2) = 120(1 - 22)
(71) R3(2) = _&(1 — 22)(1 — 682% + 882%)
2 2 _ 2 4 6 _ 2 8 10
72 Ri(z) = r(105 + 68252” — 255502" + 363302° — 233552° + 57092'°)
16800(1 — 22)2
(73) R3(z) = %(1 — 22)(3 — 1222 + 82%)
140 — 189022 + 52502* — 72102° + 544528 — 2178210 12
(74) RS(z) = _ 7(140 — 189027 + 52502 — 72102° + 54452 782" + 3632'7)

2100(1 — 22)3
More generally, we find for n even that

(75) RZ™H(2) = rS(2)
(76) R™(2) = %

where S(z) and T'(z) are n-th and (n 4+ m)-th degree polynomials, respectively.
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